天氣與對流研究室


Home | Research Field | Publications | Our Group | Instruments | CReSS Forecast


研究成果 Publications

一、英文期刊發表論文 (refereed SCI journals)
二、英文專書論文 (refereed book chapters)
三、英文期刊發表論文 (non-SCI journals)
四、中文期刊發表論文 (refereed)
五、學術研討會論文 (英文)
六、學術研討會論文 (中文)
七、專書、教科書、及學位論文
八、研究報告與其他著述


一、英文期刊發表論文 (refereed SCI journals): 78 published/accepted, 5 others

*: 通訊作者 | _: 第一作者 | IF: SCI 期刊影響因子 | ∆: 引用次數

82. Wang, C.-C., P.-Y. Chuang*, and K. Tsuboki, 2023: Where and why does a higher model resolution Improve quantitative precipitation forecasts the most in point-to-point categorical statistics? Results from CReSS forecasts of Mei-yu rainfall in Taiwan.
(under review, Nat. Hazards Earth Syst. Sci., IF = 4.600 [38/201] in 2022; SJR = 1.094 [40/322] in 2022)

81. Wang, C.-C., C.-W. Chien, and W.-K. Soong*, 2023: Eight-day typhoon quantitative precipitation forecasts in Taiwan by the 2.5-km CReSS model. Part I: Overall performance during 2012-2016 and impact of domain size.
(under review, J. Hydrometeor., IF = 3.800 [38/94] in 2022; SJR = 1.374 [26/137] in 2022)

80. Pu, C.-P., and C.-C. Wang*, 2023: The correspondence between large pressure fluctuations and runway wind shear: The event on 12 December 2019 at Songshan airport, Taipei.
(under 2nd revision, Atmosphere, IF = 2.900 [58/94] in 2022; SJR = 0.661 [112/371] in 2022)

79. Wang, C.-C., L.-S. Tseng*, C.-C. Huang, P.-Y. Chuang, N.-C. Su, C.-T. Chen, S.-H. Lo, and K. Tsuboki, 2023: Effects of long-term climate change on typhoon rainfall associated with southwesterly monsoon flow near Taiwan: Mindulle (2004) and Morakot (2009).
(under 3rd review, Asia-Pacific J. Atmos. Sci., IF = 2.300 [65/94] in 2022; SJR = 0.687 [62/137] in 2022)

78. Wang, C.-C., Y.-H. Chen*, Y.-Y. Lan, and W.-Y. Chang, 2023: An evaluation of simulated cloud microphysical characteristics of three Mei-yu rainfall systems in Taiwan by a cloud-resolving model using dual-polarimetric radar observations. Remote Sensing, 15, 4651, https://doi.org/10.3390/rs15194651.
(Sep, IF = 5.000 [33/201] in 2022, ∆ = 0; SJR = 1.136 [37/322] in 2022, ∆ = 0)

77. Wang, C.-C.*, C.-H. Tsai, B. J.-D. Jou, S. J. David, S.-Y. Huang, Y.-W. Wang, and A. G. Pura, 2023: A comparison study between the use of single-point versus areal-mean rainfall values from a high-resolution model when verified against satellite retrievals for three typhoons hitting the Philippines. Meteor. Atmos. Phys., 135, 49, https://doi.org/10.1007/s00703-023-00985-y.
(Aug, IF = 2.000 [72/94] in 2022, ∆ = 0; SJR = 0.576 [75/137] in 2022, ∆ = 0)

76. Wang, C.-C.*, W.-K. Soong, C.-W. Chien, C.-S. Chang, and S.-Y. Huang, 2023: Eight-day typhoon quantitative precipitation forecasts in Taiwan by the 2.5 km CReSS model, Part II: Reduced control of track errors on rainfall prediction quality for typhoons associated with southwesterly flow. Atmosphere, 14, 1047, https://doi.org/10.3390/atmos14061047.
(Jun, IF = 2.900 [58/94] in 2022, ∆ = 0; SJR = 0.661 [112/371] in 2022, ∆ = 0)

75. Wang, C.-C., S.-H. Chen, Y.-H. Chen*, H.-C. Kuo, J. H. Ruppert, Jr., and K. Tsuboki, 2023: Cloud-resolving time-lagged rainfall ensemble forecasts for typhoons in Taiwan: Examples of Saola (2012), Soulik (2013), and Soudelor (2015). Wea. Clim. Extremes, 40, 100555, https://doi.org/10.1016/j.wace.2023.100555.
(Jun, IF = 8.000 [9/94] in 2022, ∆ = 0; SJR = 1.941 [23/785] in 2022, ∆ = 0, published online: 10 Mar 2023)

74. Johnson, R. H., P. E. Ciesielski, C. M. Fine, and Wang, C.-C., 2023: Effects of the topography of Sumatra on tropical of Sumatra on tropical cyclone formation over the Indian Ocean. Mausam, 74, 389-396, https://doi.org/10.54302/mausam.v74i2.6062.
(Apr, IF = 0.600 [94/94] in 2022, ∆ = 0; SJR = 0.263 [105/137] in 2022, ∆ = 0)

73. Wang, C.-C.*, 2023: Papers of note: A review of Typhoon Morakot (2009) that caused extreme rainfall in Taiwan. Bull. Amer. Meteor. Soc., 104, 155-156.
(Mar, IF = 8.000 [8/94] in 2022, ∆ = 0; SJR = 2.418 [7/137] in 2022, ∆ = 0)

72. Wang, C.-C., and V. D. Nguyen*, 2023: Investigation of an extreme rainfall event during 8-12 December 2018 over central Vietnam. Part I: Analysis and cloud-resolving simulation. Nat. Hazards Earth Syst. Sci., 23, 771-788, https://doi.org/10.5194/nhess-23-771-2023.
(Feb, IF = 4.600 [38/201] in 2022, ∆ = 0; SJR = 1.094 [40/322] in 2022, ∆ = 0)

71. Wang, C.-C.*, T.-Y. Yeh, C.-S. Chang, M.-S. Li, K. Tsuboki, and C.-H. Liu, 2023: A modeling study of an extreme rainfall event along the northern coast of Taiwan on 2 June 2017. Atmos. Chem. Phys., 23, 501-521, https://doi.org/10.5194/acp-23-501-2023.
(Jan, IF = 6.300 [15/94] in 2022, ∆ = 0; SJR = 2.463 [6/137] in 2022, ∆ = 0)

70. Wang, C.-C.*, H.-C. Kuo, Y.-H. Chen, S.-H. Chen, and K. Tsuboki, 2022: A decade after Typhoon Morakot (2009): What have we learned about its physics and predictability? Wea. Forecasting, 37, 2161-2181, https://doi.org/10.1175/WAF-D-21-0197.1.
(Dec, IF = 2.900 [60/94], ∆ = 0; SJR = 1.356 [27/137] in 2022, ∆ = 0)

69. Wang, C.-C.*, C.-H. Tsai, B. J.-D. Jou, and S. J. David, A. G. Pura, D.-I. Lee, K. Tsuboki, and J.-S. Lee, 2022: Time-lagged ensemble quantitative precipitation forecasts for three landfalling typhoons in the Philippines using the CReSS Model, Part II: Verification using Global Precipitation Measurement Retrievals. Remote Sensing, 14, 5126, https://doi.org/10.3390/rs14205126.
(Oct, IF = 5.000 [33/201], ∆ = 0; SJR = 1.136 [37/322], ∆ = 0)

68. Wang, C.-C.*, C.-H. Tsai, B. J.-D. Jou, and S. J. David, 2022: Time-lagged ensemble quantitative precipitation forecasts for three landfalling typhoons in the Philippines using the CReSS Model, Part I: Description and verification against rain-gauge observations. Atmosphere, 13, 1193, https://doi.org/10.3390/atmos13081193.
(Jul, IF = 2.900 [58/94], ∆ = 0; SJR = 0.661 [112/371], ∆ = 0)

67. Wang, C.-C.*, C.-Y. Lee, B. J.-D. Jou, C. P. Celebre, S. David, and K. Tsuboki, 2022: High-resolution time-lagged ensemble prediction for landfall intensity of Super Typhoon Haiyan (2013) using a cloud-resolving model. Wea. Clim. Extremes, 37, 100473, https://doi.org/10.1016/j.wace.2022.100473.
(Jun, IF = 8.000 [9/94], ∆ = 0; SJR = 1.941 [23/785], ∆ = 0, published online: 21 Jun 2022)

66. Wang, C.-C., P.-Y. Chuang*, S.-T. Chen, D.-I. Lee, and K. Tsuboki, 2022: Idealized simulations of Mei-yu rainfall in Taiwan under uniform southwesterly flow using a cloud-resolving model. Nat. Hazards Earth Syst. Sci., 22, 1795-1817, https://doi.org/10.5194/nhess-22-1795-2022.
(Jun, IF = 4.600 [38/201], ∆ = 0; SJR = 1.094 [40/322], ∆ = 0, published online: 2 Jun 2022)

65. Wang, C.-C., S. Paul, S.-Y. Huang, Y.-W. Wang, K. Tsuboki, D.-I. Lee, and J.-S. Lee, 2022: Typhoon quantitative precipitation forecasts by the 2.5 km CReSS model in Taiwan: Examples and role of topography. Atmosphere, 13, 623, https://doi.org/10.3390/atmos13040623.
(Apr, IF = 2.900 [58/94], ∆ = 0; SJR = 0.661 [112/371], ∆ = 0)

64. Wang, C.-C., S.-H. Chen*, K. Tsuboki, S.-Y. Huang, and C.-S. Chang, 2022: Application of time-lagged ensemble quantitative precipitation forecasts for Typhoon Morakot (2009) in Taiwan by a cloud-resolving model. Atmosphere, 13, 585, https://doi.org/10.3390/atmos13040585.
(Apr, IF = 2.900 [58/94], ∆ = 1; SJR = 0.661 [112/371], ∆ = 0)

63. Wang, C.-C., J.-P. Hou*, C.-H. Tseng, P.-L. Chang, and D.-I. Lee, 2022: Study of an asymmetric and anticyclonic bow echo near Taiwan. Atmosphere, 13, 331, https://doi.org/10.3390/atmos13020331.
(Feb, IF = 2.900 [58/94], ∆ = 0; SJR = 0.661 [112/371], ∆ = 0)

62. Wang, C.-C., P.-Y. Chuang*, C.-S. Chang, K. Tsuboki, S.-Y. Huang, and G.-C. Leu, 2022: Evaluation of mei-yu heavy-rainfall quantitative precipitation forecasts in Taiwan by a cloud-resolving model for three seasons of 2012-2014. Nat. Hazards Earth Syst. Sci., 22, 23-40, https://doi.org/10.5194/nhess-22-23-2022.
(Jan, IF = 4.600 [38/201], ∆ = 3; SJR = 1.094 [40/322], ∆ = 3, published online: 5 Jan 2022)

61. Wang, C.-C., C.-S. Chang*, Y.-W. Wang, C.-C. Huang, S.-C. Wang, Y.-S. Chen, K. Tsuboki, S.-Y. Huang, S.-H. Chen, P.-Y. Chuang, and H. Chiu, 2021: Evaluating quantitative precipitation forecasts using the 2.5 km CReSS model for typhoons in Taiwan: An update through the 2015 season. Atmosphere, 12, 1501, https://doi.org/10.3390/atmos12111501.
(Nov, IF = 3.110 [59/94], ∆ = 2; SJR = 0.692 [97/348], ∆ = 2)

60. Paul, S., C.-C. Wang*, L.-S. Tseng, D.-I. Lee, J.-S. Hong, and T.-M. Leou, 2021: Evaluation of rainfall forecasts by three mesoscale models during the Mei-yu season of 2008 in Taiwan. Part I: Subjective comparison. Asia-Pacific J. Atmos. Sci., 57(4), 817-838, https://doi.org/10.1007/s13143-021-00229-2.
(Nov, IF = 6.623 [15/94], ∆ = 2; SJR = 0.695 [69/133], ∆ = 0, published online: 5 Mar 2021)

59. Wang, A.-H., C.-C. Wang*, and G. T.-J. Chen, 2021: A study on synoptic conditions leading to the extreme rainfall in Taiwan during 10-12 June 2012. Atmosphere, 12, 1255, https://doi.org/10.3390/atmos12101255.
(Sep, IF = 3.110 [54/94], ∆ = 1; SJR = 0.692 [97/348], ∆ = 0)

58. Wang, C.-C., T.-C. Lin, K. Tsuboki*, Y.-M. Tsai, and D.-I. Lee, 2021: A modeling study of rainbands upstream from western Japan during the approach of Typhoon Tokage (2004). Atmosphere, 12, 1242, https://doi.org/10.3390/atmos12101242.
(Sep, IF = 3.110 [59/94], ∆ = 0; SJR = 0.692 [97/348], ∆ = 0)

57. Wang, C.-C.*, M.-S. Li, C.-S. Chang, P.-Y. Chuang, S.-H. Chen, and K. Tsuboki, 2021: Ensemble-based sensitivity analysis and predictability of an extreme rainfall event over northern Taiwan in the Mei-yu Season: The 2 June 2017 Case. Atmos. Res., 259, 105684, https://doi.org/10.1016/j.atmosres.2021.105684.
(Sep, IF = 5.965 [18/94], ∆ = 2; SJR = 1.386 [24/133], ∆ = 3, published online: 17 May 2021)

56. Wang, C.-C., Y.-H. Chen*, M.-C. Li, H.-C. Kuo, and K. Tsuboki, 2021: On the separation of upper and low-level centres of tropical storm Kong-Rey (2013) near Taiwan in association with asymmetric latent heating. Quart. J. Roy. Meteor. Soc., 147, 1135-1149, https://doi.org/10.1002/qj.3963.
(Mar, IF = 7.237 [11/94], ∆ = 3; SJR = 2.922 [4/133], ∆ = 3, published online: 6 Jan 2021)

55. Wang, C.-C.*, S. Paul, and D.-I. Lee, 2020: Evaluation of rainfall forecasts by three mesoscale models during the Mei-yu season of 2008 in Taiwan. Part II: Development of an object-oriented method. Atmosphere, 11, 939, https://doi.org/10.3390/atmos11090939.
(Sep, IF = 2.686 [54/94], ∆ = 1; SJR = 0.699 [77/341], ∆ = 2)

54. Wang, C.-C., K.-Y. Lin, C. A. Davis, S.-Y. Huang*, S. C.-S. Liu, K. Tsuboki, and B. J.-D. Jou, 2020: A modeling study on the impacts of Typhoon Morakot’s (2009) vortex structure on rainfall in Taiwan using piecewise potential vorticity inversion. J. Meteor. Soc. Japan, 98, 707-733, https://doi.org/10.2151/jmsj.2020-036.
(Aug, IF = 2.236 [59/94], ∆ = 2; SJR = 0.825 [49/135], ∆ = 2)

53. Wang, C.-C., S. Paul*, and D.-I. Lee, 2020: Evaluation of rainfall forecasts by three mesoscale models during the Mei-yu season of 2008 in Taiwan. Part III: Application of an object-oriented verification method. Atmosphere, 11, 705, https://doi.org/10.3390/atmos11070705.
(Jul, IF = 2.686 [54/94], ∆ = 4; SJR = 0.699 [77/341], ∆ = 5)

52. Wang, C.-C.*, S.-K. Ma, and R. H. Johnson, 2020: A numerical study on the influences of Sumatra topography and synoptic features on tropical cyclone formation over the Indian Ocean. Mon. Wea. Rev., 148, 2777-2799, https://doi.org/10.1175/MWR-D-19-0259.1.
(Jul, IF = 3.735 [34/94], ∆ = 1; SJR = 1.862 [12/135], ∆ = 1, published online: 18 Jun 2020)

51. Wang, C.-C., L.-S. Tseng*, C.-C. Huang, S.-H. Lo, C.-T. Chen, P.-Y. Chuang, and N.-C. Su, 2019: How much of Typhoon Morakot’s extreme rainfall is attributable to anthropogenic climate change? Int. J. Climatol., 39, 3454-3464, https://doi.org/10.1002/joc.6030.
(Jun, IF = 3.582 [23/93], ∆ = 5; SJR = 1.685 [21/125], ∆ = 5, published online: 3 Feb 2019)

50. Kuo, H.-C., S. Tsujino, C.-C. Huang, C.-C. Wang*, and K. Tsuboki, 2019: Diagnosis of the dynamic efficiency of latent heat release and the rapid intensification of Supertyphoon Haiyan (2013). Mon. Wea. Rev., 147, 1127-1147, https://doi.org/10.1175/MWR-D-18-0149.1.
(Apr, IF = 3.435 [31/93], ∆ = 8; SJR = 2.264 [9/125], ∆ = 8, published online: 16 Jan 2019)

49. Wang, C.-C., G. T.-J. Chen*, C.-H. Ngai, and K. Tsuboki, 2018: Case study of a morning convective rainfall event over southwestern Taiwan in the Mei-yu season under weak synoptic conditions. J. Meteor. Soc. Japan, 96, 461-484, https://doi.org/10.2151/jmsj.2018-051.
(Oct, IF = 3.318 [23/86], ∆ = 5; SJR = 4.086 [2/121], ∆ = 5)

48. Wang, C.-C., N.-C. Su, J.-P. Hou*, and D.-I. Lee, 2018: Evaluation of the 2.5-km Cloud-Resolving Storm Simulator in predicting local afternoon convection during the summer in Taiwan. Asia-Pacific J. Atmos. Sci., 54, 489-498, https://doi.org/10.1007/s13143-018-0054-7.
(Aug, IF = 1.772 [56/86], ∆ = 5; SJR = 0.743 [51/121], ∆ = 0, published online: 3 Sep 2018)

47. Paul, S., C.-C. Wang*, F.-C. Chien, and D.-I. Lee, 2018: An evaluation of the WRF Mei-yu rainfall forecasts in Taiwan, 2008-2010: differences in elevation and sub-regions. Meteorol. Appl., 25, 269-282, https://doi.org/10.1002/met.1689.
(Apr, IF = 1.711 [59/86], ∆ = 3; SJR = 0.823 [42/121], ∆ = 3, published online: 5 Dec 2017)

46. Chen, Y.-H., H.-C. Kuo*, C.-C. Wang, and Y.-T. Yang, 2017: Influence of southwest monsoon flow and typhoon track on Taiwan rainfall during the exit phase: Modeling study of Typhoon Morakot (2009). Quart. J. Roy. Meteor. Soc., 143 (B), 3014-3024, https://doi.org/10.1002/qj.3156.
(Oct, IF = 2.978 [25/86], ∆ = 12; SJR = 2.258 [10/126], ∆ = 12, published online: 16 Nov 2017)

45. Wang, C.-C., S. Paul*, F.-C. Chien, D.-I. Lee, and P.-Y., Chuang, 2017: An evaluation of WRF rainfall forecasts in Taiwan during three mei-yu seasons from 2008 to 2010. Wea. Forecasting, 32, 1329-1351, https://doi.org/10.1175/WAF-D-16-0190.1.
(Aug, IF = 2.276 [36/86], ∆ = 17; SJR = 1.684 [18/126], ∆ = 17)

44. Jeong, J.-H., D.-I. Lee*, and C.-C. Wang, 2016: Impact of the cold pool on mesoscale convective system-produced extreme rainfall over southeastern South Korea: 7 July 2009. Mon. Wea. Rev., 144, 3985-4006, https://doi.org/10.1175/MWR-D-16-0131.1.
(Oct, IF = 3.043 [25/85], ∆ = 20; SJR = 2.558 [7/106], ∆ = 19)

43. Wang, C.-C.*, B.-K. Chiou, G. T.-J. Chen, H.-C. Kuo, and C.-H. Liu, 2016: A numerical study of back-building process in a quasistationary rainband with extreme rainfall over northern Taiwan during 11-12 June 2012. Atmos. Chem. Phys., 16, 12359-12382, https://doi.org/10.5194/acp-16-12359-2016.
(Sep, IF = 5.318 [4/85], ∆ = 16; SJR = 3.356 [3/106], ∆ = 16)

42. Wang, C.-C.*, S.-Y. Huang, S.-H. Chen, C.-S. Chang, and K. Tsuboki, 2016: Paper of notes: Cloud-resolving, time-lagged typhoon rainfall ensemble forecasts. Bull. Amer. Meteor. Soc., 97, 1128-1129, https://doi.org/10.1175/BAMS_977_1123-1138_Nowcast.
(Jul, IF = 7.281 [2/85], ∆ = 0; SJR = 4.968 [1/106], ∆ = 0)

41. Wang, C.-C., G. T.-J. Chen*, and K.-H. Ho, 2016: A diagnostic case study of mei-yu frontal retreat and associated low development near Taiwan. Mon. Wea. Rev., 144, 2327-2349, https://doi.org/10.1175/MWR-D-15-0391.1.
(Jun, IF = 3.043 [25/85], ∆ = 6; SJR = 2.558 [7/106], ∆ = 6)

40. Jeong, J.-H., D.-I. Lee*, C.-C. Wang, and I.-S. Han, 2016: Characteristics of mesoscale- convective-system-produced extreme rainfall over southeastern South Korea: 7 July 2009. Nat. Hazards Earth Syst. Sci., 16, 927-939, https://doi.org/10.5194/nhess-16-927-2016.
(Apr, IF = 2.510 [57/188], ∆ = 15; SJR = 1.055 [39/268], ∆ = 13)

39. Wang, C.-C., S.-Y. Huang, S.-H. Chen, C.-S. Chang*, and K. Tsuboki, 2016: Cloud-resolving typhoon rainfall ensemble forecasts for Taiwan with large domain and extended range through time-lagged approach. Wea. Forecasting, 31, 151-172, https://doi.org/10.1175/WAF-D-15-0045.1.
(Feb, IF = 1.718 [43/85], ∆ = 22; SJR = 1.480 [22/106], ∆ = 24)

38. Wang, C.-C.*, 2016: Paper of notes: The more rain from typhoons, the better the models perform. Bull. Amer. Meteor. Soc., 97, 16-17, https://doi.org/10.1175/BAMS_971_11-18_Nowcast.
(Jan, IF = 7.281 [2/85], ∆ = 0; SJR = 4.728 [1/106], ∆ = 0)

37. Wang, C.-C., H.-C. Kuo*, R. H. Johnson, C.-Y. Lee, S.-Y. Huang, and Y.-H. Chen, 2015: A numerical study of convection in rainbands of Typhoon Morakot (2009) with extreme rainfall: Roles of pressure perturbations with low-level wind maxima. Atmos. Chem. Phys., 15, 11097-11115, https://doi.org/10.5194/acp-15-11097-2015.
(Oct, IF = 5.114 [6/84], ∆ = 16; SJR = 3.298 [4/106], ∆ = 15)

36a. Wang, C.-C.*, 2016: Corrigendum. Mon. Wea. Rev., 144, 3031-3033, https://doi.org/10.1175/MWR-D-16-0180.1.
(Aug, IF = 3.043 [25/85], ∆ = 0; SJR = 3.160 [7/106] in 2015, ∆ = 3)

36. Wang, C.-C.*, 2015: The more rain, the better the model performs-The dependency of quantitative precipitation forecast skill on rainfall amount for typhoons in Taiwan. Mon. Wea. Rev., 143, 1723-1748, https://doi.org/10.1175/MWR-D-14-00137.1.
(May, IF = 3.248 [22/84], ∆ = 35; SJR = 3.160 [7/106], ∆ = 26)

35. Wang. C.-C.*, B.-X. Lin, C.-T. Chen, and S.-H. Lo, 2015: Quantifying the effects of long-term climate change on tropical cyclone rainfall using cloud-resolving models: Examples of two landfall typhoons in Taiwan. J. Climate, 28, 66-85, https://doi.org/10.1175/JCLI-D-14-00044.1.
(Jan, IF = 4.850 [7/84], ∆ = 34; SJR = 5.000 [2/106], ∆ = 23)

34. Wang, C.-C.*, J. C.-S. Hsu, G. T.-J. Chen, and D.-I. Lee, 2014: A study of two propagating heavy-rainfall episodes near Taiwan during SoWMEX/TiMREX IOP-8 in June 2008. Part II: Sensitivity tests on the roles of synoptic conditions and topographic effects. Mon. Wea. Rev., 142, 2644-2664, https://doi.org/10.1175/MWR-D-13-00330.1.
(Aug, IF = 3.358 [14/77], ∆ = 29; SJR = 3.081 [4/97], ∆ = 22)

33. Wang, C.-C.*, J. C.-S. Hsu, G. T.-J. Chen, and D.-I. Lee, 2014: A study of two propagating heavy-rainfall episodes near Taiwan during SoWMEX/TiMREX IOP-8 in June 2008. Part I: Synoptic evolution, episode propagation, and model control simulation. Mon. Wea. Rev., 142, 2619-2643, https://doi.org/10.1175/MWR-D-13-00331.1.
(Aug, IF = 3.358 [14/77], ∆ = 34; SJR = 3.081 [4/97], ∆ = 29)

32. Wang, C.-C.*, 2014: On the calculation and correction of equitable threat score for model quantitative precipitation forecasts for small verification areas: The example of Taiwan. Wea. Forecasting, 29, 788-798, https://doi.org/10.1175/WAF-D-13-00087.1.
(Aug, IF = 1.788 [34/77], ∆ = 41; SJR = 1.647 [20/97], ∆ = 32)

31. Jeong, J.-H., D.-I. Lee*, C.-C. Wang, S.-M. Jang, S.-H. Park, and S.-A. Jung, 2014: Structure and evolution of line-shaped convective systems associated with Changma front during GRL PHONE-09: 6 July 2009 case. Meteorol. Appl., 21, 786-794, https://doi.org/10.1002/met.1418.
(Jul, IF = 1.337 [52/77], ∆ = 11; SJR = 0.807 [40/97], ∆ = 8)

30. Wang, C.-C.*, H.-C. Kuo, T.-C. Yeh, C.-H. Chung, Y.-H. Chen, S.-Y. Huang, Y.-W. Wang, and C.-H. Liu, 2013: High-resolution quantitative precipitation forecasts and simulations by the Cloud-Resolving Storm Simulator (CReSS) for Typhoon Morakot (2009). J. Hydrol., 506, 26-41, https://doi.org/10.1016/j.jhydrol.2013.02.018.
(Dec, IF = 2.693 [6/124], ∆ = 28; SJR = 1.479 [11/185], ∆ = 25)

29. Wang, C.-C.*, Y.-H. Chen, H.-C. Kuo, and S.-Y. Huang, 2013: Sensitivity of typhoon track to asymmetric latent heating/rainfall induced by Taiwan topography: A numerical study of Typhoon Fanapi (2010). J. Geophys. Res., 118(D8), 3292-3308, https://doi.org/10.1002/jgrd.50351.
(Apr, IF = 3.440 [24/173], ∆ = 41; SJR = 2.004 [13/94], ∆ = 34)

28. Wang, C.-C.*, H.-C. Kuo, Y.-H. Chen, H.-L. Huang, C.-H. Chung, and K. Tsuboki, 2012: Effects of asymmetric latent heating on typhoon movement crossing Taiwan: The case of Morakot (2009) with extreme rainfall. J. Atmos. Sci., 69, 3172-3196, https://doi.org/10.1175/JAS-D-11-0346.1.
(Nov, IF = 2.672 [24/74], ∆ = 65; SJR = 2.684 [7/90], ∆ = 67)

27. Jeong, J.-H., D.-I. Lee*, C.-C. Wang, S.-M. Jang, C.-H. You, and M. Jang, 2012: Environment and morphology of mesoscale convective systems associated with the Changma front during 9-10 July 2007. Ann. Geophys., 30, 1235-1248, https://doi.org/10.5194/angeo-30-1235-2012.
(Aug, IF = 1.518 [43/74], ∆ = 24; SJR = 1.177 [28/90], ∆ = 14)

26. Wang, C.-C., C.-Y. Kung, C.-S. Lee*, and G. T.-J. Chen, 2012: Development and evaluation of Mei-yu season quantitative precipitation forecast in Taiwan river basins based on a conceptual climatology model. Wea. Forecasting, 27, 586-607, https://doi.org/10.1175/WAF-D-11-00098.1.
(Jun, IF = 1.860 [33/74], ∆ = 6; SJR = 1.649 [18/90], ∆ = 6)

25. Wang, M. Y.-M., G. T.-J. Chen, C.-C. Wang*, and Y.-H. Kuo, 2012: A case study of the cutoff process and latent heating effect in an upper-level cold-core low during the Mei-yu season in East Asia. Mon. Wea. Rev., 140, 1725-1747, https://doi.org/10.1175/MWR-D-11-00306.1.
(Jun, IF = 2.758 [20/74], ∆ = 2; SJR = 2.835 [5/90], ∆ = 3)

24. Wang, C.-C., G. T.-J. Chen*, H.-L. Huang, R. E. Carbone, and S.-W. Chang, 2012: Synoptic conditions associated with propagating and non-propagating cloud/rainfall episodes during the warm season over the East Asian continent. Mon. Wea. Rev., 140, 721-747, https://doi.org/10.1175/MWR-D-11-00067.1.
(Mar, IF = 2.758 [20/74], ∆ = 19; SJR = 2.835 [5/90], ∆ = 19)

23. Wang, C.-C., G. T.-J. Chen*, and S.-Y. Huang, 2011: Remote trigger of deep convection by cold outflow over the Taiwan Strait in the Mei-yu season: A modeling study of the 8 June 2007 case. Mon. Wea. Rev., 139, 2854-2875, https://doi.org/10.1175/2011MWR3613.1.
(Sep, IF = 2.688 [18/71], ∆ = 23; SJR = 2.401 [6/87], ∆ = 25)

22. Wang, C.-C., G. T.-J. Chen*, and R. E. Carbone, 2011: The relationship between statistics of warm-season cloud episodes and synoptic weather regimes over the East Asian continent. Meteor. Atmos. Phys., 112, 117-124, https://doi.org/10.1007/s00703-011-0123-2.
(May, IF = 0.903 [57/71], ∆ = 3; SJR = 0.737 [38/87], ∆ = 2)

21. Wang, C.-C.*, H.-L. Huang, J.-L. Li, T.-M. Leou, and G. T.-J. Chen, 2011: An evaluation on the performance of the CWB NFS model in the prediction of warm-season rainfall distribution and propagation over the East Asian continent. Terr. Atmos. Oceanic Sci. (TAO), 22, 49-69, https://doi.org/10.3319/TAO.2010.07.13.01(A).
(Feb, IF = 0.883 [58/71], ∆ = 8; SJR = 0.524 [48/87], ∆ = 7)

20. Huang, H.-L., C.-C. Wang*, G. T.-J. Chen, and R. E. Carbone, 2010: The role of diurnal solenoidal circulation on propagating rainfall episodes near the eastern Tibetan Plateau. Mon. Wea. Rev., 138, 2975-2989, https://doi.org/10.1175/2010MWR3225.1.
(Jul, IF = 2.348 [18/68], ∆ = 38; SJR = 2.206 [8/82], ∆ = 38)

19. Wang, C.-C., G. T.-J. Chen*, S.-C. Yang, and K. Tsuboki, 2009: Wintertime supercell thunderstorms in a subtropical environment: Numerical simulation. Mon. Wea. Rev., 137, 2175-2202, https://doi.org/10.1175/2008MWR2616.1.
(Jul, IF = 2.238 [20/63], ∆ = 6; SJR = 2.175 [9/68], ∆ = 7)

18. Wang, C.-C.*, and W.-M. Huang, 2009: High-resolution simulation of a nocturnal narrow convective line off the southeastern coast of Taiwan in the Mei-yu season. Geophys. Res. Lett., 36(6), L06815, https://doi.org/10.1029/2008GL037147.
(Mar, IF = 3.204 [15/153], ∆ = 14; SJR = 2.446 [5/95], ∆ = 16)

17. Wang, C.-C.*, G. T.-J. Chen, S.-C. Yang, and H.-C. Chou, 2009: Wintertime supercell thunderstorms in a subtropical environment: A diagnostic study. Mon. Wea. Rev., 137, 366-390, https://doi.org/10.1175/2008MWR2492.1.
(Jan, IF = 2.238 [20/63], ∆ = 1; SJR = 2.175 [9/68], ∆ = 1)

16. Chen, G. T.-J., C.-C. Wang*, and S.-W. Chang, 2008: A diagnostic case study of Mei-yu frontogenesis and development of wavelike frontal disturbances in the subtropical environment. Mon. Wea. Rev., 136, 41-61, https://doi.org/10.1175/2007MWR1966.1.
(Jan, IF = 2.358 [13/52], ∆ = 25; SJR = 2.342 [8/68], ∆ = 25)

15. Chen, G. T.-J.*, C.-C. Wang, and A.-H. Wang, 2007: A case study of subtropical frontogenesis during a blocking event. Mon. Wea. Rev., 135, 2588-2609, https://doi.org/10.1175/MWR3412.1.
(Jul, IF = 2.267 [13/51], ∆ = 15; SJR = 2.527 [7/68], ∆ = 18)

14. Chen, G. T.-J.*, C.-C. Wang, and H.-C. Chou, 2007: Case study of a bow echo near Taiwan during wintertime. J. Meteor. Soc. Japan, 85, 233-253, https://doi.org/10.2151/jmsj.85.233.
(Jun, IF = 0.793 [44/51], ∆ = 12; SJR = 1.031 [26/68], ∆ = 5)

13. Chen, G. T.-J.*, C.-C. Wang, and L.-F. Lin, 2006: A diagnostic study of a retreating Meiyu front and the accompanying low-level jet formation and intensification. Mon. Wea. Rev., 134, 874-896, https://doi.org/10.1175/MWR3099.1.
(Mar, IF = 1.927 [18/48], ∆ = 58; SJR = 2.622 [3/68], ∆ = 45)

12. Wang, C.-C., G. T.-J. Chen*, T.-C. Chen, and K. Tsuboki, 2005: A numerical study on the effects of Taiwan topography on a convective line during the Mei-yu season. Mon. Wea. Rev., 133, 3217-3242, https://doi.org/10.1175/MWR3028.1.
(Nov, IF = 2.003 [15/47], ∆ = 55; SJR = 2.703 [6/68], ∆ = 59)

11. Wang, C.-C., G. T.-J. Chen*, and R. E. Carbone, 2005: Variability of warm season cloud episodes over East Asia based on GMS infrared brightness temperature observations. Mon. Wea. Rev., 133, 1478-1500, https://doi.org/10.1175/MWR2928.1.
(Jun, IF = 2.003 [15/47], ∆ = 47; SJR = 2.703 [6/68], ∆ = 48)

10. Chen, G. T.-J.*, C.-C. Wang, and D. T.-W. Lin, 2005: Characteristics of low-level jets over Northern Taiwan in Mei-yu season and their relationship to heavy rain events. Mon. Wea. Rev., 133, 20-43, https://doi.org/10.1175/MWR-2813.1.
(Jan, IF = 2.003 [15/47], ∆ = 77; SJR = 2.703 [4/68], ∆ = 83)

9. Wang, C.-C., G. T.-J. Chen*, and R. E. Carbone, 2004: A climatology of warm-season cloud patterns over East Asia based on GMS infrared brightness temperature observations. Mon. Wea. Rev., 132, 1606-1629, https://doi.org/10.1175/1520-0493(2004)132<1606:ACOWCP>2.0.CO;2.
(Jul, IF = 1.859 [14/45], ∆ = 116; SJR = 2.658 [5/68], ∆ = 119)

8. Chen, G. T.-J.*, C.-C. Wang, and S. C.-S. Liu, 2003: Potential vorticity diagnostics of a Mei-yu front case. Mon. Wea. Rev., 131, 2680-2696, https://doi.org/10.1175/1520-0493(2003)131<2680:PVDOAM>2.0.CO;2.
(Nov, IF = 2.179 [13/46], ∆ = 34; SJR = 2.797 [6/68], ∆ = 37)

7. Chen, G. T.-J.*, C.-C. Wang, and C.-S. Hsieh, 2003: A diagnostic study on a mesoscale convective system over southern China in Mei-Yu season. Meteor. Atmos. Phys., 84, 33-55, https://doi.org/10.1007/s00703-002-0575-5.
(Aug, IF = 0.820 [33/46], ∆ = 8; SJR = 1.144 [24/68], ∆ = 5)

6. Wang, C.-C., and G. T.-J. Chen*, 2003: On the formation of leeside mesolows under different Froude number flow regime in TAMEX. J. Meteor. Soc. Japan, 81, 339-365, https://doi.org/10.2151/jmsj.81.339.
(Apr, IF = 1.243 [23/46], ∆ = 9; SJR = 1.385 [23/68], ∆ = 10)

5. Wang, C.-C., and G. T.-J. Chen*, 2002: Case study of the leeside mesolow and mesocyclone in TAMEX. Mon. Wea. Rev., 130, 2572-2592, https://doi.org/10.1175/1520-0493(2002)130<2572:CSOTLM>2.0.CO;2.
(Nov, IF = 1.886 [12/46], ∆ = 8; SJR = 2.291 [9/68], ∆ = 10)

4. Wang, C.-C.*, and J. C. Rogers, 2001: A composite study of explosive cyclogenesis in different sectors of the North Atlantic. Part I: cyclone structure and evolution. Mon. Wea. Rev., 129, 1481-1499, https://doi.org/10.1175/1520-0493(2001)129<1481:ACSOEC>2.0.CO;2.
(SCI, Jun, IF = 1.769, ∆ = 63; SJR = 2.550 [8/66], ∆ = 66)

3. Rogers, J. C.*, C.-C. Wang, and M. McHugh, 1998: Persistent cold climatic episodes around Greenland and Baffin Island: Links to decadal-scale sea surface temperature anomalies. Geophys. Res. Lett., 25(21), 3971-3974, https://doi.org/10.1029/1998gl900050.
(Nov, IF = 2.290, ∆ = 11; SJR = 2.742 [7/76] in 1999, ∆ = 11)

2. Rogers, J. C.*, R. Å. Hellström, E. Mosley-Thompson, and C.-C. Wang, 1997: An abrupt spring air temperature rise over the Greenland ice cap. J. Geophys. Res., 102 (D12), 13793-13800, https://doi.org/10.1029/96JD03097.
(Jun, IF = 2.416, ∆ = 3; SJR = 2.811 [8/62] in 1999, ∆ = 4)

1. Chen, G. T.-J.*, and C.-C. Wang, 1992: The composite structure of mesolows accompanying heavy rainfall in the Taiwan Mei-Yu season. Terr. Atmos. Oceanic Sci. (TAO), 3, 533-556, https://doi.org/10.3319/TAO.1992.3.4.533(A).
(Dec, IF = 0.420 in 2000, ∆ = 2; SJR = 0.244 [44/62] in 1999)