¶À°û¦p (Huang, Wan-Ru)

°ê¥ß»OÆW®v½d¤j¾Ç¦a²y¬ì¾Ç¨t©Ò ¯S¸u±Ð±Â

¥D­n¬ã¨s¤è¦V¡G¥þ²y¤Î°Ï°ì­°¤ô¡A©u­·®ð¶H¡A°Ï°ì®ð­Ô¼ÒÀÀ

Email: wrhuang@ntnu.edu.tw

ORCID: https://orcid.org/0000-0002-2171-4075

NTNU: https://scholar.lib.ntnu.edu.tw/en/persons/wan-ru-huang

Researchgate¡Ghttps://www.researchgate.net/profile/Wan_Ru_Huang

 

 

¤@¡B¬ã¨s¦¨ªG²¤¶

¥»¹êÅç«Ç¦h¦~¨Ó­P¤O©ó±´°Q¡u®ð­ÔÅܾE¤U»OÆW»P¾Fªñ¦a°Ïªº­°¤ô¯S©ÊÅܤƤάÛÃö¾÷¨î¡v(Table1)¡C¯S§O¬O°w¹ï¡u¤j¤Ø«×Àô¬yªºªø´ÁÅܾE¹ï»OÆW»PµØ«n¦a°Ï¤é©]Åܤƭ°¤ô¨Æ¥ó(diurnal rainfall events; ¦p¤È«á¹ï¬y)¤§¼vÅT¡v³o­ÓijÃD¦³¤@¨t¦Cªº¤ÀªR¤Î¦¨ªG¡A¬ã¨s¤º®e¥]¬AÆ[´ú (§t½Ã¬PÆ[´ú¤Î´ú¯¸Æ[´ú) ¸ê®Æ¤Î¼Ò¦¡¼ÒÀÀ(§t¥þ²y¼Ò¦¡¤Î°Ï°ì¼Ò¦¡)¸ê®Æªº¤ÀªR¡A¤ÀªRªº®É¶¡¤Ø«×¥]¬A:®ð­Ô¥­§¡³õ¡Bªø´ÁÁͶաB¦~¥N»ÚÅܤơB¦~»ÚÅܤơB©u¤º¾_ÀúÅܤơA¥H¤Î¥¼¨Ó®ð­ÔÅܾE¤Uªº±À¦ô¡C

³z¹L¦hºØÆ[´ú¸ê®Æªº¤ÀªR«á§Ú­Ìµo²{¡G(1) »OÆWªº¤é©]Åܤƭ°¤ô¨Æ¥ó¡A¨ä®É¶¡¤À¥¬¦³°Ï°ì©Ê®t²§¡A¥B¦¹®t²§»P¡u¤j¤Ø«×»P°Ï°ì¤Ø«×¤é©]Àô¬y¤§¶¡ªº¥æ¤¬§@¥Î¡v¦³Ãö¡]Huang and Wang, 2014; Huang and Chang, 2018a¡^¡C(2) »OÆW»PµØ«n¦a°Ï±ö«B©uªº¾W­±­°¤ô¤Î¤È«á¹ï¬y­°¤ô¬Ò¦s¦bµÛªø´ÁÁͶÕÅܤơA¥B¦¹ÁͶÕÅܤƩM¤j®ðÀô¬y¼ö¤O¡B°Ê¤O¹Lµ{ªºªø´ÁÅܾE¦³Ãö¡]Huang and Chen, 2015a; Chang and Huang*, 2016¡^¡C(3)¡u»OÆW¦a°Ï¤È«á¹ï¬y­°¤ô¤§ªø´ÁÁͶաv¦s¦bµÛÅãµÛªº°Ï°ì©Ê®t²§¡A¥B¦¹®t²§¥ç¬O¨ü¨ì¤j¤Ø«×Àô¬yÅܾEªº¼vÅT¡]Huang et al., 2015b¡^¡C(4)»OÆW¦a°Ï¤È«á¹ï¬y­°¤ôªºµo¥ÍÀW²v¤Î­°«B±j«×·|¨ü¨ì¤j¤Ø«×Àô¬y©u¤º¾_Àú²{¶H¡]Huang and Chang, 2018b¡^¡AªF¤Ó¥­¬v®ü·Åªº¦~»ÚÅܤƼvÅT (Huang et al., 2019a)¤Î¦~¥N»ÚÅܤƼvÅT (Huang et al., 2018c)¡C

¦¹¥~¡A³z¹L¦hºØCMIP5¡B6¡]Coupled Model Intercomparison Project Phase 5¡BPhase 6¡^®ð­Ô¼Ò¦¡¸ê®Æ¤ÀªR¡B°Ï°ì¼Ò¦¡­°¤Ø«×¸ê®Æ¤ÀªR¡A§Ú­ÌÀ˵ø¤F¤£¦P¼Ò¦¡¹ïªF¨È(§t»OÆW)¦a°Ï¥¼¨Ó­°¤ôÅܤƤ§±À¦ôµ²ªG¡C§Ú­Ìªº¬ã¨sµo²{¡G(1) 18 ­ÓCMIP5¼Ò¦¡¤¤¥HCMCC-CM¼Ò¦¡³Ì¯à´x´¤ªF¨È¦a°Ï±ö«B©u¤é©]Åܤƭ°¤ô¤§®ÉªÅ¤À¥¬±¡ªp¡C¦¹¼Ò¦¡±À¦ô¥¼¨Ó»OÆW»PµØ«n¦a°Ï¨ü¨ì¡u¨ãªF²¾¶Ç¼½¯S©Êªº­°¤ô¨t²Î¼vÅT¡v¤§¾÷·|±NÅܦh¡]Huang and Wang, 2017¡^¡C(2) ±N¥þ²y¼Ò¦¡¸ê®Æ³z¹LWRF¼Ò¦¡¶i¦æ°Ê¤O­°¤Ø«×«áªºµ²ªG¡A¯à¦³®Ä§ïµ½¼Ò¦¡ªí¼x»OÆW®L©u¤é©]Åܤƭ°¤ô¨Æ¥óªº®É¡BªÅ¤À¥¬¯S©Ê¡]Huang et al., 2016a¡^¡A¥B¦¹¤èªk¥ç¾A¥Î©ó§ïµ½¼Ò¦¡ªí¼xµØ«n»P§f§º¦a°Ï®L©u¤é©]­°¤ôªº®É¡BªÅ¯S©Ê¤À¥¬¡]Huang et al., 2016b¡^¡C(3) °Ï°ì¼Ò¦¡­°¤Ø«×±À¦ô¥¼¨Ó¦]¨ü¨ì¤j¤Ø«×®ð­ÔÅܾEªº¼vÅT¡A¦UÃþ«¬ªº­°¤ô¡]§t¤È«á¹ï¬y¡B¾W­±¡B»ä­·¤Î¨ä¥L«n¨Óªº­°¤ô¨t²Î¡^¹ï»OÆW®L©u­°¤ô¶qªº°^Äm±N¦³©Ò¤£¦P¡]Huang et al., 2016c¡^¡A¨ä¤¤¤È«á¹ï¬yªºÀW²v±N¸û²{¦b¤Ö¡C(4) ³Ì·s¤@¥NªºCMIP6¼Ò¦¡¤¤¡A¥HEC-Earth3 ¨t¦C²£«~¹ï»OÆW¡BµØ«n¤Î§f§º¤È«á¹ï¬y­°«B¨Æ¥óªºÀW²v¡B±j«×ªí²{¬°³Ì¦n¡C¤j³¡¤ÀªºCMIP6¼Ò¦¡³£¹w´ú¥¼¨Ó»OÆWªº¤È«á¹ï¬y­°«B¨Æ¥ó¦³ÀW²v´î¤Ö¡B±j«×¼W±jªº²{¶H¡C¦¹©M¤j®ðªº°Ê¤O¡B¼ö¤O±ø¥óÅܤƦ³Ãö (Huang et al. 2021a)¡C

ªñ¨Ó¡A§Ú­Ì¥ç°w¹ï»OÆWªº·¥ºÝ­°¤ôÅܤƦb¹L¥h(Huang et al., 2019b) ¤Î¥¼¨Ó(Huang et al., 2019c)¦³¥i¯à·|¦p¦ó¨ü¨ì¤j¤Ø«×Àô¬yÅܤƶi¦æ¬ÛÃö¬ã¨s¡C¨Ã¥B§Ú­Ì§Q¥ÎCESM2-LE¤ÎCMIP6¼Ò¦¡±´°Q¤F»OÆW±ö«B©u­°«B©µ¿ð²{¶Hªº¥i¯à¥¼¨ÓÅܾE(Huang et al., 2022a)¡C¥t¤@¤è­±¡A§Ú­Ì°w¹ï¡u·s¤@¥N½Ã¬P¸ê®Æ¹ï»OÆW­°¤ô¯S¦âªºªí²{¯à¤Oµû¦ô»PÀ³¥Î¡v¦³¤@¨t¦C¬ÛÃö¦¨ªGµoªí(Huang et al., 2018d; Huang et al., 2020; Liu and Huang, 2020; Huang et al., 2021b,c,d; Hsu et al., 2021a,b)¡C¦¹¥~¡A§Ú­Ì¥ç¨Ï¥ÎMODIS½Ã¬PÆ[´ú¸ê®Æ·f°t¦a­±Æ[´ú¸ê®Æ¶i¦æ¤ÀªR¡A¤F¸Ñ¤¤«n¥b®q¬K©u¥Í½è¿U¿N¹ï»OÆW³ÀªL¤sÆ[´ú¨ìªºPM10ªº¦~»ÚÅܤƤ§¥i¯à¼vÅT¡A¨Ã±qÀô¬y¡B­°¤ô³õªºÅܤƴ£¨Ñ¬ÛÃö°Ê¤O¡B¼ö¤O¸ÑÄÀ (Huang et al., 2016d)¡C¥t¤@¤è­±¡A§Ú­Ì¤]¨Ï¥Î½Ã¬P­°¤ô¹ï§f§º®L©u¤é¹ï¬y­°«Bªº¹L¥hÅܾE¯S¦â¤Î¦¨¦]¶i¦æ¤ÀªR(Huang et al., 2022b)¡C³o¨Ç¬ã¨s¦¨ªG¬Ò¦³§U©ó§Ú­Ì¤F¸Ñ»OÆW»P¾Fªñ¦a°Ïªº­°¤ô¦³¥i¯à·|¦p¦ó¨ü¨ì®ð­ÔÅܾEªº¼vÅT¡C

 

My academic expertise is in climate data analysis and dynamic mechanism examination of global and regional precipitation changes. Most of my research has focused on exploring how climate change affects precipitation changes in Taiwan (Table 1). In particular, I have conducted a series of studies to prove that the local afternoon rainfall events in Taiwan are affected by large-scale circulation changes on multiple timescales. The time scales covered by my research topics include: climatology, long-term trend, interdecadal variation, interannual variation, intraseasonal variation, and future projection.

The major achievement of this research group is to successfully investigate the characteristics and maintenance mechanisms of afternoon rainfall activities in Taiwan from a new perspective of changes in multiple timescales. For a long time, the afternoon rainfall convection in Taiwan has been regarded as a local event mainly modulated by changes in the local diurnal circulation. However, our research works show that the activities (frequency and intensity) of afternoon convective rainfall in Taiwan include long-term trend, interdecadal, interannual, and intraseasonal changes. These changes are not only regulated by changes in local circulation, but also by changes in large-scale circulation. In addition, through the application of global climate model data, our research works have demonstrated the possible impact of future atmospheric circulation changes on precipitation in Taiwan. These findings are very important for understanding how the precipitation in Taiwan can be affected by global climate changes. Recently, we have also expanded research interests to prove the ability of new satellite precipitation observations applied for research uses in Taiwan.

 

Table 1: ¥»¬ã¨s«Ç¥D¾Éªº¬ã¨sijÃD²Î¾ã¡CSummary of the work led by this research group.

 

ªñ´Á¬ã¨s²¤¶¡G

¡P          MJO¹ï©ó´µ¨½Äõ¥d¬K¬î©u¸`¤é¹ï¬y­°¤ô¨Æ¥óªº¼vÅT (Huang et al., 2024; npj Clim Atmos Sci)

¡P           ¥þ²y·x¤Æ¤U¡A®ü·ÅÅܤƹï»OÆW¥¼¨Ó¤È«á¹ï¬y¬¡°Ê¯S¼xªº¼vÅT (Huang et al., 2023; npj Clim Atmos Sci)

¡P           2022 ¦~ 1-2 ¤ë»OÆW·¥ºÝ­°¤ô¯S¼x¤Î¦¨¦] (Huang et al., 2022; Weather and Climate Extremes)

¡P           µØ«n©M»OÆWªì®L­°¤ô¯S¼xªº¥¼¨Ó±À¦ô (Huang et al., 2022; JGR-Atmos.)

¡P          CMIP6 ¼Ò¦¡¹ïªF«n¨È®L©u¤È«á¹ï¬y­°«B¬¡°Êªº¼ÒÀÀ»P±À¦ô (Huang et al., 2021; Journal of Climate)

¡P           ¦p¦ó§ó¦³®Ä¦a§Q¥ÎSPEI«ü¼ÆºÊ´úµu´Á¥B§Ö³tµo®iªº°®§ò»P¼éÀã¨Æ¥ó (Li and Huang, 2021; Sci. Total Environ.)

¡P          ¦h½Ã¬P¸ê®ÆÆ[´ú§f§º®q®L©u±Þ©]­°¤ôªºªø´ÁÅÜ¤Æ (Huang et al., 2021; Int. J. Appl. Earth Obs.)

¡P          ¥þ²y­°¤ô½Ã¬PÆ[´ú¸ê®Æªº°Ï°ì©Ê®t²§¡G§f§º®qªºµo²{ (Lee and Huang, 2023; Earth and Space Science)

¡P          ¦h¤Ø«×Àô¬y¥æ¤¬§@¥Î¹ï§f§º®q¬K©u¤é­°¤ôªº¼vÅT (Lee et al., 2021; Scientific Reports)

 

¤G¡BºaÅA¨Æ¶µ

Ø  ®Õ¥~

1.      ¬ì§Þ³¡§d¤j·ß¥ý¥Í¬ö©À¼ú (2018)

2.      ¤¤µØ¥Á°ê¦a²y¬ì¾Ç¾Ç·|¤j¹D·s¤H¼ú (2017)

3.      ¬ì§Þ³¡Àu¨q¦~»´¾ÇªÌ­pµe (2017)

4.      ¬ì§Þ³¡¸É§U¤j±M®Õ°|¼úÀy¯S®íÀu¨q¤H¤~ (2016-2023)

5.      ¦a²y¬ì¾Ç¶°¥Z (Terr. Atmos. Ocean. Sci. Journal) 2017-2018 Àu¨}¼f¬d¤H¼ú

6.      ¤¤µØ¥Á°ê¤j®ð¬ì¾Ç´Á¥ZÀu¨}½×¤å¼ú (2018¡B2020)

7.      ®ü®l¨â©¤«C¦~¤j®ð¬ì¾Ç¾Ç³N¬ã°Q·|³Ì¨Î½×¤å¼ú (2016)

8.      °Ñ»Pªº½×¤åWang et al. (2015) Àò¬ü°êCBS News³ø¾É

Ø  ®Õ¤º

1.     °ê¥ß»OÆW®v½d¤j¾Ç¯S¸u±Ð±Â (2019-2021)

2.     °ê¥ß»OÆW®v½d¤j¾ÇÀu¸u±Ð±Â (2014-2018)

3.     °ê¥ß»OÆW®v½d¤j¾Ç107¦~«×¬ã¨sÁZÀu¼ú (2019)

4.     °ê¥ß»OÆW®v½d¤j¾Ç111¦~«×±Ð¾ÇÀu¨}¼ú (2022)

 

¤T¡B¾Ç³NªA°È

1.  ¦æ¬F°|¤¤¥¡¨a®`¨¾±Ï·|³ø©e­û (2023/8-2025/7)

2.  ¦æ¬F°|¨a®`¨¾±Ï±M®a¿Ô¸ß©e­û·|²Ä¤Q¤@©¡©e­û (»ä¬x²Õ¥l¶°¤H) (2023-2024)

3.  ¦æ¬F°|¨a®`¨¾±Ï±M®a¿Ô¸ß©e­û·|²Ä¤Q©¡©e­û (»ä¬x²Õ) (2021-2022)

4.  ¤º¬F³¡¥DºÞ¤¤¥¡¨a®`¨¾±Ï·~°È­pµeÀË°Qºë¶i±M®×±À°Ê±À°Ê¤p²Õ(­·¨a²Õ)©e­û (2021-2023)

5.  ·s¥_¥«²Ä¤C©¡¨a®`¨¾±Ï±M®a¿Ô¸ß©e­û (2023-2024)

6.  ·s¥_¥«²Ä¤»©¡¨a®`¨¾±Ï±M®a¿Ô¸ß©e­û (2021-2022)

7.  ¬ì§Þ³¡¤j®ð¬ì¾Ç¾Çªù½Æ¼f©e­û(2021-2023)

8.  ¬ì§Þ³¡¨¾¨a¾Çªù®ð¶H²Õ½Æ¼f©e­û(2018-2020)

9.  ¤¤µØ¥Á°ê®ð¶H¾Ç·|¤j®ð¬ì¾Ç´Á¥Z¥D½s (2021-Now)

10.  Associate guest editor of TAO special issue: Taiwan-Philippine VOTE-Meteorology: Typhoon study and related natural hazard (2021)

 

¥|¡B  ¾Ç³NµÛ§@ (*³q°T§@ªÌ¡F +¬ã¨s«Ç¦¨­û)

1.         Huang, W.-R.*, S. B. Koralegedara+, T.-Y. Chiang+, C.‑A. Lee+, P.-H. Tung+, Y.-T. Chien+, and L. Deng, 2024: The Impact of the Madden-Julian Oscillation on Spring and Autumn Diurnal Convection in Sri Lanka. npj Climate and Atmospheric Science. 7, 42. https://doi.org/10.1038/s41612-024-00586-5 (IF: 9.0) Nature ¤l´Á¥Z

2.         Huang, W.-R.*, Y.-T. Chien+, C.-T. Cheng, H.-H. Hsu, and S. B. Koralegedara+, 2023: The Role of Sea Surface Temperature in Shaping the Characteristics of Future Convective Afternoon Rainfall in Taiwan. npj Climate and Atmospheric Science. 6, 198. https://doi.org/10.1038/s41612-023-00528-7 (IF: 9.0) Nature ¤l´Á¥Z

3.         Lee, C.-A.+ and W.-R. Huang*, 2023. Advantages of GSMaP data for multi-timescale precipitation estimation in Luzon. Earth and Space Science, 10, e2023EA002980. https://doi.org/10.1029/2023EA002980 (IF: 3.68)

4.         Koralegedara, S.B.+, W.-R. Huang*, P.-H. Tung+ and T.-Y. Chiang+, 2023. El Niño-Southern Oscillation modulation of springtime diurnal rainfall over a tropical Indian Ocean island. Earth and Space Science, 10, e2023EA002832. https://doi.org/10.1029/2023EA002832 (IF: 3.68)

5.         Huang, W.-R.*, S. B. Koralegedara+, P.-H. Tung+ and T.-Y. Chiang+, 2023: Seasonal changes in diurnal rainfall over Sri Lanka and possible mechanisms. Atmospheric Research, 286, 106692. https://doi.org/10.1016/j.atmosres.2023.106692 (IF: 5.965)

6.         Huang, S.-C., W.-R. Huang*, Y.-C. Wu, Y.-C. Yu, J.-L. Chu, and B. J.-D. Jou, 2022: Characteristics and causes of Taiwan's extreme rainfall in 2022 January and February. Weather and Climate Extremes. 100532. https://doi.org/10.1016/j.wace.2022.100532 (IF: 7.761)

7.         Hsu, J.+, W.-R. Huang*, and P.-Y. Liu+, 2022: Comprehensive analysis of PERSIANN products in studying the precipitation variations over Luzon, Remote Sens. 14, 5900. https://doi.org/10.3390/rs14225900 (IF: 5.349)

8.         Huang, W-R*, P.-Y. Liu+, S.-Y. Lee, and C.-H. Wu, 2022a: Changes in early summer precipitation characteristics over South China and Taiwan: CESM2-LE and CMIP6 multi-model simulations and projections. Journal of Geophysical Research ¡V Atmospheres. 127, e2022JD037181. https://doi.org/10.1029/2022JD037181 (IF: 5.217)

9.         Huang, W.-R.*, J. Hsu+, P.-Y. Liu+, and L. Deng, 2022b: Multiple satellite-observed long-term changes in the summer diurnal precipitation over Luzon and its adjacent seas during 2000¡V2019. International Journal of Applied Earth Observation and Geoinformation, 110, 102816. https://doi.org/10.1016/j.jag.2022.102816 (IF: 7.672)

10.      Wu, C.-H.*, P.-C. Tsai, W.-R. Huang, and S.-Y. Simon Wang, 2022: Winter¡Vsummer contrast of the 1990s decadal change in relation to Afro¡VAsian monsoons. Climate Dynamics. 59, 1969¡V1980. https://doi.org/10.1007/s00382-022-06191-7 (IF: 4.901)

11.      Huang S.-H., P.-Y. Lai, S.-Y. Hwang*, Krishna Borhara, W.-R. Huang, and S.-Y. Wang, 2022: Climate Variability Shifting Immigrated Rice Planthoppers in Taiwan. Climate Variability Shifting Immigrated Rice Planthoppers in Taiwan. Climate, 10, 71. https://doi.org/10.3390/cli10050071

12.      Chien, F.-C.*, W.-R. Huang, and B. J.-D. Jou, 2021: Introduction to the special issue on Taiwan-Philippine VOTE-Meteorology: Typhoon Study and Related Natural Hazard. Terr. Atmos. Ocean. Sci., 32, 613-617. DOI: 10.3319/TAO.2021.10.13.01 (IF: 0.963)

13.      Huang, W.-R.*, Y.-H. Chang+, L. Deng, and P.-Y. Liu+, 2021a: Simulation and Projection of Summer Convective Afternoon Rainfall Activities over Southeast Asia in CMIP6 Models. Journal of Climate, 34, 5001¡V5016. https://doi.org/10.1175/JCLI-D-20-0788.1 (IF: 5.38)

14.      Hsu, J.+, W.-R. Huang*, and P.-Y. Liu+, 2021a: Performance assessment of GPM-based near-real-time satellite products in depicting diurnal precipitation variation over Taiwan. Journal of Hydrology: regional studies, 38, 100957. https://doi.org/10.1016/j.ejrh.2021.100957 (IF: 5.437)

15.      Li, X. and W.-R. Huang*, 2021: How long should the pre-existing climatic water balance be considered when capturing short-term wetness and dryness over China by using SPEI?  Science of the Total Environment, 786, 147575. https://doi.org/10.1016/j.scitotenv.2021.147575 (IF: 10.754)

16.      Huang, W.-R.*, P.-Y. Liu+, and J. Hsu+, 2021b: Multiple timescale assessment of wet season precipitation estimation over Taiwan using the PERSIANN family products. International Journal of Applied Earth Observation and Geoinformation, 103, 102521. https://doi.org/10.1016/j.jag.2021.102521 (IF: 7.672)

17.      Lo, S.-H., C.-T. Chen*, S. Russo; W.-R. Huang, M.-F. Shih, 2021: Tracking Heatwave Extremes from an Event Perspective. Weather and Climate Extremes, 34, 100371. https://doi.org/10.1016/j.wace.2021.100371 (IF: 7.761)

18.      Lee, C.-A. +, W.-R. Huang*, Y.-H. Chang+, and S.-M. Huang, 2021: Impact of multiple-scale circulation interactions on the spring diurnal precipitation over Luzon. Scientific Reports. 11, 9937. https://doi.org/10.1038/s41598-021-89392-0 (IF: 4.6) Nature ¤l´Á¥Z

19.      Huang, W.-R.*, P.-Y. Liu+, J. Hsu+, X. Li, L. Deng, 2021c: Assessment of near-real-time satellite precipitation products from GSMaP in monitoring rainfall variations over Taiwan. Remote Sensing, 13, 202. https://doi.org/10.3390/rs13020202 (IF: 5.349)

20.      Huang, W.-R.*, P.Y. Liu+, Y.H. Chang+, and C.A. Lee+, 2021d: Evaluation of IMERG Level-3 Products in Depicting the July to October Rainfall over Taiwan: Typhoon Versus Non-Typhoon. Remote Sensing, 13, 622. https://doi.org/10.3390/rs13040622 (IF: 5.349)

21.      Hsu, J. +, W.-R. Huang*, P.-Y. Liu+, and X. Li, 2021b: Validation of CHIRPS precipitation estimates over Taiwan at multiple timescales. Remote Sensing, 13, 254. https://doi.org/10.3390/rs13020254 (IF: 5.349)

22.      Deng, L., W.-R. Huang*, J. Chen, and S.-Y. Wang, 2021: Dissipation process of summer tropical easterly waves in Western North Pacific. Dyn. Atmos. Oceans, 93, 101208. https://doi.org/10.1016/j.dynatmoce.2021.101208 (IF: 2.049)

23.      Huang, W.-R.*, P.-Y. Liu+, Y.-H. Chang+ and C.-Y. Liu, 2020: Evaluation and Application of Satellite Precipitation Products in Studying the Summer Precipitation Variations over Taiwan. Remote Sensing, 12, 347. https://doi.org/10.3390/rs12030347 (SCI)

24.       P.-Y. Liu+ and W.-R. Huang*, 2020: Comparison of the Warm Season Rainfall Estimations in Taiwan during 2014-2017 from IMERG Version 5 Early, Late, and Final run Satellite Products. Journal of Geographical Science. 96, 1-26. (in Chinese with an English abstract) https://www.geog.ntu.edu.tw/images/journal/journal78_100/G96-01.pdf (TSSCI)

25.       Li X.*, Z. Wen, and W.-R. Huang, 2020: Modulation of South Asian Jet wave train on the extreme winter precipitation over Southeast China: Comparison between 2015/16 and 2018/19. J. Climate, 33, 4065-4081. https://doi.org/10.1175/JCLI-D-19-0678.1 (SCI)

26.      Ye, C., L. Deng*, W.-R. Huang, and J. Chen, 2020: Comparison of the Madden¡VJulian Oscillation-Related Tropical Cyclone Genesis over the South China Sea and Western North Pacific under Different El Niño-Southern Oscillation Conditions. Atmosphere, 11, 183. https://doi.org/10.3390/atmos11020183 (SCI)

27.       Liu C.-Y.*, P. Aryastana, G.-R. Liu and W.-R. Huang, 2020: Assessment of Satellite Precipitation Product Estimates over Bali Island. Atmospheric Research, 244, 105032. https://doi.org/10.1016/j.atmosres.2020.105032 (SCI)

28.       Huang, W.-R.*, Y.-H. Chang+ and P.-H. Huang+, 2019a: Relationship between the Interannual Variations of Summer Convective Afternoon Rainfall Activity in Taiwan and SSTA(Niño3.4) during 1961-2012: Characteristics and Mechanisms. Scientific Reports, 9, 9378. https://www.nature.com/articles/s41598-019-45901-w  (SCI) Nature ¤l´Á¥Z

29.       Huang, W.-R*, P.-Y. Liu+, J.-H. Chen and L. Deng, 2019b: Impact of Boreal Summer Intraseasonal Oscillations on the Heavy Rainfall Events in Taiwan during the 2017 Meiyu season. Atmosphere, 10, 205. https://www.mdpi.com/2073-4433/10/4/205 (SCI)

30.       Huang, W.-R.*, P.-H. Huang+, Y.-H. Chang+, C.-T. Cheng, H.-H. Hsu, C.-Y. Tu and A. Kitoh 2019c: Dynamical Downscaling Simulation and Future Projection of Extreme Precipitation Activities in Taiwan during the Mei-Yu Seasons. J. Meteor. Soc. Japan, 97, 481-499. https://www.jstage.jst.go.jp/article/jmsj/97/2/97_2019-028/_article (SCI)

31.       Wu, Y.-C.*, S.-Y. Wang, Y.-C. Yu, C.-Y. Kung, A.-H. Wang, S. A. Los., W.-R. Huang, 2019: Climatology and Change of Extreme Precipitation Events in Taiwan Based on Weather Types. International Journal of Climatology, 39, 5351-5366. https://rmets.onlinelibrary.wiley.com/doi/full/10.1002/joc.6159  (SCI)  

32.       Huang, P.-H. + and W.-R. Huang*, 2019: Projections of Extreme Rainfall in Taiwan during the Mei-Yu Season based on Multiple Sea Surface Temperature Changes. Journal of Taiwan Water Conservancy, 67, 1-11. (in Chinese with an English abstract) (EI)

33.      Lee, C.-A. + and W.-R. Huang*, 2019: Changes in Low-Frequency Variations of Autumn Rainfall in Taiwan. Atmospheric Sciences, 46, 317-337. (in Chinese with an English abstract) http://mopl.as.ntu.edu.tw/web/ASJ/46/46-3-4.pdf ¤¤µØ¥Á°ê¤j®ð¬ì¾Ç´Á¥ZÀu¨}½×¤å¼ú

34.       Huang, W.-R.* and Y.-H. Chang+, 2018a: Characteristics and Mechanisms of the Diurnal Variation of Winter Precipitation in Taiwan. International Journal of Climatology, 38, 3058-3068. https://rmets.onlinelibrary.wiley.com/doi/full/10.1002/joc.5482 (SCI)  

35.       Huang, W.-R.* and Y.-H. Chang+, 2018b: Impact of Boreal Summer Intraseasonal Oscillations on Warm Season Diurnal Convection Activity in Taiwan. International Journal of Climatology, 38, 2187-2200. https://rmets.onlinelibrary.wiley.com/doi/full/10.1002/joc.5326. (SCI)

36.       Huang, W.-R.*, S.-Y. Wang and B.-T. Guan, 2018c: Decadal fluctuations in the western Pacific recorded by long precipitation records in Taiwan, Climate Dynamics, 50, 1597¡V1608. https://link.springer.com/article/10.1007/s00382-017-3707-9 (SCI)

37.       Huang, W.-R.*, Y.-H. Chang+ and P.-Y. Liu+, 2018d: Assessment of IMERG precipitation over Taiwan at multiple timescales. Atmospheric Research, 214, 239-249. https://www.sciencedirect.com/science/article/pii/S0169809518304666 (SCI)

38.      Wu, C.-H.*, W.-R. Huang, S.-Y. Simon Wang, 2018: Role of Indochina Peninsula Topography in Precipitation Seasonality over East Asia. Atmosphere, 9, 255. https://doi.org/10.3390/atmos9070255 (SCI)

39.      Liu, P.-Y. +, W.-R. Huang*, Y.-H. Chang+, P.-H. Huang+, and J.-H. Chen, 2018: Evaluation of CWB/GFS in Forecasting the Characteristics of Mei-yu Season Rainfall over Taiwan at Different Phases of Boreal Summer Intraseasonal Oscillations: Using 2016-2017 as Examples. Atmospheric Sciences,46, 372-403. http://mopl.as.ntu.edu.tw/web/ASJ/46/46-4-2.pdf (in Chinese with an English abstract)

40.       Huang, W.-R* and S.-Y. Wang, 2017: Future Changes in Propagating and Non-propagating Diurnal Rainfall over East Asia, Climate Dynamics, 49, 375¡V389. https://link.springer.com/article/10.1007/s00382-016-3348-4 (SCI)  

41.       Chang Y.-H. +, K.-C. Chen+ and W.-R. Huang*, 2017: Application and Improvement of Physical-Empirical Model on the Prediction of Interannual Variation of Meiyu Season Rainfall in Taiwan. Atmospheric Sciences, 45, 333-348. (in Chinese with an English abstract)

42.       Tsai, M.-Y. + and W.-R. Huang*, 2017: Impact of 30~60 day Intra-seasonal Oscillation on the Characteristics of Summer Rainfall in Taiwan. Atmospheric Sciences, 45, 241-261. (in Chinese with an English abstract)

43.       Chen, S.-Y. + and W.-R. Huang*, 2017: Evaluation on the Performance of TRMM, CMORPH, and PERSIANN in Depicting the Diurnal Precipitation Variation in Taiwan. Atmospheric Sciences, 45, 167-191.(in Chinese with an English abstract)

44.       Huang, W.-R.*, Y.-H. Chang+, C.-T. Cheng, H.-H. Hsu, C.-Y. Tu and A. Kitoh, 2016a: Summer Convective Afternoon Rainfall Simulation and Projection using WRF Driven by Global Climate Model. Part I: over Taiwan. Terrestrial, Atmospheric and Oceanic Sciences (TAO), 27, 659-671.  http://tao.cgu.org.tw/index.php/articles/archive/hydrology/item/1470-2016050201tccip (SCI) ¤¤µØ¥Á°ê¦a²y¬ì¾Ç¾Ç·| 2017¤j¹D·s¤H¼ú

45.       Huang, W.-R.*, Y.-H. Chang+, H.-H. Hsu, C.-T. Cheng, and C.-Y. Tu, 2016b: Summer Convective Afternoon Rainfall Simulation and Projection using WRF Driven by Global Climate Model. Part II: over South China and Luzon. Terrestrial, Atmospheric and Oceanic Sciences (TAO), 27, 673-685. http://tao.cgu.org.tw/index.php/articles/archive/hydrology/item/1471 (SCI)

46.       Huang, W.-R.*, Y.-H. Chang+, H.-H. Hsu, C.-T. Cheng, and C.-Y. Tu, 2016c: Dynamical Downscaling Simulation and Future Projection of Summer Rainfall in Taiwan: Contributions from Different Types of Rain Events. J. Geophys. Res. Atmos. 121, 13973-13988. https://agupubs.onlinelibrary.wiley.com/doi/full/10.1002/2016JD025643 (SCI)

47.       Huang, W.-R.*, S.-H. Wang, M.-C. Yen, N.-H. Lin, and Parichart Promchote, 2016d: Interannual Variation of Springtime Biomass Burning in Indochina: Regional Differences, Associated Atmospheric Dynamical Changes, and Downwind Impacts. J. Geophys. Res. Atmos., 121, 10016-10028.  https://agupubs.onlinelibrary.wiley.com/doi/full/10.1002/2016JD025286 (SCI)

48.       Chang, Y.-H. + and W.-R. Huang*, 2016: Convective Afternoon Rainfall Activities in Taiwan during the 2016 Meiyu Season. Atmospheric Sciences. 44, 289-304 (in Chinese with an English abstract)  ¤¤µØ¥Á°ê¤j®ð¬ì¾Ç´Á¥ZÀu¨}½×¤å¼ú

49.       Chen, K.-C. + and W.-R. Huang*, 2016: Evaluation of CWB Global Forecast System in Forecasting the Precipitation over East Asia during 2016 May and June. Atmospheric Sciences. 44, 305-236 (in Chinese with an English abstract)

50.       Li, Y., C. Y. Tam, W.-R. Huang, K. K. Cheung, and Z. Gao, 2016: Evaluating the impacts of cumulus, land surface and ocean surface schemes on summertime rainfall simulations over East-to-southeast Asia and the western north Pacific by RegCM4. Climate Dynamics, 46, 2487-2505. https://link.springer.com/article/10.1007/s00382-015-2714-y (SCI)

51.       Huang, W.-R.* and K.-C. Chen+, 2015a: Trends in Pre-Summer Frontal and Diurnal Rainfall Activities during 1982-2012 over Taiwan and Southeast China: Characteristics and Possible Causes. International Journal of Climatology, 35: 2608¡V2619. https://rmets.onlinelibrary.wiley.com/doi/full/10.1002/joc.4159 (SCI)°ê¤º´CÅé³ø¾É

52.       Huang, W.-R.*, H.-H. Hsu, S.-Y. Wang, and J.-P. Chen+, 2015b: Impact of atmospheric changes on the low-frequency variations of convective afternoon rainfall activity over Taiwan, J. Geophys. Res. Atmos., 120, 8743¡V8758. https://agupubs.onlinelibrary.wiley.com/doi/full/10.1002/2015JD023568 (SCI)®ü®l¨â©¤«C¦~¤j®ð¬ì¾Ç¾Ç³N¬ã°Q·|³Ì¨Î½×¤å¼ú

53.       Wang, S.-Y. S., W.-R. Huang, H.-H. Hsu, and R. Gillies, 2015: Role of the strengthened El Niño teleconnection in the May 2015 floods over the southern Great Plains, Geophys. Res. Lett., 42, 8140-8146. https://agupubs.onlinelibrary.wiley.com/doi/full/10.1002/2015GL065211 (SCI)¬ü°ê¡iCBS News¡j³ø¾É

54.       Wang, S.-Y. S., W.-R. Huang and Yoon, J.-H., 2015: The North American winter ¡¥dipole¡¦ and extremes activity: a CMIP5 assessment. Atmosph. Sci. Lett., 16: 338¡V345.  https://rmets.onlinelibrary.wiley.com/doi/10.1002/asl2.565 (SCI)

55.       Chang, F.-R. +, W.-R. Huang* and C.-C. Wang, 2015: The Effects of Long-Term Climate Change on Eastward Propagating Rainfall Events over the Yangtze River Valley: Example of May 2009. Atmospheric Sciences, 43, 265-284. (in Chinese with an English abstract)

56.       Huang, W.-R.* and S.-Y. Wang, 2014a: Impact of Land-Sea Breezes at Different Scales on the Diurnal Rainfall in Taiwan. Climate Dynamics, 43, 1951¡V1963. https://link.springer.com/article/10.1007/s00382-013-2018-z (SCI)

57.       Huang, W.-R.* and Johnny C. L. Chan, 2014b: Dynamical Downscaling Forecasts of Western North Pacific Tropical Cyclone Genesis and Landfall. Climate Dynamics, 42, 2227¡V2237. https://link.springer.com/article/10.1007/s00382-013-1747-3 (SCI)

58.       Huang, W.-R.*, Johnny C. L. Chan and Andie Y. M. Au-Yeung, 2013: Regional Climate Simulations of Summer Diurnal Rainfall Variations over East Asia and Southeast China. Climate Dynamics, 40:1625¡V1642  https://link.springer.com/article/10.1007/s00382-012-1457-2 (SCI)

59.       Huang, W.-R.*, T.-C. Chen and S.-Y. Wang, 2012: Co-variability of poleward propagating atmospheric energy with tropical and higher-latitude climate oscillations, Climate Dynamics, 39, 1905-1912  https://doi.org/10.1007/s00382-011-1238-3 (SCI)

60.       Huang, W.-R.* and Johnny C. L. Chan, 2012: Seasonal variation of diurnal and semidiurnal  variation of rainfall over Southeast China, Climate Dynamics, 39, 1913-1927 https://link.springer.com/article/10.1007/s00382-011-1236-5 (SCI)

61.       Gillies, R. R., S.-Y. Wang, and W.-R. Huang, 2012: Observational and supportive modelling analyses of winter precipitation change in China over the last half century. International Journal of Climatology, 32: 747¡V758. https://rmets.onlinelibrary.wiley.com/doi/full/10.1002/joc.2303 (SCI)

62.       Huang, W.-R.*, S.-Y. Wang, and Johnny C. L. Chan, 2011: Discrepancies between global reanalyses and observations in the interdecadal variations of cold surge. International Journal of Climatology, 31: 2272¡V2280. https://rmets.onlinelibrary.wiley.com/doi/full/10.1002/joc.2234 (SCI)

63.       Huang, W.-R*, and Johnny C. L. Chan, 2011: Maintenance Mechanisms for the Early-Morning Maximum Summer Rainfall over Southeast China. Q. J. R. Meteorol. Soc., 137: 959-968. DOI: 10.1002/qj.815https://rmets.onlinelibrary.wiley.com/doi/full/10.1002/qj.815 (SCI)

64.       Wang, S. Y., R. E. Davies, W.-R. Huang, and R. R. Gillies, 2011: Pakistan's two-stage monsoon and links with the recent climate change, J. Geophys. Res., 116, D16114. https://agupubs.onlinelibrary.wiley.com/doi/full/10.1029/2011JD015760 (SCI)

65.       Chen, T.-C., W.-R. Huang, and M.-C. Yen, 2011: Interannual Variation of the Late Spring-Early Summer Monsoon Rainfall in the Northern Part of the South China Sea. J. Climate, 24, 4295-4313. https://journals.ametsoc.org/doi/full/10.1175/2011JCLI3930.1 (SCI)

66.       Yim, W. W.-S., W.-R. Huang, Chan, J. C. L., 2011: Climate Change Corner: Hong Kong's Temperature Record. Hong Kong Engineer, 39(6), p 14.

67.       Huang, W.-R.*, Johnny C. L. Chan, and S.-Y. Wang, 2010: A Planetary-scale Land-sea Breeze Circulation in East Asia and the Western North Pacific. Quarterly Journal of the Royal Meteorological Society, 136: 1543¡V1553. https://rmets.onlinelibrary.wiley.com/doi/full/10.1002/qj.663 (SCI)

68.       Yim, W. W. -S., W.-R. Huang and J. C. L. Chan, 2010: Volcanoes and Storms. Geoscientist, June issue, 20(6), 11-12. 

69.       Chen, T.-C.*, S.-Y. Wang, W.-R. Huang, and M.-C. Yen, 2004: Variation of the East Asian Summer Monsoon Rainfall. J. Climate, 17, 744¡V762. https://doi.org/10.1175/1520-0442(2004)017<0744:VOTEAS>2.0.CO;2 (SCI)

70.       Chen, T.-C.*, W.-R. Huang, and E.S. Takle, 2004: Annual Variation of Midlatitude Precipitation. J. Climate, 17, 4291¡V4298. https://doi.org/10.1175/JCLI3201.1 (SCI)

71.       Chen, T.-C.*, W.-R. Huang, and J.h. Yoon, 2004: Interannual Variation of the East Asian Cold Surge Activity. J. Climate, 17, 401¡V413.  https://doi.org/10.1175/1520-0442(2004)017<0401:IVOTEA>2.0.CO;2 (SCI)

72.       Chen, T.-C.*, M.-C. Yen, W.-R. Huang, and W.-A. Gallus, 2002: An East Asian Cold Surge: Case Study. Mon. Wea. Rev., 130, 2271¡V2290. https://doi.org/10.1175/1520-0493(2002)130<2271:AEACSC>2.0.CO;2 (SCI)

 

Book Chapter

Yoon, J.-H. and W.-R. (Judy) Huang (2012). Indian Monsoon Depression: Climatology and Variability, Modern Climatology, Shih-Yu (Simon) Wang and Robert R. Gillies (Ed.), ISBN: 978-953-51-0095-9, InTech pp45-72

 

2024Feb Update