
The 27th Annual Conference of the Japanese Society for Artificial Intelligence, 2013

- 1 -

 Intelligent Level Generation for Super Mario using

Interactive Evolutionary Computation

Ching-Ying Cheng Ya-Hung Chen Tsung-Che Chiang

Department of Computer Science and Information Engineering,

National Taiwan Normal University, Taiwan

The computer game industry is growing rapidly with the yearly revenue rising up to tens of billion dollars. The market is

huge but meanwhile very competitive. A computer game with static and deterministic design will be discarded after a short

playing duration. Thus, we need a game that can keep creating interesting and challenging contents by adapting to customers’

preferences. In this research we aim to design an intelligent level generator for the famous Super Mario game. The generator

collects the player’s data in a base game level and identifies his/her skill and playing tendencies such as jumping and coin-

collecting. Then, it generates a customized game level by fitting to these tendencies. The level generator is directly evaluated

by human players, and the parameters of the level generator are optimized through interactive evolutionary computation. A

simple regression model is built and applied to make the evolutionary process more efficient.

1. Introduction

The computer game industry is growing rapidly with the

yearly revenue rising up to tens of billion dollars. The market is

huge but meanwhile very competitive. Players have a lot of

choices of platforms from early Nintendo NES to the PlayStation

3, Wii, Xbox 360 and personal computers (PC). The booming of

PC games, especially the social web games or online games,

increases the pressure to the game industry. Every week a variety

of games are available and compete to enter the market, and thus

how to extend the life cycle of game products has become an

important topic.

Games with static and deterministic design will be discarded

after a short playing duration. Difficulty is also an important

factor affecting players’ interests in the game. If the game is too

difficult, players may lose confidence and interest in the game; if

the game is too simple with little challenge, it also reduces the

game’s attraction. Thus, we need a game that can keep creating

interesting and challenging contents by adapting to customers’

preferences. In this research we aim to design an intelligent level

generator for the famous Super Mario game. The research is

motivated by the 2012 Mario AI Championship [Shaker 2010,

Shaker 2012].

Super Mario is an action game with hills, obstacles, enemies,

blocks, coins, and gaps constituting the scenes. We design a

game level generator to furnish those objects to create levels. The

game generator collects the player’s data in a base game level

and identifies his/her skill and playing tendencies such as

jumping and coin-collecting. Then, it generates a customized

game level by fitting to these tendencies. The level generator is

directly evaluated by human players, and the parameters of the

level generator are optimized through interactive evolutionary

computation. A simple regression model is used to improve the

efficiency of the evolution.

The rest of this paper is organized as follows. Section 2

describes the system architecture, player skill and tendencies, and

specialized game zones and models in the level generator.

Section 3 presents how we use the interactive evolutionary

optimization technique to improve the parameter setting of the

proposed level generator. Experiments and results are given in

Section 4. Section 5 provides conclusions and future directions.

2. System Architecture

2.1 Flow of the system

A level generator creates two game levels in a round. The first

level is called the Test Level, and the second one is called the

Customized Level. First, a tester (i.e. a human player) plays the

Test Level, during which the generator records the playing

information (game play) of this tester, such as the times of death,

places of death, level clear time, the number of collected coins,

etc., into the game play database. Then, the generator analyzes

the information and determines the skill and tendencies of this

tester. The Customized Level is created by combining different

game zones with different appearing rates based on the tester’s

skill and tendencies.

There are several versions of level generators in the system,

and they are evaluated by human players. After playing both

levels, the system will ask the tester to feedback a score of the

Customized Level to indicate how much he/she likes the level.

The score is stored in the database and will be utilized as a

fitness of this version of level generator in the evolutionary

algorithm. Once all candidate versions of the level generator

(with different parameter settings) are tested/played by enough

times, the evolutionary algorithm will select the better versions to

produce new versions to replace worse ones. The survived old

versions and new versions of level generators will again be

evaluated by human players. Repeating this interactive

optimization process, we can find a level generator with good

parameter setting.

Contact: Tsung-Che Chiang, Department of Computer Science

and Information Engineering, National Taiwan Normal

University, tcchiang@ieee.org

3C3-IOS-2-1

The 27th Annual Conference of the Japanese Society for Artificial Intelligence, 2013

- 2 -

Fig. 1 The game level generation process

2.2 Player skill and tendencies

After a tester finishes playing the Test Level (whether he/she

clears the level or not), the generator records the playing

information (game play) listed in Table 1.

Table 1 Game Play Information

Data items

Number of lives

Level clear time

Times of death

Times killed by enemies

Times of death by falling into gaps

Number of passed gaps

Times of jumping

Times of redundant jumping

Times of sprints

Number of kills

Number of killed enemies of each type

Number of appearing enemies

Number of appearing enemies of each type

Number of collected coins

Times of hitting blocks

Times of upgrades

We use the game play information to determine this tester’s

skill and playing tendencies. Hereafter we call them player

attributes. Each attribute has five levels, 1 to 5. A higher value

means higher skill or tendency. The four tendencies are jumping,

coin collecting, enemy killing, and block destroying.

(1) Skill

We evaluate the player’s skill (S) primarily based on the level

clear time and times of death. Shorter clear time and fewer times

of death imply that the player has better skill, and we assign a

larger value of S. We find that the clear time (the time required to

clear the level or to use up all lives of Mario) of the Test Level is

between 50 and 130 seconds. When the player cannot clear the

level, we set S by 1; when the player clears the level within 50

seconds, we set S by 5. Levels of 2 to 4 are set according to the

clear time and the times of death. Our level generator will create

difficult levels (with more enemies and gaps) for players with

high skills.

For example, in the Customized Level the number of red

turtles increases linearly as the S value increases from 1 to 5.

Hedgehog (one kind of strong enemy in the game) appears only

when the player’s skill is greater than 2, and flying enemies

appear only when the skill is greater than 3.

(2) Jumping

The jumping tendency (J) is determined by the times of jumps

a player does. We classify jumps into intentional jumps and

unintentional jumps. Jumps that hit blocks, collect coins, or hit

enemies, are regarded as intentional. We calculate a rate RJUMP

by the ratio of the number of unintentional jumps to the total

number of jumps. We assign J by 1 when RJUMP is less than 0.4,

and increase J as RJUMP increases.

(3) Coin collecting

Coin collecting tendency (C) is determined by the ratio of the

number of collected coins to the total number of coins. The coins

may be put in the scene explicitly or be hidden in the blocks. Let

x and y denote the number of collected coins in the scene and in

the blocks, respectively; let X and Y denote the total number of

coins in the scene and in the blocks, respectively. We calculate a

rate RCOIN by (0.4x + 0.6y)/(X+Y). We assign a larger weight to

the number of coins collected from the blocks since we think

players hitting blocks to get coins have higher coin-collecting

tendency. We assign C by 1 when RCOIN is less than 0.2 and

increase C as RCOIN increases.

(4) Enemy killing

Enemy killing tendency (E) is determined based on the ratio of

the number of enemies killed to the total number of enemies. As

we put different weights on coins collected from different places,

we put different weights on enemies killed by different ways. We

put a lower weight on the number of enemies killed by turtle

shells and a higher weight on the number of enemies killed by

fire balls.

(5) Block destroying

Block destroying (B) is determined based on the ratio of the

number of destroyed blocks to the total number of blocks. Again,

we put different weights on the destroyed blocks of different

types. A higher weight is put on the empty blocks, and a lower

weight is put on the blocks with items inside.

2.3 Specialized game zones and models

Based on the five identified player attributes (skill and four

tendencies), we develop five categories of game zones

specifically. Each category contains of two or three zones, as

shown in Fig. 2.

Fig. 2 Twelve specialized zones in five categories

Analyze Tester Playing Tendencies

Create

Start Level Generation

Play

Game Play Database

Create

Tester

Test Level

Customized Level

The 27th Annual Conference of the Japanese Society for Artificial Intelligence, 2013

- 3 -

The level generator creates the Customized Level by selecting

and combining different game zones. Zones are selected in a

probability proportional to the corresponding attribute value.

Assume that the values of the five attributes (skill, jumping, coin

collecting, enemy killing, and block destroying) of a player are 1,

2, 3, 4, and 5. Then, the zones of the “jumping” category will be

selected with probability as (32)/(31+32+23+24+25).

Each kind of zone corresponds to a main attribute. For

example, the Huge Gap zone is developed for players with high

jumping tendency. Each zone is composed of multiple models to

increase the variety of scenes and to fit a secondary attribute. For

example, the Huge Gap zone consists of two models to further fit

the players’ skill: a simple model without enemy for players with

lower skill (Fig. 3(a)) and a hard model with enemies for players

with higher skill (Fig. 3(b)). In total we have 28 kinds of models.

(a) (b)

Fig. 3 Huge Gap Zone: (a) easy model (b) difficult model

In addition to the above-mentioned specialized zones, we also

develop a boss stage to put at the end of the Customized Level

for more fun. The difficulty of this stage depends on the player’s

skill and enemy-killing tendency.

Fig. 4 Creation of the Customized Level

Fig. 4 is the process of creating the Customized Level. After

the player finishes the Test Level and his/her attributes are

decided, the level generator creates the Customized Level by

concatenating different zones/models accordingly. It selects a

zone based on the main attribute and then selects a model based

on the secondary attribute. The length of a level is 480 units

(each of 30 pixels). A model usually has the length between 20

and 25 units. Thus, a level is composed of about 20 models and a

final boss stage. Due to the space of limitation, in Fig. 4 we only

present one zone and its models for each attribute category.

These five zones are representative one for each player attribute,

respectively. We will show them with brief descriptions.

(1) Cannon zone

There is no cannon in the Test Level, and thus players would

have fun and surprise to see it in the Customized Level. The

Cannon zone has two models, the easy and difficult models (Fig.

5). In the easy model cannons are located at the same plane,

whereas in the difficult model cannons could be located at

different planes so that players have to worry about bullets

coming at different heights. The number, position, and height of

the cannons are generated randomly to make different scenes.

(a) (b)

Fig. 5 Cannon Zone: (a) easy model (b) difficult model

(2) Huge gap zone

There is a huge gap in this zone. Players cannot pass the zone

simply by a single jump. They have to jump over blocks. This

zone is developed for players who love jumping. It consists of

the easy and difficult models. The easy one contains no enemy

and is selected in higher probability when the player has lower

skill. The difficult one contains enemies and is chosen more

likely when the player has higher skill or enemy-killing tendency.

(3) Enemy zone

The enemy zone consists of three models: easy, medium, and

difficult. The models are selected according to the player’s skill.

In the easy model there is a way to pass without encountering

any enemy, but in the difficult model the player has to kill the

enemy to pass through (Fig. 6).

(a) (b)

Fig. 6 Enemy Zone: (a) easy model (b) difficult model

Set Devil Boss stage

Finish creating Customized Level

L L – K

Yes

No

L = 480 (Length of the game)

Select zones probabilistically

K: Length of the model

GamePlay information

Test Level

Calculate feature tendencies

S, J, E, C, B

Coin Zone

Platform Model

S, J

Gap Model

Island Model

Enemy Zone

Easy Model

S, E

Medium Model

Diffcult Model

Block Zone

 Easy Model

E

Difficult Model

Cannon Zone

Easy Model

S

Difficult Model

HugeGap Zone

S, E, C

L<30

Easy Model

Difficult Model

The 27th Annual Conference of the Japanese Society for Artificial Intelligence, 2013

- 4 -

(4) Coin zone

The coin zone is for players love collecting coins. It has three

models: platform, gap, and island (Fig. 7). The multiple models

are created for the variety of scenes. The gap and island models

appear more frequently for players with higher skill and jumping

tendency.

(a) (b) (c)

Fig. 7 Coin Zone: (a) platform (b) gap (c) island models

(5) Block zone

The block zone separates into the easy and difficult models,

one without enemy and the other with enemies. Roughly, the

ratios of empty blocks, coin blocks, and item blocks are 50%,

40%, and 10%, respectively. The level generator will increase the

ratio of coin blocks for players with higher coin-collecting

tendency and decrease the ratio of item blocks for players with

higher skill. There are about 5% hidden blocks with coins inside.

These blocks will appear more frequently when the player has

higher coin-collecting tendency and longer clear time.

(a) (b)

Fig. 8 Block Zone: (a) easy model (b) difficult model

3. Optimization of the Level Generator by
Interactive Evolutionary Computation

3.1 Evolutionary algorithm (EA)

EAs [Goldberg 1989, De Jong 2002] are algorithms that

attempt to solve complex problems by mimicking the

evolutionary process in the nature. It starts with an initial

population of individuals, each of which is an encoded form of a

solution to the target problem. Each individual is given a fitness

value to reflect the quality of the corresponding solution.

Individuals with better solution quality are selected as parents in

higher probability. Then, the parents produce the offspring (new

solutions) through genetic operators including crossover and

mutation. Among the old population and new offspring, good

individuals are selected to survive to be the population in the

next generation. The above steps repeat generation by generation

to evolve the individuals toward the (near) optimal solutions.

EAs have been applied to game AI design such as Pac-man

controller [Gallagher 2003], racing car controller [Togelius 2005]

and game parameter optimization such as car setup [Muñoz

2010], tower defense [Avery 2011], and wizard skill balancing

[Wong 2012].

3.2 Interactive evolutionary optimization

We identify the player’s five attributes and develop game

zones particularly fitting to these attributes. Players with higher

jumping tendency will encounter more jumping zones/models in

the created Customized Level. What we need now is a base

appearing ratio of the five kinds of scenes that meets players’

general expectation. Based on this base ratio, we then adjust the

ratio of zones according to each player’s specific tendency. Let pi

(i = 1, 2, …, 5) denote the base ratio of the zones of a category of

attribute i, ni denote the number of zones in the category, and ai

denote the attribute value of a player. The probability of selecting

a zone from a category of attribute i is now Prob(i) =

5

1i iiiiii anpanp . (In the example of Section 2.3, we assume pi

= 1 for all attributes.)

Now, tuning the five parameter values pi of the level generator

is to be solved as an optimization problem with five discrete

decision variables. We will use the evolutionary algorithm to

solve this problem. The chromosome representation is a five

tuple of integers. To reduce the solution space, we restrict the

values of each variable to only three levels: low (1), medium (5),

and high (10). An individual (i.e. a set of parameter values)

corresponds to a version of the level generator. The quality of

each version of level generator is evaluated by human players’

feedback. By incorporating human into the evaluation procedure

of the evolutionary algorithm, we come up with an interactive

evolutionary computation-based optimization approach.

To achieve the interaction, we set up a server running a

database and an evolutionary algorithm. The database stores the

current population of individuals (the parameters of level

generators), their times of being played, and fitness values. We

also modify the program [Shaker 2012] of a Java version of the

Super Mario game to put our level generator inside and add

communication procedures. After a player finishes playing the

Test Level, the program will connect to our server to get one set

of parameters (pi). Then, our level generator will create a

Customized Level based on the parameter values and player

attributes (ai). When the player finishes playing the Customized

Level, the program will ask him/her to return a score to the

server to be stored.

(1) Initialization

We generate the initial population by random assignments.

Each individual is composed of five integers, whose values are 1,

5, or 10 randomly.

(2) Evaluation

To help the evolutionary process, human players download the

(modified) Super Mario program from our web site. When the

program connects to our server to retrieve an individual, our

server will give it the one with the minimal times of plays. At the

end of the game, the program sends back a score (ranging from 1

to 5), which will be stored with the played individual.

To avoid the bias caused by too few feedbacks, each

individual needs to be played for K times (i.e. K scores are

received). Initially the value of K is set by 5. After each

generation, its value increases by one. Fig. 9 shows the flow of

the evaluation procedure.

The 27th Annual Conference of the Japanese Society for Artificial Intelligence, 2013

- 5 -

Fig. 9 The flow of the evaluation procedure

(3) Reproduction

Once all individuals in the current population have been

evaluated for K times, we select the two best individuals as

parents. Each of them undergoes the mutation to produce a new

offspring. In the mutation operation, two among the five

parameters are selected and assigned a random value. The

remaining three parameters take the original values from the

parent. The two offspring replace the worst two individuals in the

current population. The new generation begins with K increasing

by one. It means that the three old individuals must be evaluated

by human players for one more time, and the two new

individuals must be evaluated by K times.

(4) Stopping criterion

We do not set an explicit stopping criterion. In fact, as long as

the feedbacks from players come, the evolutionary process can

keep going. In other words, how far the evolutionary process

goes depends on how many feedbacks we get from human

players. In our experiments, we encounter the difficulty of

finding a large number of players. Since each feedback is

valuable, we do not want to waste it on useless individuals. This

leads us to estimate the fitness of individuals through an

approximation method. Here we resort to the regression model.

3.3 Regression model

As mentioned, once all individuals in the current population

are evaluated for enough times, two of them are used to generate

two offspring. These two offspring will enter the population and

consume 2K evaluations from human players in the new

generation. If they are bad individuals, the evaluations are wasted.

Thus, we hope to find “potential” individuals to be evaluated by

players. We build a regression model based on historical data and

then use it to calculate the approximated fitness of the produced

offspring.

The input of the regression model is the individual, that is,

five player attributes. The output is the expected score from the

player. We assume the five attributes are independent from one

another. The model for the approximated score is defined by

f(a1, a2, a3, a4, a5) = c1＋c2×a1
2＋c3×a1＋c4×a2

2＋c5×a2＋c6×a3
2

＋c7×a3＋c8×a4
2＋c9×a4＋c10×a5

2＋c11×a5

 (1)

Each pair of an individual and one feedback score serves as a

training data point. Given n historical data points collected from

previous generations, we try to fit the regression model (i.e. to

find the values of the coefficients ci, i = 1, 2, …, 11) to these

points by minimizing the sum of square error.

With the regression model, we can pre-select the potential

offspring for doing human evaluation. Since we have reduced the

size of solution space to 35, which is not a very large number, we

calculate the approximated fitness of all solutions. The best two

solutions with the highest approximated fitness then replace the

worst two individuals in the current population. On one hand, the

regression model helps us to filter out bad individuals and

improve the effectiveness of the evolutionary process. On the

other hand, these new individuals still receive human

evaluations, which provide true feedbacks to improve

approximation accuracy.

4. Experiments and Results

4.1 Experimental setting

The level generator was implemented in Java programming

language. The program was based on the code provided by Mario

AI Championship 2012. The population size of the evolutionary

algorithm was five. We collected 270 feedbacks, and the

algorithm evolved for 10 generations.

4.2 Improvement by interactive evolutionary

computation

The positive effect of the interactive evolutionary computation

is shown in Fig. 10. The average score of individuals (versions of

the level generator) is below 3 at the first generation and

increases to 3.5 after 10 generations of evolution. It means that

the final evolved level generators fit players better than the

starting ones.

Fig. 10 average scores of individuals over generations

Table 2 shows the best three individuals found during the

evolutionary process. The gene values correspond to the ratio of

Block, Enemy, Coin, Cannon, and Huge Gap zones, respectively.

In general, we can find that players (at least the tens of players

who participate in our experiments) favor Cannon and Coin

zones. Block and Huge Gaps zones should appear moderately,

and Enemy zone should appear little.

Table 2 Best three individuals and corresponding appearing

rate of zones

Top three sets PB PE PCo PCa PH

(5,1,10,5,5) 0.192 0.038 0.385 0.192 0.192

(5,1,1,10,1) 0.278 0.056 0.056 0.556 0.056

(5,1,10,10,1) 0.185 0.037 0.37 0.37 0.037

2
2.2
2.4
2.6
2.8

3
3.2
3.4
3.6

0 2 4 6 8 10

a
v
e
r
a

g
e
 s

co
r
e

generation

Database

Zones appeared
ratio parameters

Creating

Customized Level
Evaluation Generation

Update each group
score

Enough
scores

Start an
Evolution

Randomly choose
from five groups

Tester gives

a score

The 27th Annual Conference of the Japanese Society for Artificial Intelligence, 2013

- 6 -

4.3 Analysis of the regression model

Based on the collected user feedbacks, we build the regression

model as follows:

s = f(a1, a2, a3, a4, a5) = 4.048＋0.026×a1
2＋ (-0.34)×a1＋

0.007×a2
2 ＋ (-0.114)×a2 ＋ 0.023×a3

2 ＋ (-0.358)×a3 ＋ (-

0.019)×a4
2 ＋ 0.153×a4 ＋ (-0.035)×a5

2 ＋ 0.393×a5

 (2)

Fig. 11 shows the relationship between the expected average

score and the actual average score. As we can see, there is still

much room for improving the model accuracy. The following are

some reasons for the inaccuracy.

(1) There may not be a single model suitable for all players. A

level generator receiving high scores from a group of players

may get low scores from another group.

(2) In our current model we ignore the interaction between

player's attributes, but the interaction may exist.

(3) The number of human evaluation for the level generators is

not enough. Some extreme (very high or very low) scores may

cause unnecessary but significant impact.

Fig. 11 Relationship between average scores and expected

average score

5. Conclusions and Future Work

In this study we propose an intelligent level generator for the

Super Mario game. The level generator collects game play

information from human players, identifies their skill and playing

tendencies, and generates customized levels accordingly. In the

customized level, specific zones are selected with different rates,

and the rates are determined by general user preference and

target user preference. The general user preference is obtained by

optimizing users’ feedback scores through interactive

evolutionary computation, and the target user preference is

obtained by analyzing the single user’s game play. To save the

cost and time required by human evaluation, we build a

regression model based on past data and use it to select potential

level generators. Although the regression model is not very

accurate, the level generator still fits players’ tendencies better

and better. Our level generator was also the winner of the Level

Generation Track of the Mario AI Competition held in IEEE

Conference on Computational Intelligence and Games (CIG) in

2012.

In this research the most difficult part may be the collection of

enough human feedbacks for evolution. We try to solve the

problem by predicting the feedback based on a regression model,

but the accuracy needs much improvement. We could extend this

work in the following directions: First, we need to collect data

more carefully. On one hand, when a level generator receives a

score deviating largely from the previous ones, we should

consider disregarding this score. On the other hand, when a level

generator keeps receiving close scores, we may consider not

evaluating it any more. Second, we need to build the

approximation model more accurately. A simple way is to take

into account the interaction effect between player attributes in

building the regression model. We can also resort to the literature

about expensive optimization [Tenne 2010]. Finally, we need

experiments to compare the interactive evolutionary optimization

with and without the approximation model to know its effect.

Acknowledgment

We thank Dr. Shaker, Dr. Togelius, and Dr. Yannakakis for

organizing the Level Generation Track of the Mario AI

Competition. We also thank the players participated in our

experiments. This research is supported by the National Science

Council of Republic of China under research grant No. 101-

2815-C-003-045-E.

References

[Avery 2011] P. Avery, J. Togelius, E. Alistar, and R. P. van

Leeuwen, “Computational intelligence and tower defense

games,” Proceedings of the IEEE Congress on Evolutionary

Computation, pp. 1084 – 1091, 2011.

[De Jong 2002] K. A. De Jong, Evolutionary Computation, the

MIT Press, 2002.

[Gallagher 2003] M. Gallagher and A. Ryan, “Learning to play

Pac-man: an evolutionary, rule-based approach,”

Proceedings of the IEEE Congress on Evolutionary

Computation, pp. 242 – 2469, 2003.

[Goldberg 1989] D. E. Goldberg, Genetic Algorithms in Search,

Optimization, and Machine Learning, Addison-Wesley, 1989.

[Muñoz 2010] J. Muñoz, G. Gutierrez, and A. Sanchis, “Multi-

objective evolution for car setup optimization,” 2010 UK

Workshop on Computational Intelligence, 2010.

[Shaker 2010] N. Shaker, J. Togelius, G. N. Yannakakis, B.

Weber, T. Shimizu, T. Hashiyama, N, Soreson, P. Pasquier,

P. Mawhorter, G. Takahashi, G. Smith, and R. Baumgarten,

“The 2010 Mario AI championship: level generation track,”

IEEE Transactions on Computational Intelligence and AI in

Games, vol. 3, no. 4, pp. 332 – 347, 2010.

[Shaker 2012] N. Shaker, J. Togelius, and G. Yannakakis, Level

generation track in Mario AI championship 2012,

http://www.marioai.org/LevelGeneration/

[Tenne 2010] Y. Tenne and C. K. Goh, Computational

Intelligence in Expensive Optimization Problems, Springer,

2010.

[Togelius 2005] J. Togelius and S. M. Lucas, “Evolving

controllers for simulated car racing,” Proceedings of the

IEEE Congress on Evolutionary Computation, pp. 1906 –

1913, 2005.

[Wong 2012] S. K. Wong and S. W. Fang, “A study on genetic

algorithm and neural network for mini-games,” Journal of

Information Science and Engineering, vol. 28, pp. 145 – 159,

2012.

1.5

2

2.5

3

3.5

4

1.5 2 2.5 3 3.5 4

A
c
tu

a
l

A
v
e
r
a

g
e
 S

c
o

r
e
(y

)

Expexted Average Score(s)

Actual Average

Score

http://www.marioai.org/LevelGeneration/

