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The computer game industry is growing rapidly with the yearly revenue rising up to tens of billion dollars. The market is 

huge but meanwhile very competitive. A computer game with static and deterministic design will be discarded after a short 

playing duration. Thus, we need a game that can keep creating interesting and challenging contents by adapting to customers’ 

preferences. In this research we aim to design an intelligent level generator for the famous Super Mario game. The generator 

collects the player’s data in a base game level and identifies his/her skill and playing tendencies such as jumping and coin-

collecting. Then, it generates a customized game level by fitting to these tendencies. The level generator is directly evaluated 

by human players, and the parameters of the level generator are optimized through interactive evolutionary computation. A 

simple regression model is built and applied to make the evolutionary process more efficient. 

 

1. Introduction 

The computer game industry is growing rapidly with the 

yearly revenue rising up to tens of billion dollars. The market is 

huge but meanwhile very competitive. Players have a lot of 

choices of platforms from early Nintendo NES to the PlayStation 

3, Wii, Xbox 360 and personal computers (PC). The booming of 

PC games, especially the social web games or online games, 

increases the pressure to the game industry. Every week a variety 

of games are available and compete to enter the market, and thus 

how to extend the life cycle of game products has become an 

important topic. 

Games with static and deterministic design will be discarded 

after a short playing duration. Difficulty is also an important 

factor affecting players’ interests in the game. If the game is too 

difficult, players may lose confidence and interest in the game; if 

the game is too simple with little challenge, it also reduces the 

game’s attraction. Thus, we need a game that can keep creating 

interesting and challenging contents by adapting to customers’ 

preferences. In this research we aim to design an intelligent level 

generator for the famous Super Mario game. The research is 

motivated by the 2012 Mario AI Championship [Shaker 2010, 

Shaker 2012]. 

Super Mario is an action game with hills, obstacles, enemies, 

blocks, coins, and gaps constituting the scenes. We design a 

game level generator to furnish those objects to create levels. The 

game generator collects the player’s data in a base game level 

and identifies his/her skill and playing tendencies such as 

jumping and coin-collecting. Then, it generates a customized 

game level by fitting to these tendencies. The level generator is 

directly evaluated by human players, and the parameters of the 

level generator are optimized through interactive evolutionary 

computation. A simple regression model is used to improve the 

efficiency of the evolution.  

 

  

The rest of this paper is organized as follows. Section 2 

describes the system architecture, player skill and tendencies, and 

specialized game zones and models in the level generator. 

Section 3 presents how we use the interactive evolutionary 

optimization technique to improve the parameter setting of the 

proposed level generator. Experiments and results are given in 

Section 4. Section 5 provides conclusions and future directions. 

2. System Architecture 

2.1 Flow of the system 

A level generator creates two game levels in a round. The first 

level is called the Test Level, and the second one is called the 

Customized Level. First, a tester (i.e. a human player) plays the 

Test Level, during which the generator records the playing 

information (game play) of this tester, such as the times of death, 

places of death, level clear time, the number of collected coins, 

etc., into the game play database. Then, the generator analyzes 

the information and determines the skill and tendencies of this 

tester. The Customized Level is created by combining different 

game zones with different appearing rates based on the tester’s 

skill and tendencies.   

There are several versions of level generators in the system, 

and they are evaluated by human players. After playing both 

levels, the system will ask the tester to feedback a score of the 

Customized Level to indicate how much he/she likes the level. 

The score is stored in the database and will be utilized as a 

fitness of this version of level generator in the evolutionary 

algorithm. Once all candidate versions of the level generator 

(with different parameter settings) are tested/played by enough 

times, the evolutionary algorithm will select the better versions to 

produce new versions to replace worse ones. The survived old 

versions and new versions of level generators will again be 

evaluated by human players. Repeating this interactive 

optimization process, we can find a level generator with good 

parameter setting. 
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Fig. 1 The game level generation process 

 

2.2 Player skill and tendencies 

After a tester finishes playing the Test Level (whether he/she 

clears the level or not), the generator records the playing 

information (game play) listed in Table 1. 

Table 1 Game Play Information 

Data items 

Number of lives 

Level clear time 

Times of death 

Times killed by enemies 

Times of death by falling into gaps 

Number of passed gaps 

Times of jumping 

Times of redundant jumping 

Times of sprints 

Number of kills 

Number of killed enemies of each type 

Number of appearing enemies 

Number of appearing enemies of each type 

Number of collected coins 

Times of hitting blocks 

Times of upgrades 

 

We use the game play information to determine this tester’s 

skill and playing tendencies. Hereafter we call them player 

attributes. Each attribute has five levels, 1 to 5. A higher value 

means higher skill or tendency. The four tendencies are jumping, 

coin collecting, enemy killing, and block destroying. 

(1)  Skill 

We evaluate the player’s skill (S) primarily based on the level 

clear time and times of death. Shorter clear time and fewer times 

of death imply that the player has better skill, and we assign a 

larger value of S. We find that the clear time (the time required to 

clear the level or to use up all lives of Mario) of the Test Level is 

between 50 and 130 seconds. When the player cannot clear the 

level, we set S by 1; when the player clears the level within 50 

seconds, we set S by 5. Levels of 2 to 4 are set according to the 

clear time and the times of death. Our level generator will create 

difficult levels (with more enemies and gaps) for players with 

high skills. 

For example, in the Customized Level the number of red 

turtles increases linearly as the S value increases from 1 to 5. 

Hedgehog (one kind of strong enemy in the game) appears only 

when the player’s skill is greater than 2, and flying enemies 

appear only when the skill is greater than 3. 

(2)  Jumping 

The jumping tendency (J) is determined by the times of jumps 

a player does. We classify jumps into intentional jumps and 

unintentional jumps. Jumps that hit blocks, collect coins, or hit 

enemies, are regarded as intentional. We calculate a rate RJUMP 

by the ratio of the number of unintentional jumps to the total 

number of jumps. We assign J by 1 when RJUMP is less than 0.4, 

and increase J as RJUMP increases. 

(3)  Coin collecting 

Coin collecting tendency (C) is determined by the ratio of the 

number of collected coins to the total number of coins. The coins 

may be put in the scene explicitly or be hidden in the blocks. Let 

x and y denote the number of collected coins in the scene and in 

the blocks, respectively; let X and Y denote the total number of 

coins in the scene and in the blocks, respectively. We calculate a 

rate RCOIN by (0.4x + 0.6y)/(X+Y). We assign a larger weight to 

the number of coins collected from the blocks since we think 

players hitting blocks to get coins have higher coin-collecting 

tendency. We assign C by 1 when RCOIN is less than 0.2 and 

increase C as RCOIN increases. 

(4)  Enemy killing 

Enemy killing tendency (E) is determined based on the ratio of 

the number of enemies killed to the total number of enemies. As 

we put different weights on coins collected from different places, 

we put different weights on enemies killed by different ways. We 

put a lower weight on the number of enemies killed by turtle 

shells and a higher weight on the number of enemies killed by 

fire balls. 

(5)  Block destroying 

Block destroying (B) is determined based on the ratio of the 

number of destroyed blocks to the total number of blocks. Again, 

we put different weights on the destroyed blocks of different 

types. A higher weight is put on the empty blocks, and a lower 

weight is put on the blocks with items inside. 

2.3 Specialized game zones and models 

Based on the five identified player attributes (skill and four 

tendencies), we develop five categories of game zones 

specifically. Each category contains of two or three zones, as 

shown in Fig. 2. 

 

 

Fig. 2  Twelve specialized zones in five categories 

Analyze Tester Playing Tendencies 

Create 

Start Level Generation 

Play 

Game Play Database 

Create 

Tester 

Test Level 

Customized Level 



The 27th Annual Conference of the Japanese Society for Artificial Intelligence, 2013 

- 3 - 

The level generator creates the Customized Level by selecting 

and combining different game zones. Zones are selected in a 

probability proportional to the corresponding attribute value. 

Assume that the values of the five attributes (skill, jumping, coin 

collecting, enemy killing, and block destroying) of a player are 1, 

2, 3, 4, and 5. Then, the zones of the “jumping” category will be 

selected with probability as (32)/(31+32+23+24+25). 

Each kind of zone corresponds to a main attribute. For 

example, the Huge Gap zone is developed for players with high 

jumping tendency. Each zone is composed of multiple models to 

increase the variety of scenes and to fit a secondary attribute. For 

example, the Huge Gap zone consists of two models to further fit 

the players’ skill: a simple model without enemy for players with 

lower skill (Fig. 3(a)) and a hard model with enemies for players 

with higher skill (Fig. 3(b)). In total we have 28 kinds of models. 

 

  
(a)                                             (b) 

Fig. 3 Huge Gap Zone: (a) easy model (b) difficult model 

In addition to the above-mentioned specialized zones, we also 

develop a boss stage to put at the end of the Customized Level 

for more fun. The difficulty of this stage depends on the player’s 

skill and enemy-killing tendency. 

 

Fig. 4 Creation of the Customized Level 

Fig. 4 is the process of creating the Customized Level. After 

the player finishes the Test Level and his/her attributes are 

decided, the level generator creates the Customized Level by 

concatenating different zones/models accordingly. It selects a 

zone based on the main attribute and then selects a model based 

on the secondary attribute. The length of a level is 480 units 

(each of 30 pixels). A model usually has the length between 20 

and 25 units. Thus, a level is composed of about 20 models and a 

final boss stage. Due to the space of limitation, in Fig. 4 we only 

present one zone and its models for each attribute category. 

These five zones are representative one for each player attribute, 

respectively. We will show them with brief descriptions. 

(1)  Cannon zone 

There is no cannon in the Test Level, and thus players would 

have fun and surprise to see it in the Customized Level. The 

Cannon zone has two models, the easy and difficult models (Fig. 

5). In the easy model cannons are located at the same plane, 

whereas in the difficult model cannons could be located at 

different planes so that players have to worry about bullets 

coming at different heights. The number, position, and height of 

the cannons are generated randomly to make different scenes. 

 
(a)                                                (b) 

Fig. 5  Cannon Zone: (a) easy model (b) difficult model 

(2)  Huge gap zone 

There is a huge gap in this zone. Players cannot pass the zone 

simply by a single jump. They have to jump over blocks. This 

zone is developed for players who love jumping. It consists of 

the easy and difficult models. The easy one contains no enemy 

and is selected in higher probability when the player has lower 

skill. The difficult one contains enemies and is chosen more 

likely when the player has higher skill or enemy-killing tendency. 

(3)  Enemy zone 

The enemy zone consists of three models: easy, medium, and 

difficult. The models are selected according to the player’s skill. 

In the easy model there is a way to pass without encountering 

any enemy, but in the difficult model the player has to kill the 

enemy to pass through (Fig. 6). 

    
(a)                                            (b) 

Fig. 6  Enemy Zone: (a) easy model (b) difficult model 
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(4)  Coin zone 

The coin zone is for players love collecting coins. It has three 

models: platform, gap, and island (Fig. 7). The multiple models 

are created for the variety of scenes. The gap and island models 

appear more frequently for players with higher skill and jumping 

tendency. 

 
(a)                             (b)                                (c) 

Fig. 7 Coin Zone: (a) platform (b) gap (c) island models 

(5)  Block zone 

The block zone separates into the easy and difficult models, 

one without enemy and the other with enemies. Roughly, the 

ratios of empty blocks, coin blocks, and item blocks are 50%, 

40%, and 10%, respectively. The level generator will increase the 

ratio of coin blocks for players with higher coin-collecting 

tendency and decrease the ratio of item blocks for players with 

higher skill. There are about 5% hidden blocks with coins inside. 

These blocks will appear more frequently when the player has 

higher coin-collecting tendency and longer clear time. 

 
(a)                                               (b) 

Fig. 8 Block Zone: (a) easy model (b) difficult model 

3. Optimization of the Level Generator by 
Interactive Evolutionary Computation 

3.1 Evolutionary algorithm (EA) 

EAs [Goldberg 1989, De Jong 2002] are algorithms that 

attempt to solve complex problems by mimicking the 

evolutionary process in the nature. It starts with an initial 

population of individuals, each of which is an encoded form of a 

solution to the target problem. Each individual is given a fitness 

value to reflect the quality of the corresponding solution. 

Individuals with better solution quality are selected as parents in 

higher probability. Then, the parents produce the offspring (new 

solutions) through genetic operators including crossover and 

mutation. Among the old population and new offspring, good 

individuals are selected to survive to be the population in the 

next generation. The above steps repeat generation by generation 

to evolve the individuals toward the (near) optimal solutions. 

EAs have been applied to game AI design such as Pac-man 

controller [Gallagher 2003], racing car controller [Togelius 2005] 

and game parameter optimization such as car setup [Muñoz 

2010], tower defense [Avery 2011], and wizard skill balancing 

[Wong 2012]. 

3.2 Interactive evolutionary optimization 

We identify the player’s five attributes and develop game 

zones particularly fitting to these attributes. Players with higher 

jumping tendency will encounter more jumping zones/models in 

the created Customized Level. What we need now is a base 

appearing ratio of the five kinds of scenes that meets players’ 

general expectation. Based on this base ratio, we then adjust the 

ratio of zones according to each player’s specific tendency. Let pi 

(i = 1, 2, …, 5) denote the base ratio of the zones of a category of 

attribute i, ni denote the number of zones in the category, and ai 

denote the attribute value of a player. The probability of selecting 

a zone from a category of attribute i is now Prob(i) = 

 

5

1i iiiiii anpanp . (In the example of Section 2.3, we assume pi 

= 1 for all attributes.) 

Now, tuning the five parameter values pi of the level generator 

is to be solved as an optimization problem with five discrete 

decision variables. We will use the evolutionary algorithm to 

solve this problem. The chromosome representation is a five 

tuple of integers. To reduce the solution space, we restrict the 

values of each variable to only three levels: low (1), medium (5), 

and high (10). An individual (i.e. a set of parameter values) 

corresponds to a version of the level generator. The quality of 

each version of level generator is evaluated by human players’ 

feedback. By incorporating human into the evaluation procedure 

of the evolutionary algorithm, we come up with an interactive 

evolutionary computation-based optimization approach. 

To achieve the interaction, we set up a server running a 

database and an evolutionary algorithm. The database stores the 

current population of individuals (the parameters of level 

generators), their times of being played, and fitness values. We 

also modify the program [Shaker 2012] of a Java version of the 

Super Mario game to put our level generator inside and add 

communication procedures. After a player finishes playing the 

Test Level, the program will connect to our server to get one set 

of parameters (pi). Then, our level generator will create a 

Customized Level based on the parameter values and player 

attributes (ai). When the player finishes playing the Customized 

Level, the program will ask him/her to return a score to the 

server to be stored. 

(1)  Initialization 

We generate the initial population by random assignments. 

Each individual is composed of five integers, whose values are 1, 

5, or 10 randomly.  

(2)  Evaluation 

To help the evolutionary process, human players download the 

(modified) Super Mario program from our web site. When the 

program connects to our server to retrieve an individual, our 

server will give it the one with the minimal times of plays. At the 

end of the game, the program sends back a score (ranging from 1 

to 5), which will be stored with the played individual.  

To avoid the bias caused by too few feedbacks, each 

individual needs to be played for K times (i.e. K scores are 

received). Initially the value of K is set by 5. After each 

generation, its value increases by one. Fig. 9 shows the flow of 

the evaluation procedure. 
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Fig. 9 The flow of the evaluation procedure 

(3)  Reproduction 

Once all individuals in the current population have been 

evaluated for K times, we select the two best individuals as 

parents. Each of them undergoes the mutation to produce a new 

offspring. In the mutation operation, two among the five 

parameters are selected and assigned a random value. The 

remaining three parameters take the original values from the 

parent. The two offspring replace the worst two individuals in the 

current population. The new generation begins with K increasing 

by one. It means that the three old individuals must be evaluated 

by human players for one more time, and the two new 

individuals must be evaluated by K times. 

(4)  Stopping criterion 

We do not set an explicit stopping criterion. In fact, as long as 

the feedbacks from players come, the evolutionary process can 

keep going. In other words, how far the evolutionary process 

goes depends on how many feedbacks we get from human 

players. In our experiments, we encounter the difficulty of 

finding a large number of players. Since each feedback is 

valuable, we do not want to waste it on useless individuals. This 

leads us to estimate the fitness of individuals through an 

approximation method. Here we resort to the regression model. 

3.3 Regression model 

As mentioned, once all individuals in the current population 

are evaluated for enough times, two of them are used to generate 

two offspring. These two offspring will enter the population and 

consume 2K evaluations from human players in the new 

generation. If they are bad individuals, the evaluations are wasted. 

Thus, we hope to find “potential” individuals to be evaluated by 

players. We build a regression model based on historical data and 

then use it to calculate the approximated fitness of the produced 

offspring. 

The input of the regression model is the individual, that is, 

five player attributes. The output is the expected score from the 

player. We assume the five attributes are independent from one 

another. The model for the approximated score is defined by 

 

f(a1, a2, a3, a4, a5) = c1＋c2×a1
2＋c3×a1＋c4×a2

2＋c5×a2＋c6×a3
2

＋c7×a3＋c8×a4
2＋c9×a4＋c10×a5

2＋c11×a5 

                                               (1) 

Each pair of an individual and one feedback score serves as a 

training data point. Given n historical data points collected from 

previous generations, we try to fit the regression model (i.e. to 

find the values of the coefficients ci, i = 1, 2, …, 11) to these 

points by minimizing the sum of square error. 

With the regression model, we can pre-select the potential 

offspring for doing human evaluation. Since we have reduced the 

size of solution space to 35, which is not a very large number, we 

calculate the approximated fitness of all solutions. The best two 

solutions with the highest approximated fitness then replace the 

worst two individuals in the current population. On one hand, the 

regression model helps us to filter out bad individuals and 

improve the effectiveness of the evolutionary process. On the 

other hand, these new individuals still receive human 

evaluations, which provide true feedbacks to improve 

approximation accuracy. 

4. Experiments and Results 

4.1 Experimental setting 

The level generator was implemented in Java programming 

language. The program was based on the code provided by Mario 

AI Championship 2012. The population size of the evolutionary 

algorithm was five. We collected 270 feedbacks, and the 

algorithm evolved for 10 generations. 

4.2 Improvement by interactive evolutionary 

computation 

The positive effect of the interactive evolutionary computation 

is shown in Fig. 10. The average score of individuals (versions of 

the level generator) is below 3 at the first generation and 

increases to 3.5 after 10 generations of evolution. It means that 

the final evolved level generators fit players better than the 

starting ones. 

 

Fig. 10 average scores of individuals over generations 

 

Table 2 shows the best three individuals found during the 

evolutionary process. The gene values correspond to the ratio of 

Block, Enemy, Coin, Cannon, and Huge Gap zones, respectively. 

In general, we can find that players (at least the tens of players 

who participate in our experiments) favor Cannon and Coin 

zones. Block and Huge Gaps zones should appear moderately, 

and Enemy zone should appear little. 

Table 2 Best three individuals and corresponding appearing 

rate of zones 

Top three sets PB PE PCo PCa PH 

(5,1,10,5,5) 0.192 0.038 0.385 0.192 0.192 

(5,1,1,10,1) 0.278 0.056 0.056 0.556 0.056 

(5,1,10,10,1) 0.185 0.037 0.37 0.37 0.037 
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4.3 Analysis of the regression model 

Based on the collected user feedbacks, we build the regression 

model as follows: 

s = f(a1, a2, a3, a4, a5) = 4.048＋0.026×a1
2＋ (-0.34)×a1＋

0.007×a2
2 ＋ (-0.114)×a2 ＋ 0.023×a3

2 ＋ (-0.358)×a3 ＋ (-

0.019)×a4
2 ＋ 0.153×a4 ＋ (-0.035)×a5

2 ＋ 0.393×a5 

 (2) 

Fig. 11 shows the relationship between the expected average 

score and the actual average score. As we can see, there is still 

much room for improving the model accuracy. The following are 

some reasons for the inaccuracy. 

(1) There may not be a single model suitable for all players. A 

level generator receiving high scores from a group of players 

may get low scores from another group. 

(2) In our current model we ignore the interaction between 

player's attributes, but the interaction may exist. 

(3) The number of human evaluation for the level generators is 

not enough. Some extreme (very high or very low) scores may 

cause unnecessary but significant impact. 

 

Fig. 11 Relationship between average scores and expected 

average score 

5. Conclusions and Future Work 

In this study we propose an intelligent level generator for the 

Super Mario game. The level generator collects game play 

information from human players, identifies their skill and playing 

tendencies, and generates customized levels accordingly. In the 

customized level, specific zones are selected with different rates, 

and the rates are determined by general user preference and 

target user preference. The general user preference is obtained by 

optimizing users’ feedback scores through interactive 

evolutionary computation, and the target user preference is 

obtained by analyzing the single user’s game play. To save the 

cost and time required by human evaluation, we build a 

regression model based on past data and use it to select potential 

level generators. Although the regression model is not very 

accurate, the level generator still fits players’ tendencies better 

and better. Our level generator was also the winner of the Level 

Generation Track of the Mario AI Competition held in IEEE 

Conference on Computational Intelligence and Games (CIG) in 

2012. 

In this research the most difficult part may be the collection of 

enough human feedbacks for evolution. We try to solve the 

problem by predicting the feedback based on a regression model, 

but the accuracy needs much improvement. We could extend this 

work in the following directions: First, we need to collect data 

more carefully. On one hand, when a level generator receives a 

score deviating largely from the previous ones, we should 

consider disregarding this score. On the other hand, when a level 

generator keeps receiving close scores, we may consider not 

evaluating it any more. Second, we need to build the 

approximation model more accurately. A simple way is to take 

into account the interaction effect between player attributes in 

building the regression model. We can also resort to the literature 

about expensive optimization [Tenne 2010]. Finally, we need 

experiments to compare the interactive evolutionary optimization 

with and without the approximation model to know its effect. 
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