

XXX-X-XXXX-XXXX-X/XX/$XX.00 © 20XX IEEE

Dynamic economic emission dispatch through

evolutionary multiobjective optimization:

An experimental study

Hsuan-Jen Ko

Dept. of Computer Science and

Information Engineering

National Taiwan Normal University

Taipei, Taiwan, R. O. C.

willy9966@gmail.com

Thammarsat Visutarrom

Dept. of Computer Science and

Information Engineering,

National Taiwan Normal University

Taipei, Taiwan, R. O. C.

thammarsat@gmail.com

Tsung-Che Chiang

Dept. of Computer Science and

Information Engineering,

National Taiwan Normal University

Taipei, Taiwan, R. O. C.

tcchiang@ieee.org

<< This paper is included in the Proceedings of IEEE Symposium Series on Computational Intelligence (SSCI), Singapore, 2022. >>

Abstract—This paper addresses the dynamic economic emission dispatch (DEED) problem, which needs to allocate power output

of generation units in a power system to satisfy power demand over consecutive time periods and minimize cost and emissions

simultaneously. We propose a multiobjective evolutionary algorithm to solve the DEED problem. We investigate the effects of the

algorithm components including the repair mechanism, selection mechanism, dynamic resource allocation, and dynamic mutation

through comprehensive experiments on six test cases. We also compare our algorithm with 15 existing algorithms, and our algorithm

shows competitive performance.

Keywords—economic dispatch, emissions, multiobjective, constraint handling, evolutionary algorithm

I. INTRODUCTION

Energy management and environmental protection are important issues nowadays. Many real-world problems start to take
related objectives into consideration. For example, production scheduling problems consider energy consumption and vehicle
routing problems consider pollution emissions. Economic dispatch (ED) is a problem about power allocation in a power
generating system, and the goal is to minimize the generation cost. Economic emission dispatch (EED) extends the ED problem
by considering pollution emissions to meet the concern of environmental protection. In this paper, we deal with the dynamic
economic emission dispatch (DEED) problem, which solves EED problems in consecutive time periods.

In a DEED problem, we are given N generation units. We need to decide the power generated by each unit Pi,t (i = 1, 2, …,
N; t = 1, 2, …, T) so that the total power can satisfy the required power demand in each time period t. Besides, the generation

cost and pollution emissions must be minimized. Technically, the problem can be formulated as (1)(6) [1].

𝑓1: 𝑓𝑐𝑜𝑠𝑡 =∑∑[𝑎𝑖 + 𝑏𝑖𝑃𝑖,𝑡 + 𝑐𝑖𝑃𝑖,𝑡
2 + |𝑑𝑖{sin (𝑒𝑖(𝑃𝑖

𝑚𝑖𝑛 − 𝑃𝑖,𝑡))}|]

𝑁

𝑖=1

𝑇

𝑡=1

 (1)

𝑓2: 𝑓𝑒𝑚𝑖𝑠𝑠𝑖𝑜𝑛 =∑∑[𝛼𝑖 + 𝛽𝑖𝑃𝑖,𝑡 + 𝛾𝑖𝑃𝑖,𝑡
2 + 𝜂𝑖exp (𝛿𝑖𝑃𝑖,𝑡)]

𝑁

𝑖=1

𝑇

𝑡=1

 (2)

Equations (1) and (2) present the two objective functions, the cost and emissions. Values of all variables except Pi,t are known
and static. They could be different in different systems. The DEED problem has three types of constraints. The power limit
constraints are presented in (3).

𝑃𝑖
𝑚𝑖𝑛 ≤ 𝑃𝑖,𝑡 ≤ 𝑃𝑖

𝑚𝑎𝑥 (3)

The power balance constraint (4) presents that in each time period t the total generated power must be equal to the total power
demand PD,t. Here, we follow the Kron’s formula [1] to calculate the power loss L(Pt) by (5). When the model does not consider
power loss, L(Pt) is set by zero.

∑𝑃𝑖,𝑡

𝑁

𝑖=1

= 𝑃𝐷,𝑡 + 𝐿(𝑃𝑡) (4)

𝐿(𝑃𝑡) =∑ ∑ 𝑃𝑖,𝑡𝐵𝑖𝑗𝑃𝑗,𝑡
𝑁

𝑗=1

𝑁

𝑖=1
+∑ 𝑃𝑖,𝑡𝐵0𝑖

𝑁

𝑖=1
+ 𝐵00 (5)

The DEED problem is more realistic than the EED problem by considering different power demand in consecutive time
periods. When the demand changes, the power generation units will adjust their power output. This brings the third type of
constraints in DEED – the ramp rate limit constraints, as shown in (6). These constraints present that the power output of each
generation unit could not change too much at a time. DRi and URi refer to the maximal decrement and increment of power for

generation unit i between two consecutive time periods t1 and t.

𝑃𝑖,𝑡−1 − 𝐷𝑅𝑖 ≤ 𝑃𝑖,𝑡 ≤ 𝑃𝑖,𝑡−1 + 𝑈𝑅𝑖 (6)

The DEED problem is a real-parameter, multiobjective, and constrained optimization problem. In this paper we address this
problem by a decomposition-based multiobjective evolutionary algorithm. Our algorithm is able to find a set of non-dominated
solutions in a single run; in other words, users do not need to try different objective weights and run the algorithm several times
to find a satisfactory solution. We add a repair mechanism to cope with constraints and ensure all solutions are feasible. The
proposed algorithm adaptively allocates computational resource to sub-problems and mutation operators to search more
effectively. Benefits of the algorithm components are verified through comprehensive experiments. The whole algorithm also
shows good performance when comparing with 15 existing algorithms.

The rest of this paper is organized as follows. Section II reviews the literature on DEED. Section III details the proposed
algorithm. Experimental results and discussions are given in Section IV. Section V concludes this research and lists future work.

II. LITERATURE REVIEW

In this section we review the existing works on the DEED problem, particularly those applying evolutionary algorithms and

metaheuristics. Evolutionary algorithms solve problems through an iterative process of generating solutions and selecting good

solutions. Thus, in the first two sub-sections we review the literature by focusing how they generated solutions and how they

selected solutions respectively. Most operators of evolutionary algorithms need parameters, and parameter control is an

important topic. Thus, in the last sub-section we review some parameter control methods in the literature.

A. Solution Generation

Basu [1][2] proposed the earliest studies on the DEED problem. In [1], he solved the DEED problem based on particle swarm
optimization (PSO). PSO generates solutions in a way like birds seeking for foods and moving by considering the difference
between their own positions and local and global best positions. In [2], Basu used NSGA-II [3], which is a well-known
multiobjective evolutionary algorithm. Following the design of NSGA-II, the simulated binary crossover and polynomial
mutation operators [4] were adopted to produce solutions. As another good candidate for solving continuous optimization
problems, differential evolution (DE) was taken as the main algorithm framework by Jiang et al. [5]. They used the classic
rand/1/bin strategy. Mason et al. [6] did some modifications on the PSO operator. First, they added a move-away velocity from
the worst solution; second, they gradually increased the neighborhood size of particles so that exploration is stronger at the
beginning of the search process and exploitation is stronger at the later stage. In MONNDE [7], Mason et al. used a neural
network (NN) to produce solutions. They evolved the topology of networks by genetic algorithm and evolved the weights of
neuron connections by DE. The inputs of the NN are the objective weights and the power demand of current and previous time
periods, and the outputs are the power generated by the generation units.

Since different reproduction operators may have different features and abilities, it is a natural attempt to combine multiple
operators. In [8], Guo et al. adopted group search optimizers (GSO), in which solutions were classified into different roles:
producers, scroungers, and rangers. Producers and rangers moved based on angles and a polar-to-Cartesian coordinate
transformation, while scroungers moved based on the difference between solutions like PSO and DE. Roy and Bhui [9]
hybridized chemical reaction optimization (CRO) and DE. Their algorithm was based on CRO, which had four kinds of operators
to produce solutions. The crossover operators of DE was carried out before applying the CRO operators. Shen et al. [10] applied
DE and selected between rand/1 and best/1 mutation operators based on the population similarity. The rand/1 operator was
applied in a higher probability when the population similarity is lower. Qian et al. [11] combined PSO and DE. To increase the
local search ability, they applied clone selection to pick up good solutions and then applied either DE/rand/1 or DE/best/1
mutation operators to these solutions in equal probability. In addition to combining operators of metaheuristics, mathematical
optimization methods were also tried in the literature. For example. Elaiw et al. [12] used DE or PSO for global search and
sequential quadratic programming (SQP) for local search.

B. Selection and Diversity Control

The DEED problem aims to minimize two objective functions, cost and emissions, simultaneously. Since the two objective
functions might be in conflict, it is necessary to design a proper method to compare and select solutions during the search process.
The simplest method is to aggregate two objective values into one value through weighted summation and then compare solutions
based on the aggregated value [10][11]. By using a set of weight values, an approximation set of Pareto optimal solutions could
be obtained [7]. NSGA-II has been widely used in solving multiobjective optimization problems, and its selection method was
adopted in several studies on DEED [2][13]. Solutions are classified into several fronts by non-dominated sorting and are
compared by their level of non-domination. Solutions of the same level are compared by the crowding distance, which is a
measure of distance between neighboring solutions in the objective space. Some studies modified the dominance relationship [5]
or the distance measure [14]. Zhu et al. [15] proposed to calculate the crowding distance dynamically and control the number of
solutions of each front that can survive to the next generation. In addition to objective aggregation and dominance-based methods,

the third method is through sub-problem decomposition. MOEA/D [16] is a representative decomposition-based algorithm and
was applied by Zhu et al. [17] to solve the DEED problem.

Selection helps the search process to converge, but premature convergence may degrade the solution quality. A simple way
to increase population diversity is carrying out more perturbation onto the solutions, for example, using polynomial mutation
[17] or levy flight operator [18]. Another method is through re-initialization. One example is that Jiang et al. [5] replaced the
worse-half solutions of the current generation by new random solutions. The range of random values of power output was
controlled and usually became smaller gradually during the search process.

C. Parameter Control

Most operators of metaheuristics have parameters, and their values usually have impact on the algorithm performance.
Besides tuning parameter values manually, some algorithms have dynamic or adaptive control mechanisms. Pandit et al. [19]
solved the DEED problem by an improved bacteria foraging algorithm (IBFA), which searches the solution space by imitating
the movement of bacteria. The step size of movement was controlled by a logistic mapping function. In MOHDE-SAT [14], the
authors set the scaling factor (F) of the mutation operator of DE by values that decrease exponentially as the generation number
increases. The authors of [13] adopted a similar strategy to control both F and the crossover rate (CR). Li et al. [20] used the
harmony search (HS), which mimics the improvisation process of musicians. The bandwidth of HS plays the role of step size of
movement in the search space. Li et al. divided the search process into three stages and set different and static values to the
bandwidth in these stages. The values are smaller for later stages. In EFDE [10], the authors set F of DE mutation operator by
random values every time when mutation was carried out. As for the values of CR of crossover, they were set by a weighted sum
of the CR value of the best solution in the population and a prefixed constant value. If the parent solution has worse fitness, it is
more likely that the weight of the CR value of the best solution is higher.

III. PROPOSED ALGORITHM

In this paper, we solve the DEED problem by an algorithm based on MOEA/D-DRA [21], which is a variant of MOEA/D.

To fit the constraints of DEED, we add a repair mechanism to ensure that the solutions are feasible. Moreover, we use multiple

mutation operators and adopt an adaptive control mechanism. We call our algorithm MOEA/D-DRAM (MOEA/D with dynamic

resource allocation and mutation). Algorithm 1 shows the main flow. Details are presented in the following subsections.

Algorithm 1 MOEA/D-DRAM

NP: the number of sub-problems, also the population size

: utility of sub-problems, initially an NP-dimension vector with all 1

B(i): neighborhood of sub-problem i

λ: objective weight vectors of sub-problems
M: mating pool

pr: probability of selection of mutation strategies, initially [0.5, 0.5]

Hres: history for dynamic resource allocation
Hmut: history for adaptive selection of mutation strategies

01 pop = Initialize(NP)
02 for i = 1, …, NP do

03 pop[i] = Repair(pop[i])

04 end for

05 z* = GetReferencePoint(pop)

06 g = 1

07 while the stopping criterion is not met do

08 for j = 1, …, NP do

09 s = SelectSubproblem ()

10 if rand(0, 1) < do

11 M = B(s)

12 else

13 M = {1, 2, …, NP}
14 end if

15 k = SelectMutation(pr)

16 u = Reproduce(pop, s, M, mutation[k])
17 u = Repair(u)

18 pop = Replace(u, pop, M, λ, z*, nr)

19 Hmut = Record(Hmut, k, pop[s], u)
20 end for

21 z* = GetReferencePoint(pop)

22 pr = UpdateProbability(Hmut)
23 Hres = Record(Hres, pop, g)

24 if g mod == 0

25 = UpdateUtility(Hres)
26 end if

27 g = g + 1

28 end while

29 return pop

A. Encoding and Initialization

The DEED problem aims to decide the power output of N generation units in the power system over T periods to satisfy
constraints and minimize cost and emissions. It is natural to encode a solution xj (j = 1, 2, …, NP) as a real vector

[𝑥𝑗,1,1, 𝑥𝑗,2,1, … , 𝑥𝑗,𝑁,𝑇]. For example, a solution is a 120-D real vector if there are five generation units and the number of periods

is 24. Each solution in the initial population is generated randomly by (7), where 𝑃𝑖
𝑚𝑎𝑥 and 𝑃𝑖

𝑚𝑖𝑛 are the power limit of unit i.

𝑥𝑗,𝑖,𝑡 = 𝑃𝑖
𝑚𝑖𝑛 + 𝑟𝑎𝑛𝑑(0, 1) × (𝑃𝑖

𝑚𝑎𝑥 − 𝑃𝑖
𝑚𝑖𝑛), 𝑖 = 1…𝑁, 𝑡 = 1…𝑇 (7)

B. Repair Mechanism

As mentioned in (3)(6), the DEED problem has three types of constraints. Solutions generated during initialization and
reproduction might not satisfy these constraints. Thus, we apply a repair procedure to ensure their feasibility. The steps of
repairing an infeasible solution xj are as follows:

Step 0. Set time period t = 1 and number of trials k = 0.

Step 1. Calculate the lower bound and upper bound values of xj,i,t (i = 1, 2, …, N) by considering the power limit constraints
and ramp rate limit constraints.

Step 2. Check the values of all xj,i,t. If the power output of a unit is not in the feasible range, set it to the closest boundary
value.

Step 3. Deal with the power balance constraint:

Step 3.1. If the power balance constraint is satisfied, go to Step 4.

Step 3.2. If k >= 100, go to Step 5; otherwise, deal with the power balance constraint. (Details are given later.), k = k
+ 1, and go back to Step 1.

Step 4. If t is smaller than T, t = t + 1 and k = 0. Go back to Sep 1. Otherwise, go to Step 5.

Step 5. If the solution is feasible, stop; otherwise, generate a new random solution and go back to Step 0. (In our practice, the
success rate of repairing is almost 100%, and thus infinite looping does not happen.)

In Step 3.2, we need a method to meet the power balance constraint. When the constraint is not satisfied, it means there is a

non-zero difference Vj,t between the demand and the generated power plus loss, i.e. 𝑉𝑗,𝑡 = 𝑃𝐷,𝑡 − (∑ 𝑥𝑗,𝑖,𝑡
𝑁
𝑖=1 + 𝐿(𝑥𝑗)) . (In

practice, we regard a solution as feasible when the absolute value of Vj,t is smaller than 10-5 in Step 3.1.) To meet the constraint,
a simple method is to adjust the power output of a single unit by adding Vj,t. Another method is to average the difference Vj,t over
all units and add the average value to all units. Here, we adopt an extended version called proportional dynamic adjustment
decision variable method (PDAD) from [13]. As the name reveals, the extended version considers the adjustable range of power
output of generation units and distributes the difference to all units proportionally. Technically speaking, the adjustment is
calculated according to (8) and (9).

𝑅𝑖 = (𝑃𝑖
𝑚𝑎𝑥 − 𝑃𝑖

𝑚𝑖𝑛) ∑ (𝑃𝑘
𝑚𝑎𝑥 − 𝑃𝑘

𝑚𝑖𝑛)
𝑁

𝑘=1
⁄ (8)

𝑥𝑗,𝑖,𝑡 = 𝑥𝑗,𝑖,𝑡 + 𝑉𝑗,𝑡 ∙ 𝑅𝑖 (9)

C. Neighborhood and Mating Selection

The core idea of MOEA/D is to solve a multiobjective optimization problem by decomposing the problem into many single-

objective sub-problems. The objective function of each sub-problem is an aggregated form of the original objectives, such as

weighted summation or weighted Tchebycheff functions. Sub-problems are distinguished by the weights of objectives; for

example, one sub-problem aims to minimize 0.3f1 + 0.7f2 and another aims to minimize 0.6f1 + 0.4f2. The DEED problem

considers two objectives, and hence the objective weight vector has two dimensions. Let NP denote the number of sub-problems,

we set the objective weight vector j of the jth (j = 1, 2, …, NP) sub-problem by j = [(j1)/(NP1), 1 –(j1)/(NP1)], which

aims to cover the objective space with even distribution.

Distance between sub-problems j and j is defined by the Euclidean distance between their objective weight vectors j and

j. The neighborhood B(j) of a sub-problem j is the set of Nnb sub-problems that have the smallest distance to j. When we are

producing a new solution for sub-problem j, only solutions of sub-problems in B(j) can participate. This realizes a concept

called mating restriction. In MOEA/D, the mating pool of a sub-problem is defined as its neighborhood in probability and as

the whole population in probability (1). The values of Nnb and will be given in Section IV.

D. Mutation and Crossover

We produce new solutions by classical DE operators. The rand/1 and best/1 mutation operators are presented in (10) and (11),
respectively. The new solution vj produced by either (10) or (11) is called the mutant vector. The parameter F is called the scaling
factor. Solutions xr1, xr2, and xr3 are randomly selected from the mating pool. Among all solutions except the current solution of
the sub-problem, the solution with the best aggregated objective value is selected as xbest.

𝒗𝑗,𝑖,𝑡 = 𝒙𝑟1,𝑖,𝑡 + 𝐹 ∙ (𝒙𝑟2,𝑖,𝑡 − 𝒙𝑟3,𝑖,𝑡) (10)

𝒗𝑗,𝑖,𝑡 = 𝒙𝑏𝑒𝑠𝑡,𝑖,𝑡 + 𝐹 ∙ (𝒙𝑟1,𝑖,𝑡 − 𝒙𝑟2,,𝑖,𝑡) (11)

The mutation operator produces a mutant vector vj, and the crossover operator takes vj and xj (current solution of sub-problem
j) to produce a trial vector uj. Here we use the binomial crossover, as (12) shows. The parameter CR refers to the crossover rate.

𝑢𝑗,𝑖,𝑡 = {
𝑣𝑗,𝑖,𝑡 𝑖𝑓 𝑟𝑎𝑛𝑑(0, 1) < 𝐶𝑅

𝑥𝑗,𝑖,𝑡 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 (12)

To increase population diversity, we further apply the polynomial mutation [22] to the trial vector, as shown in (13) and (14).

The variable ri has a random value in the interval [0, 1], and the value of parameter pm will be given in Section IV.

𝑢𝑗,𝑖,𝑡
′ = 𝑢𝑗,𝑖,𝑡 + (𝑃𝑖

𝑚𝑎𝑥 − 𝑃𝑖
𝑚𝑖𝑛) × 𝛿, if 𝑟𝑎𝑛𝑑(0, 1) < 𝑝𝑚 (13)

𝛿 = {
(2𝑟𝑖)

1 (𝜂+1)⁄ − 1 if 𝑟𝑎𝑛𝑑(0,1) < 0.5

1 − (2(1 − 𝑟𝑖))
1 (𝜂+1)⁄

𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 (14)

E. Fitness Assignment and Environmental Selection

We use the weighted Tchebycheff function to define the objective function of each sub-problem, as shown in (15). In (15), x
refers to a solution, 𝑓𝑚

′ (𝒙) refers to the mth normalized objective value (cost or emissions in DEED), and λj = (λj,1, λj,2) refers to
the objective weight vector. The objective values are normalized since cost and emissions may fall in very different ranges. The
reference point z* is defined by z* = (z1*, z2*), where zk* is the minimal value of the mth normalized objective function over all
solutions in the population. In the normalized 2-D objective space, it is actually (0, 0).

𝑔𝑡𝑒(𝒙|𝝀𝒋, 𝒛
∗) = max

𝑚=1,2
{𝜆𝑗,𝑚 ∙ |𝑓𝑚

′ (𝒙) − 𝑧𝑚
∗ |} , 𝑗 = 1,… , 𝑁𝑃 (15)

To solve a sub-problem j, we apply three operators mentioned in the previous sub-section to produce a new solution u. The

solution u may replace only the solutions of the mating pool of sub-problem j. If 𝑔𝑡𝑒(𝒖′|𝝀𝒌, 𝒛
∗) is smaller than 𝑔𝑡𝑒(𝒙𝒌|𝝀𝒌, 𝒛

∗),

which means that u has better solution quality than xk in terms of the aggregated objective function of sub-problem k, the

solution u will replace solution xk. The solutions of sub-problems in the neighborhood are randomly selected and compared.

To avoid losing diversity, at most nr solutions can be replaced by one new solution. The value of nr will be given in Section IV.

F. Dynamic Resource Allocation (DRA)

In MOEA/D, each sub-problem is solved once in each generation. However, some sub-problems might be easier to solve
than others, and the computational resource could be saved to solve other sub-problems. The core concept of the DRA mechanism
of MOEA/D-DRA is to measure the possibility of improving the solution quality (called utility) of sub-problems and allocate

more computational resource to the sub-problems with higher utility. The utility j of sub-problem j is defined by (16) and (17).

Every generations, the utility of each sub-problem is measured. Let xold denote the solution of sub-problem at generation (g

) and xnew denote the solution at current generation g. The improvement percentage is calculated by (17). If is greater than
0.001, the utility of the sub-problem is set by one; otherwise, it decreases a little bit by (16). In one generation, NP sub-problems
are selected to be solved by 10-tournament in terms of the utility, where NP is the number of sub-problems (and is also the
population size).

𝜋𝑗 = {

1 if ∆𝑗 > 0.001

(0.95 + 0.05 ∙
∆𝑗

0.001
) ∙ 𝜋𝑗 otherwise

 (16)

∆𝑗=
𝑔𝑡𝑒(𝐱𝒋

𝒐𝒍𝒅|𝝀𝒋, 𝒛
∗) − 𝑔𝑡𝑒(𝐱𝒋

𝒏𝒆𝒘|𝝀𝒋, 𝒛
∗)

𝑔𝑡𝑒(𝐱𝒋
𝒐𝒍𝒅|𝝀𝒋, 𝒛

∗)
 (17)

G. Dynamic Selection of Mutation Operators

As mentioned, we use two DE mutation operators, rand/1 and best/1. The rand/1 mutation has better exploration ability,
whereas the best/1 mutation has better exploitation ability. To utilize them appropriately, we adopt an adaptive operator selection
mechanism.

At the end of the gth generation, we calculate the credit of each mutation operator. Let Sk = {sk,1, sk,2, …} denote the set of
sub-problems that use the kth mutation operator to produce the new solution. The credit ck,g of the kth mutation operator at the gth

generation is defined by (18). The accumulated credit qk,g is updated by (19), where is a learning rate.

𝑐𝑘,𝑔 =∑ max {0,
𝑔𝑡𝑒(𝑥𝑗 , 𝝀𝒋, 𝒛

∗) − 𝑔𝑡𝑒(𝑢𝑗
′, 𝝀𝒋, 𝒛

∗)

𝑔𝑡𝑒(𝑥𝑗 , 𝝀𝒋, 𝒛
∗)

}
𝑗𝜖𝑆𝑘

 (18)

𝑞𝑘,𝑔+1 = (1 − 𝛼) × 𝑞𝑘,𝑔 + 𝛼 × 𝑐𝑘,𝑔
(19)

Based on the accumulated credits of mutation operators, we use the probability matching method to decide the probability of
selecting these operators. The probability prk,g+1 of selecting the kth mutation operator at the (g+1) generation is defined in (20).
The parameter prmin is defined to keep the minimal probability of selecting each mutation operator. K refers to the number of
mutation operators and is two in our current algorithm.

𝑝𝑟𝑘,𝑔+1 = 𝑝𝑟𝑚𝑖𝑛 + (1 − 𝐾 × 𝑝𝑟𝑚𝑖𝑛) ×
𝑞𝑘,𝑔+1

∑ 𝑞𝑙,𝑔+1
𝐾
𝑙=1

(20)

IV. EXPERIMENTS AND RESULTS

A. Test Cases

We used six test cases to examine the performance of our algorithm and its components. Model coefficients of these test
cases are public and available from the literature. One of the six models does not include the valve point effect (i.e. di is zero in
the cost function (1)), and two of them do not consider loss (i.e. L(Pt) is zero in the power balance constraint (4)). In all test cases,
the number of time periods (T) is 24. Table I summarizes these test cases.

TABLE I. TEST CASES

Test

case

Data

source

Number of units (N) Valve point

effect?

Loss

considered?

5-U [1] 5 Y Y

6-U [8] 6 N Y
10-U [2] 10 Y Y

15-U [7] 15 Y Y

30-U [9] 30 Y N
40-U [13] 40 Y N

B. Performance Indicators

We solve the DEED problem by a Pareto-based approach. It means that we aim to find the approximation set of the Pareto
optimal solutions. To evaluate a set of solutions, we adopt a popular performance indicator in the field of multiobjective
optimization, the inverted generational distance (IGD). It calculates the average distance from the reference front to the
approximation front, as shown in (21).

𝐼𝐺𝐷(𝑅, 𝐹) =
∑ 𝑑(𝑥, 𝐹)𝑥∈𝑅

|𝑅|
 (21)

The set F denotes the approximation front obtained by an algorithm, and the set R denotes the reference set. Typically, the
reference set is formed by sampling solutions from the true Pareto optimal set. However, the true Pareto optimal front is not
available for the DEED test cases. In our experiments, we ran our MOEA/D-DRAM with one million fitness function evaluations
(simply speaking, one million solutions were produced and evaluated) for twenty times and then collected the net set of non-
dominated solutions as R. When IGD(R, F1) is smaller than IGD(R, F2), we say the approximation set F1 is better than F2.

When we compared the performance of algorithm variants, we ran each algorithm variant to solve each test case for twenty
times and obtain twenty approximation sets. The IGD value of each approximation set was calculated. The average and standard

deviation over twenty IGD values are reported in the tables in the sub-sections DG. We also did the Wilcoxon rank-sum test
with the level of significance 0.05 to check whether the IGD values of the tested algorithms are significantly different. In tables,

the symbol + means that our algorithm significantly outperforms others. The symbols = and refer to the cases of equal and
worse performance, respectively.

Since most existing studies only provided the extreme solutions and/or the best compromise solution, we cannot compare our
algorithm with them in terms of IGD. Therefore, in the last sub-section, we compared algorithms by the extreme solutions and
the best compromise solution. The extreme solutions refer to the solutions with the minimal cost or the minimal emissions. As

for the best compromise solution, we select the solution with the largest j defined in (22). In (23), fm
min and fm

max refer to the
minimal and maximal value of the mth objective function over all solutions in the approximation set, respectively.

𝜇𝑗 =
∑ 𝜇𝑗,𝑚
2
𝑚=1

∑ ∑ 𝜇𝑗,𝑚
2
𝑚=1

𝑁𝑃
𝑗=1

 (22)

𝜇𝑗,𝑚 =

{

1 𝑓𝑚(𝐱𝑗) ≤ 𝑓𝑚

𝑚𝑖𝑛

𝑓𝑚
𝑚𝑎𝑥 − 𝑓𝑚(𝐱𝑗)

𝑓𝑚
𝑚𝑎𝑥 − 𝑓𝑚

𝑚𝑖𝑛
 𝑓𝑚

𝑚𝑖𝑛 < 𝑓𝑚(𝐱𝑗) < 𝑓𝑚
𝑚𝑎𝑥

0 𝑓𝑚(𝐱𝑗) ≥ 𝑓𝑚
𝑚𝑎𝑥

 (23)

C. Parameter Setting

Our algorithm adopts several mechanisms and has several parameters. Table II summarizes the parameters and their purposes.
For the four parameters related to reproduction operators, we set them by typical setting in the literature. For the four parameters
of MOEA/D and DRA, we set them by the setting in the paper of MOEA/D-DRA [21]. As for other parameters, we did some
preliminary tests and set their values accordingly.

TABLE II. PARAMETERS AND VALUES

Origin Parameter Purpose Value

EA
MaxFFE maximum number of FFE 100000

NP population size 100

MOEA/D
 prob. of mating restriction 0.9

Nnb neighborhood size 10

nr number of replaced solutions 1

DRA learning period 10

Reproduction operator

F scaling factor of mutation 0.5

CR crossover rate 0.5

pm rate of polynomial mutation 1/N

 range of polynomial mutation 20

Adaptive mutation
α learning rate 0.5

prmin min. prob. of each mutation 0.1

D. Effects of the Repair Mechanism

There are three types of constraints in DEED, and thus constraint handling is an important task in solving DEED. In this
experiment, we tested three repair mechanisms and compared their performance in terms of (1) successful repair rate and (2) the
IGD of solutions obtained by MOEA/D taking each of them as the repair procedure. The three repair mechanisms are single-
repair (SR) mechanism (adjusting one unit at a time), all-repair (AR) mechanism (adjusting all units), and PDAD mechanism
(adjusting based on range of values). Details of them are described in section III-B.

First, we applied each repair mechanism to repair 5000 random solutions and counted the number of successful trials. Fig. 1
shows the successful rate under maximal number of repairing iterations 10, 25, and 50. If the solution satisfies all constraints
within the maximal number of iterations, that trial is regarded as a success. The x-axis refers to the test cases, and the y-axis
refers to the successful rate.

When the maximal number of iterations is 10, the SR mechanism has higher successful rates than the two others. When the
number of iterations increases to 25, the PDAD mechanism has the highest successful rates. Given 50 iterations, the PDAD can
achieve almost 100% successful rates for all six test cases. In general, it is harder to repair when the problem scale gets larger.
The 15-U test case is particularly hard for AR and PDAD.

Next, we adopted each of the three mechanisms in the repair step in MOEA/D. The maximal number of iterations was set by
50. Here we used the pure MOEA/D. The DRA mechanism and dynamic mutation mechanism were not included. Solutions were
produced by the DE/rand/1/bin strategy and polynomial mutation. Table III presents the IGD results. It is clear that PDAD can
help MOEA/D to obtain the best approximation set of solutions. The algorithm variant using PDAD significantly outperforms
the variant using SR in solving five test cases and outperforms the variant using AR in solving four test cases, respectively. The
reason could be that SR and AR have lower successful repair rates and consume fitness function evaluations without generating
useful solutions. Since the ranges of power limits of all units in the test case 6-U are the same, the two algorithm variants using
AR and PDAD have the same results. In the following experiments, we adopted PDAD as the repair mechanism and set the
maximal number of repairing iterations by 100 to keep high sucessful repair rates.

Fig. 1. The successful rates of three repair mechanisms for six test cases

TABLE III. IGD COMPARISON OF MOEA/D USING THREE REPAIR MECHANISMS

 SR AR PDAD

Test case Avg. Std. Avg. Std. Avg. Std.

5-U 0.07877 0.01366 = 0.08470 0.01726 + 0.07284 0.01330
6-U 0.33790 0.01532 + 0.26933 0.01232 = 0.26933 0.01232

10-U 0.11101 0.00565 + 0.06419 0.00501 + 0.04707 0.00534

15-U 0.28399 0.03952 + 0.16277 0.01230 + 0.14364 0.01145
30-U 0.51606 0.02067 + 0.47529 0.02490 = 0.46785 0.02848

40-U 0.61316 0.02623 + 0.26296 0.00870 + 0.23878 0.00686

+/=/ 5/1/0 4/2/0

E. Effects of the Multiobjective Optimization Mechanism

In this experiment, we compared performance of the decomposition-based approach (MOEA/D) and the dominance-based
approach (NSGA-II) in solving the DEED problems. Table IV presents the IGD values of the two algorithm variants based on
NSGA-II and MOEA/D. MOEA/D significantly outperforms NSGA-II in solving five out of six test cases. Fig. 2 shows the
approximation sets of solutions obtained by the two compared algorithms and the reference sets of solutions. We can find that
NSGA-II gets stuck during moving toward the reference front and spreads the front in an area still far away from the reference
front. In most cases, MOEA/D keeps better converging ability and hence has better solution quality. Performance difference gets
more obvious as the problem scale gets larger. One exception is the test case 6-U, where MOEA/D also gets stuck and NSGA-II
has a better spread.

(a) test case 5-U (b) test case 6-U (c) test case 10-U

(d) test case 15-U (e) test case 30-U (f) test case 40-U

Fig. 2. Solutions obtained by NSGA-II and MOEA/D for six test cases

0

10

20

30

40

50

60

70

80

90

100

5 6 10 15 30 40

su
cc

es
s

ra
te

 (
%

)

Test case

iterations = 10

0

10

20

30

40

50

60

70

80

90

100

5 6 10 15 30 40

su
cc

es
s

ra
te

 (
%

)

Test case

iterations = 25

0

10

20

30

40

50

60

70

80

90

100

5 6 10 15 30 40

su
cc

es
s

ra
te

 (
%

)

Test case

iterations = 50

SR

AR

PDAD

TABLE IV. IGD COMPARISON OF TWO TYPES OF MO SELECTION

 NSGA-II MOEA/D

Test case Avg. Std. Avg. Std.

5-U 0.20054 0.01068 + 0.07284 0.01330

6-U 0.24886 0.00494 0.26933 0.01232

10-U 0.07616 0.00458 + 0.04747 0.00691

15-U 0.25066 0.02506 + 0.14197 0.01392

30-U 0.53718 0.03656 + 0.47031 0.02811

40-U 0.42234 0.02257 + 0.23878 0.00686

+/=/ 5/0/1

F. Effects of Dynamic Resource Allocation

After confirming the positive effect of MOEA/D, in this experiment we examine the effect of the DRA mechanism (Section
III-F). Table V presents the IGD values of the two algorithm variants using MOEA/D and MOEA/D-DRA. MOEA/D-DRA
significantly outperforms MOEA/D in solving five out of six test cases. The core idea of DRA is to distribute computational
resource to sub-problems based on the search progress of them. Here we take the test case 10-U as an example. We counted the
number of times that each sub-problem was solved over twenty runs and show the results in Fig. 4(a). Fig. 4(a) shows that
MOEA/D-DRA solved sub-problems with low and high weight values of the cost objective by more times. Solving these sub-
problems corresponds to searching for solutions around the two ends of the front. More computational resource on these sub-
problems helps to find more solutions around the two ends, as shown in Fig. 3(c).

TABLE V. IGD COMPARISON OF MOEA/D AND MOEA/D-DRA

 MOEA/D MOEA/D-DRA

Test case Avg. Std. Avg. Std.

5-U 0.07284 0.01330 + 0.05902 0.01963
6-U 0.26933 0.01232 + 0.23243 0.00290

10-U 0.04747 0.00691 + 0.03985 0.00440

15-U 0.14197 0.01392 + 0.12597 0.01206
30-U 0.47031 0.02811 + 0.40611 0.03194

40-U 0.23878 0.00686 = 0.24149 0.01253

+/=/ 5/0/1

(a) test case 5-U (b) test case 6-U (c) test case 10-U

(d) test case 15-U (e) test case 30-U (f) test case 40-U

Fig. 3. Solutions obtained by MOEA/D and MOEA/D-DRA for six test cases

 (a) test case 10-U (b) test case 40-U

Fig. 4. The number of times sub-problems are solved over twenty runs

The DRA mechanism does not always lead to better performance. In Fig. 4(b), we see that DRA solved sub-problems that
have the weight value of the cost objective in the interval [0.3, 0.7] by fewer times. These sub-problems correspond to the middle
part of the front. The insufficient computational resource on these sub-problems causes that MOEA/D-DRA does not converge
toward the reference front as well as MOEA/D, as shown in Fig. 3(f).

G. Effects of Mutation Operators and Dynamic Selection

In this experiment, we examine the effects of mutation operators and dynamic selection of operators. We tested four algorithm
variants. Two variants used rand/1 and best/1 mutation operators, respectively; the third variant selected one operator between
rand/1 and best/1 randomly; the last variant used our dynamic selection mechanism (Section III-G). Table VI presents the IGD
values of these four algorithm variants.

TABLE VI. IGD COMPARISON OF MOEA/D-DRA USING DIFFERENT MUTATION STRATEGIES

Test case rand/1 best/1 random dynamic

5-U
Avg. 0.05902 + 0.05613 + 0.05432 + 0.04469

Std. 0.01963 0.01567 0.01717 0.01217

6-U
Avg. 0.23243 + 0.22151 − 0.21751 − 0.22574

Std. 0.00290 0.00199 0.00156 0.00363

10-U
Avg. 0.03985 = 0.04751 + 0.04133 + 0.03747

Std. 0.00440 0.00419 0.00450 0.00367

15-U
Avg. 0.12597 = 0.13387 = 0.12364 = 0.12181

Std. 0.01206 0.02435 0.01338 0.01043

30-U
Avg. 0.40611 + 0.29664 − 0.35208 + 0.32804

Std. 0.03194 0.04490 0.03171 0.02901

40-U
Avg. 0.24149 − 0.26197 = 0.30669 + 0.28199
Std. 0.01253 0.01931 0.01771 0.02233

+/=/ 3/1/2 2/2/2 4/1/1

First, we can see that the algorithm variant using our dynamic selection mechanism performs the best in solving three out of
six test cases. In addition, this variant does not perform the worst in any test case. Each of the other three variants performs the
best in one test case. Using multiple operators either randomly or adaptively is helpful for solving the four small- or medium-
scale test cases. For the test case 30-U, the variant using best/1 mutation performs much better than the variant using rand/1
mutation. In this case, adding rand/1 as the second way of producing new solutions could be useless. Another possible reason for
the ineffectiveness of dynamic selection in solving 30-U and 40-U test cases might be that the search space is very large and
more computational resource is required to identify which mutation operator is more effective to generate good solutions.

H. Comparison with Existing Studies

In the final part of this section, we compare our MOEA/D-DRAM algorithm with those in the literature. We included 15

papers published during 20082021, as summarized in Table VII. We classify them into SO and MO approaches. Papers that
aimed to find a single optimal solution are classified as SO approaches, and papers that aimed to find a set of non-dominated
solutions in every single run are classified as MO approaches.

Here we only focused on three test cases 5-U, 6-U, and 10-U since they were more popular in the literature. (The number of
decision variables of these test cases are 120, 144, and 240, respectively, due to 24 time periods. They are not easy problems as
they may look like.) To compare performance of metaheuristics, the number of fitness function evaluations (FFE) is a quite
important factor. In the literature on DEED, however, there was no consistent setting of FFE for solving these test cases.
Therefore, we estimated the FFE by the population size and the generation number in the literature and listed the FFE in Table
VII. A cell “n/a” means that we did not find information about the FFE. A blank cell means that the objective values of solutions
for the test case were not provided. Among 15 existing papers, only one paper provided solutions of all three test cases.

0

5000

10000

15000

20000

25000

30000

0 0.5 1

C
o

u
n

t

Weight of objective 1 (cost)

10-U

0

5000

10000

15000

20000

25000

30000

0 0.5 1

C
o

u
n

t

Weight of objective 1 (cost)

40-U

TABLE VII. INFORMATION ON BENCHMARK ALGORITHMS

Algorithm
Publication Year

Type Run
Estimated FFE (104)

5-U 6-U 10-U

NSGA-II [2] 2008 MO 20 0.2

IBFA [19] 2012 SO 25 8
GSOMP [8] 2012 MO 50 6

DE-SQP [12] 2013 SO 30 120 120

MAMODE [5] 2013 MO n/a 60 20
MOHDE-SAT [14] 2015 MO 10 5 5

MNSGA-II [15] 2016 MO n/a 2

HCRO [9] 2016 MO 30 5
PSOAWL [6] 2017 SO 10 10

MONNDE [7] 2018 SO 10 n/a

IMOEA/D-CH [17] 2019 MO 30 20 20
EFDE [10] 2019 SO 20 10 40

NEHS [20] 2019 SO 50 5 5 10

PSOCS [11] 2020 SO 25 6 6
ITSA [18] 2021 SO 30 8 8

MOEA/D-DRAM MO 20 5 5 5/10/20

We compare our MOEA/D-DRAM with six algorithms in solving the 5-U test case. The IGD values are presented in Table
VIII, and the solutions are plotted in Fig. 5. Five benchmark algorithms are SO approaches. DE-SQP and PSOCS found solutions
with much smaller cost than other algorithms did, but it should be noted that DE-SQP consumed about twenty times of FFE. The
best compromise solutions of ITSA, EFDE, and NEHS have similar objective values as that of MOEA/D-DRAM does. However,
MOEA/D-DRAM is able to find the a whole set of non-dominated solutions in a single run. MOHDE-SAT is the only benchmark
algorithm of MO type. Although MOHDE-SAT found the best-emission solution with slightly lower emissions than that of
MOEA/D-DRAM, it is not able to find solutions with low cost. In Fig. 5, we can see that all three solutions of MOHDE-SAT
are near the bottom right part of the approximation front of MOEA/D-DRAM. MOHDE-SAT is based on NSGA-II. Its failure
of finding low-cost solutions is consistent with what we found in our experiments on comparing NSGA-II and MOEA/D in
Section IV-E (see Fig. 2(a)).

Four existing algorithms were compared in solving the test case 6-U. MAMODE and GSOMP are MO approaches, and their
best compromise solutions are dominated by the solutions of MOEA/D-DRAM. NEHS is an SO approach. It consumed the same
FFE as that of MOEA/D-DRAM to find a single solution that has similar objective values as those of some solutions in the
approximation front of MOEA/D-DRAM. Checking the three solutions of IMOEA/D-CH, the shapes of front of IMOEA/D-CH
and MOEA/D-DRAM look similar. The solutions of IMOEA/D-CH have better objective values than those of MOEA/D-DRAM
do, but IMOEA/D-CH consumed four times of FFE of MOEA/D-DRAM.

TABLE VIII. SOLUTIONS OF TEST CASE 5-U

Algorithm

(FFE: 104)
Type Objective

Best

Cost
Best Emission Best Compromise

MOHDE-SAT

(5)
MO

fcost 46478 50681 48214

femission 18208 17884 18011

PSOCS
(6)

SO
fcost

 43329
femission

 19934

ITSA

(8)
SO

fcost
 45971

femission
 18370

EFDE

(10)
SO

fcost
 45242

femission
 18417

NEHS
(5)

SO
fcost

 45398
femission

 18392

DE-SQP

(120)
SO

fcost 43161 44450

femission 23080 19616
MOEA/D-DRAM

(5)
MO

fcost 44133.7 51613.1 45523.4

femission 22258.1 17888 18438

TABLE IX. SOLUTIONS OF TEST CASE 6-U

Algorithm

(FFE: 104)
Type Objective

Best

Cost
Best Emission Best Compromise

MAMODE

(60)
MO

fcost
 25912

femission
 5.9795

IMOEA/D-CH
(20)

MO
fcost 25367 26679 25676

femission 6.9218 5.6677 5.9720

NEHS
(5)

SO
fcost

 26295
femission

 5.7276

GSOMP

(6)
MO

fcost
 25924

femission
 6.0041

MOEA/D-DRAM

(5)
MO

fcost 25461.2 26724.5 25750.8

femission 6.9962 5.6878 6.0083

Fig. 5. Solutions of test case 5-U Fig. 6. Solutions of test case 6-U

The test case 10-U was widely studied in the literature. We compared MOEA/D-DRAM with 14 algorithms. Since these
algorithms consumed very different number of FFE, we separated them into three groups based on FFE: a group using 50000 or
fewer FFE, a group using 60000 to 100000 FFE, and a group using 200000 or more FFE. To compare with these three groups of
algorithms, we ran MOEA/D-DRAM using 50000, 100000, and 200000 FFE, respectively.

Table X and Fig. 7 show the results of the group of algorithms using 50000 or fewer FFE. All compared algorithms are MO

approaches. The best compromise solutions of NSGA-II and MNSGA-II are obviously worse than the solutions of other

algorithms. This might be due to that they consumed fewer FFE. The other three algorithms consumed the same FFE. The

results showed that MOEA/D-DRAM not only found solutions of the lowest cost and the lowest emissions, it also found the

approximation front with much wider spread than MOHDE-SAT and HCRO did.

TABLE X. SOLUTION OF TEST CASE 10-U USING 50000 OR FEWER FFE

Algorithm

(FFE: 104)
Type Objective

Best
Cost

Best
Emission

Best
Compromise

NSGA-II

(0.2)
MO

fcost
 2.5226

femission
 3.0994

MNSGA-II

(2)
MO

fcost
 2.5552

femission
 2.9914

MOHDE-SAT
(5)

MO
fcost 2.5082 2.5470 2.5279

femission 3.0146 2.9607 2.9776

HCRO

(5)
MO

fcost 2.4799 2.5201 2.5171

femission 3.2135 2.9846 2.9907
MOEA/D-DRAM

(5)
MO

fcost 2.4796 2.5887 2.5054

femission 3.1948 2.9401 3.0323

Fig. 7. Solutions of test case 10 using 50000 or fewer FFE

Table XI and Fig. 8 show the results of the group using 60000 to 100000 FFE. Note that in this group, only MOEA/D-

DRAM is an MO approach. By spending all FFE on searching for the single best compromise solution, ITSA and NEHS can

find solutions with better objective values than those of MOEA/D-DRAM. Solutions of PSOCS and PSOAWL have similar

objective values as those of MOEA/D-DRAM. The best compromise solution of IBFA has similar objective values as those of

MOEA/D-DRAM, but the extreme solutions of IBFA were dominated by solutions of MOEA/D-DRAM.

17500

18500

19500

20500

21500

22500

23500

42000 44000 46000 48000 50000 52000 54000

E
m

is
si

o
n

Cost

5-U MOHDE-SAT

PSOCS

ITSA

EFDE

NEHS

DE-SQP

MOEA/D-DRAM

5.5

5.7

5.9

6.1

6.3

6.5

6.7

6.9

7.1

25000 25500 26000 26500 27000

E
m

is
si

o
n

Cost

6-U MAMODE

IMOEA/D-CH

NEHS

GSOMP

MOEA/D-DRAM

2.91

2.96

3.01

3.06

3.11

3.16

3.21

3.26

2.46 2.51 2.56

E
m

is
si

o
n

Cost

10-U NSGA-II

MNSGA-II

MOHDE-SAT

HCRO

MOEA/D-DRAM

The results of the last group using 200000 or more FFE are shown in Table XII and Fig. 9. Our MOEA/D-DRAM found

the best-emission solution with the lowest emissions among the three MO algorithms. It also found the best-cost solution with

the second lowest cost among all algorithms. The cost of the best-cost solution is only slightly higher than that of the best-cost

solution of DE-SQP, which consumed six times of FFE as that of MOEA/D-DRAM. DE-SQP can find solutions of low cost,

but its best compromise solution is biased toward cost, not really striking a balance between cost and emissions. The best

compromise solution of EFDE has better objective values than those of solutions of MOEA/D-DRAM. However, EFDE, as an

SO approach, can only find a single solution at a time and took twice FFE as that of MOEA/D-DRAM. MAMODE and

IMOEA/D-CH are MO approaches. Solutions of MAMODE are dominated by solutions of MOEA/D-DRAM. Solutions of

IMOEA/D-CH roughly lie on the approximation front of MOEA/D-DRAM, but the range of their solutions is much smaller

than that of our solutions.

TABLE XI. SOLUTIONS OF TEST CASE 10 USING FFE BETWEEN 60000 AND 100000

Algorithm

(FFE: 104)
Type Objective

Best

Cost

Best

Emission

Best

Compromise

PSOCS

(6)
SO

fcost
 2.5269

femission
 2.9800

ITSA

(8)
SO

fcost
 2.5114

femission
 2.9768

IBFA
(8)

SO
fcost 2.4817 2.6143 2.5171

femission 3.2750 2.9583 2.9904

PSOAWL

(10)
SO

fcost
 2.5269

femission
 2.9800

NEHS

(10)
SO

fcost 2.5335

femission 2.9508

MOEA/D-DRAM

(10)
MO

fcost 2.4712 2.5948 2.5059

femission 3.2228 2.9282 3.0116

TABLE XII. SOLUTIONS OF TEST CASE 10 USING 200000 OR MORE FFE

Algorithm

(FFE: 104)
Type Objective

Best
Cost

Best
Emission

Best
Compromise

MAMODE
(20)

MO
fcost 2.4925 2.5816 2.5141

femission 3.1512 2.9524 3.0274

IMOEA/D-CH

(20)
MO

fcost 2.4791 2.5770 2.5167

femission 3.1096 2.9292 2.9780
MONNDE

(n/a)
SO

fcost
 2.5579

femission
 2.9522

EFDE
(40)

SO
fcost

 2.5327
femission

 2.9499

DE-SQP

(120)
SO

fcost 2.4659 2.4688

femission 3.2405 3.1564
MOEA/D-DRAM

(20)
MO

fcost 2.4674 2.5910 2.4958

femission 3.2507 2.9221 3.0317

Fig. 8. Solutions of test case 10 using FFE between 60000 and 100000 Fig. 9. Solutions of test case 10 using 200000 or more FFE

2.91

2.96

3.01

3.06

3.11

3.16

3.21

3.26

2.46 2.51 2.56 2.61

E
m

is
si

o
n

Cost

10-U
PSOCS

ITSA

IBFA

PSOAWL

NEHS

MOEA/D-DRAM

2.91

2.96

3.01

3.06

3.11

3.16

3.21

3.26

2.46 2.51 2.56

E
m

is
si

o
n

Cost

10-U MAMODE

IMOEA/D-CH

MONNDE

EFDE

DE-SQP

MOEA/D-DRAM

V. CONCLUSIONS AND FUTURE WORK

In this paper we addressed the DEED problem through evolutionary multiobjective optimization. The DEED problem has

three features: (1) it is a real-parameter optimization problem; (2) it has three types of constraints; (3) it has two objective

functions. We used DE operators and proposed a dynamic mutation selection mechanism to generate solutions. We adopted a

repair mechanism to make solutions satisfy all constraints with a high successful rate. The above mechanisms were integrated

into the MOEA/D-DRA framework to effectively seek for the set of solutions that are non-dominated in terms of cost and

emissions. Users can then observe the trade-off between the objectives and select the desired solution. Effects of the core

components of our algorithm were examined through testing on six test cases and evaluating by a multiobjective indicator (IGD)

and visualization. This was rarely done in the DEED literature. Experimental results confirmed positive impact of these

components on algorithm performance. Finally, we compared our algorithm with 15 algorithms. When comparing with single-

objective algorithms, our algorithm can find comparable solutions as well as a set of trade-off solutions in a single run; when

comparing with multiobjective algorithms, our algorithm often found solutions with better convergence and distribution.

Although our algorithm works as a successful integration of several effective components, it is accompanied with many

parameters. In our future work, the first task is to examine the impact of parameter setting and to provide some guidelines of

parameter setting. According to the experimental results, our algorithm did not always perform well. For example, MOEA/D

performed worse than NSGA-II in solving the 6-U test case, and DRA did not improve the performance in solving the 40-U

test case. The second task is to do more investigation and fix these conditions. One more research direction is to apply our

algorithm to solve complex DEED problems, such as those including wind energy [23] or electric vehicles [24].

ACKNOWLDGEMENT

This research is supported by the Ministry of Science and Technology, Taiwan, R.O.C. under Grant no. 110-2221-E-003-
017.

REFERENCES

[1] M. Basu, “Particle swarm optimization based goal-attainment method for dynamic economic dispatch problem,” Electric Power Components and Systems,
vol. 34, pp. 10151025, 2006.

[2] M. Basu, “Dynamic economic emission dispatch using nondominated sorting genetic algorithm-II,” International Journal of Electrical Power & Energy
Systems, vol. 30, pp. 140149, 2008.

[3] K. Deb, A. Pratap, S. Agarwal, and T. Meyarivan, “A feast and elitist multi-boective genetic algorithm: NSGA-II,” IEEE Transactions on Evolutionary
Computation, vol. 6, no. 2, pp. 182197, 2002. [NSGA-II]

[4] K. Deb and R. B. Agrawal, “Simulated binary crossover for continuous searchspace,” Complex Systems, vol. 9, no. 2, pp. 115148, 1995.

[5] X. Jiang, J. Zhou, H. Wang, and Y. Zhang, “Dynamic environmental economic dispatch using multiobjective differential evolution algorithm with
expanded double selection and adaptive random restart,” International Journal of Electrical Power & Energy Systems, vol. 49, pp. 399–407, 2013.
[MAMODE]

[6] K. Mason, J. Duggan, and E. Howley, “Multi-objective dynamic economic emission dispatch using particle swarm optimisation variants,”
Neurocomputing, vol. 270, pp. 188–197, 2017. [PSO-AWL/PSO-GIDN]

[7] K. Mason, J. Duggan, and E. Howley, “A multi-objective neural network trained with differential evolution for dynamic economic emission dispatch,”
Electrical Power and Energy Systems, vol. 100, pp. 201–221, 2018. [MONNDE]

[8] C. X. Guo, J. P. Zhan, and Q. H. Wu, “Dynamic economic emission dispatch based on group search optimizer with multiple producers,” Electric Power
Systems Research, vol. 86, pp. 8–16, 2012. [GSOMP]

[9] P. K. Roy and S. Bhui, “A multi-objective hybrid evolutionary algorithm for dynamic economic emission load dispatch,” International Transactions on
Electrical Energy Systems, vol. 26, pp. 49–78, 2016. [HCRO]

[10] X. Shen, D. Zou , N. Duan, and Q. Zhang, “An efficient fitness-based differential evolution algorithm and a constraint handling technique for dynamic
economic emission dispatch,” Energy, vol. 186, 2019. [EFDE]

[11] S. Qian, H. Wu, and G. Xu, “An improved particle swarm optimization with clone selection principle for dynamic economic emission dispatch,” Soft
Computing, vol. 24, pp. 15249–15271, 2020. [PSOCS]

[12] A. M. Elaiw, X. Xia, and A. M. Shehata, “Hybrid DE-SQP and hybrid PSO-SQP methods for solving dynamic economic emission dispatch problem with
value-point effects,” Electric Power Systems Research, vol. 103, pp. 192–200, 2013. [SQP]

[13] B. Qiao, J. Liu, and X. Hao, “A multi-objective differential evolution algorithm and a constraint handling mechanism based on variables proportion for
dynamic economic emission dispatch problems,” Applied Soft Computing, vol. 108, 2021. [NSDESa_LS-PDAD]

[14] H. Zhang, D. Yue, X. Xie, S. Hu, and S. Weng, “Multi-elite guide hybrid differential evolution with simulated annealing technique for dynamic economic
emission dispatch,” Applied Soft Computing, vol. 34, pp. 312–323, 2015. [MOHDE-SAT]

[15] Z. Zhu, J. Wang, and M. H. Baloch, “Dynamic economic emission dispatch using modified NSGA-II,” International Transactions on Electrical Energy
Systems, vol. 26, pp. 2684–2698, 2016. [MNSGA-II]

[16] H. Li and Q. Zhang, “Multiobjective Optimization Problems With Complicated Pareto Sets, MOEA/D and NSGA-II,” IEEE Transactions on Evolutionary
Computation, vol. 13, no. 2, pp. 284–302, 2009. [MOEA/D-DE]

[17] Y. Zhu, B. Qiao, Y. Dong, B. Qu, and D. Wu, “Multiobjective dynamic economic emission dispatch using evolutionary algorithm based on
decomposition,” IEEJ Transactions on Electrical and Electronic Engineering, vol. 14, pp. 1323–1333, 2019. [IMOEA/D-CH]

[18] L. Li, Z. Liu, M. Tseng, S. Zheng, and M. K. Lim, “Improved tunicate swarm algorithm: solving the dynamic economic emission dispatch problems,”
Applied Soft Computing, vol. 108, 2021. [ITSA]

[19] N. Pandit, A. Tripathi, S. Tapaswi, and M. Pandit, “An improved bacterial foraging algorithm for combined static/dynamic,” Applied Soft Computing,
vol. 12, pp. 3500–3513, 2012. [IBFA]

[20] Z. Li, D. Zou, and Z. Kong, “A harmony search variant and a useful constraint handling method for the dynamic economic emission dispatch problems
considering transmission loss,” Engineering Applications of Artificial Intelligence, vol. 84, pp. 18–40, 2019. [NEHS]

[21] Q. Zhang, W. Liu, and H. Li, “The performance of a new version of MOEA/D on CEC09 unconstrained MOP test instances,” IEEE Congress on
Evolutionary Computation, pp. 203–208, 2009. [MOEA/D-DRA]

[22] K. Deb and M. Goyal, “A combined genetic adaptive search (GeneAS) for engineering design,” Journal of Computer Science and Informatics, vol. 26,
pp. 30–45, 1996.

[23] L.-L. Li, Q. Shen, M.-L. Tseng, and S. Luo, “Power system hybrid dynamic economic emission dispatch with wind energy based on improved sailfish
algorithm,” Journal of Cleaner Production, vol. 316, 2021.

[24] H. Liang, Y. Liu, F. Li, and Y. Shen, “Dynamic economic/emission dispatch including PEVs for peak shaving and valley filling,” IEEE Transac

[25] tions on Industrial Electronics, vol. 66, no. 4, pp. 2880–2890, 2018.

