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Abstract—Differential evolution (DE) is a promising algorithm for continuous optimization. Its two 

parameters, CR and F, have great effect on the algorithm performance. In recent years many DE algorithms 

with parameter control mechanisms were proposed. In this paper we propose a taxonomy to classify these 

algorithms according to the number of candidate parameter values, the number of parameter values used in a 

single generation, and the source of considered information. We classify twenty-three recent studies into nine 

categories and review their design features. Two types of relationships between these algorithms and several 

research directions are also summarized. 

Index Terms—differential evolution, parameter control, adaptive, self-adaptive, classification, taxonomy 

I. INTRODUCTION 

Differential evolution (DE) [1][2] has been recognized as a promising algorithm for continuous optimization in the 

last decade. It is featured by using the difference between individuals in the mutation operator and the local selection by 
comparing one parent and its offspring to determine the survivor.  

TABLE I.  PSEUDO CODE OF DIFFERENTIAL EVOLUTION 

NP: population size     G: generation number   D: problem dimension   CR: crossover rate        F: scaling factor 

 

Initialize the population. G = 1. 

while the stopping criterion is not met 

   for i = 1 to NP   // for each target vector  Xi,G = {x1,i,G, x2,i,G, … xD,i,G} 

      // mutation: generate a donor vector Vi, G = {v1,i,G, v2,i,G, … vD,i,G} 

      Vi,G = Xri1,G + F(Xri2,G – Xri3,G) 

      // crossover: generate a trial vector Ui,G = {u1,i,G, u2,i,G, … uD,i,G} 

      for j = 1 to D 

         
otherwise
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      end for 

      // selection: accept the trial vector if not worse than the target vector 

     
otherwise
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   end for 

   G = G + 1 

end while 
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Table I gives the pseudo code of a typical DE algorithm. In each generation G, every individual serves as the target 

vector. In the mutation step, several non-identical individuals are chosen randomly. One individual is the base vector 

and then adds an amplified difference vector to be a donor vector. Next, a trial vector is produced by taking the gene 

values from the target vector or the donor vector probabilistically. Finally, the trial vector replaces the target vector if 

the former is not worse than the latter. The DE in Table I is denoted by rnd/1/bin. Common variants include best/1/bin, 

rnd/2/bin, and so on [2]. 

DE has three parameters, NP, CR, and F. Experimental results have shown that their values have great effect on the 

convergence speed and solution quality. Setting parameter values for evolutionary algorithms is carried out in two ways: 

the parameter tuning method tests different values and runs the algorithm with the best (and fixed) value; the 

parameter control method adjusts the parameter values during the execution of algorithm. Although many advices were 

given for parameter tuning, it is still a time-consuming process to find proper parameter values. Moreover, we may 

need different parameter values for different stages in the evolution process, different individuals (search regions), and 

even different objectives (in the case of multiobjective optimization). 

Eiben et al. [3] classified parameter control methods into three groups: deterministic, adaptive, and self-adaptive. 

The difference between the first two methods is in that the adaptive method considers feedback information during the 

evolution process. The self-adaptive method is featured by encoding parameters on the chromosomes and evolving the 

parameters in the same way of evolving the decision variables. After reviewing recent DE algorithms with parameter 

control, we found that most algorithms fall into the same group (the adaptive group) according to the classification 

scheme in [3]. This motivates us to propose a new taxonomy and notation to identify the features of these parameter 

control methods and to know the similarity and difference between them. 

The rest of this paper is organized as follows. In Section II we describe the proposed taxonomy and classification 

criteria. Section III reviews nine categories of parameter control mechanisms in twenty-three DE studies. Section IV 

summarizes relationships of algorithm design and performance comparison among these algorithms. Conclusions and 

research directions are given in Section V. 

II. PROPOSED TAXONOMY 

Although some studies addressed the dynamic control of the population size, most studies fixed the population size 

and focused on the control of the other two parameters, CR and F. In this paper we only consider the studies of DE that 

control the values of CR and F. We propose to distinguish the parameter control mechanisms by three aspects: (1) the 

number of candidate parameter values, (2) the number of parameter values used in a single generation, and (3) the 

source of considered information. The different designs and corresponding notations in the proposed taxonomy are 

detailed in the following. 

1) The number of candidate parameter values: Almost all existing parameter control mechanisms allow any value in 
a predefined range, e.g. [0, 1], for CR. In our survey, only one study selected from a finite set of values for parameters. 
We denote these two kinds of strategies by con (continuous) and dis (discrete). 

2) The number of parameter values used in a single generation: In this aspect, we identify four kinds of strategies in 
the literature. 

a) 1: This is the simplest strategy. All offspring are produced by the same parameter value in a generation. 

b) mul (multiple): This kind of strategy draws a random value from a specified distribution every time an 

offspring is produced. For example, it may draw a value for the parameter F from a normal distribution to generate 

one offspring and draw another value for another offspring. 

c) idv (individual): This could be the most popular strategy. It associates with each individual one parameter 

value. When an individual i serves as the target vector, its Fi and CRi will be used to generate the donor and trial 

vectors. 

d) var (variable): It is like the idv strategy, but the parameter values are associated with the decision variables, not 

with individuals. We found one study taking this kind of strategy. 
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3) The source of considered information: When the parameter value is adjusted, information can be collected from 
different sources. We classify them into four groups. 

a) rnd (random): This kind of strategy selects parameter values from random distributions such as the uniform 

distribution, normal distribution, and Cauchy distribution. 

b) pop (population): It considers the statistics collected from the entire population. Common statistics include the 

population diversity and the successful rate of generating better offspring. 

c) par (parent): This strategy is used together with the idv strategy in the second aspect. It adjusts the parameter 

values according to the parameter values of the selected parents for generating the donor and trial vectors. 

d) idv (individual): This strategy is also used together with the idv strategy in the second aspect. It adjusts the 

parameter values based on the records of historical values of the target vector. 

In the literature of DE, a standard three-field notation has been commonly adopted to describe the mutation strategy. 

For example, the rnd/1/bin strategy refers to that (1) the base vector is selected randomly, (2) one difference vector is 

used in generating a donor vector, and (3) the binomial crossover is used to produce the trial vector. Similarly, we 

propose a three-field notation to give a simple and pertinent tag to the parameter control mechanisms. For example, the 

con/mul/pop strategy refers to that (1) parameter values are from a continuous range, (2) multiple values are used in a 

single generation, and (3) parameter values are adjusted based on the statistics collected from the entire population.  

III. LITERATURE REVIEW 

We classify the literature on the parameter control of DE into nine groups. For each group, we will give some 
examples and describe their core design ideas. 

A. con/1/pop 

Ali and Tőrn [4] proposed the DEPD, in which the value of CR is fixed and the value of F is adjusted by (1). Fmin 

denotes the minimum value of F, and fmax/fmin denotes the maximum/minimum fitness value in the population. When 

the difference between the fitness values of the best and the worst individuals decreases, the value of F increases. It 

follows the common idea that a larger perturbation is made when the population diversity gets lower. 
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Liu and Lampinen proposed to use two fuzzy logic controllers (FLCs) to adjust CR and F in their FADE [5]. The 

inputs of the FLC are the change of values of decision variables (d1) and the change of objective values (d2) between 

two generations. When d1 is small, CR and F increase as d2 increases. When d2 is medium or large, CR and F increase 

as d1 increases. 

The ADEA [6] was proposed by Qian and Li to deal with multiobjective optimization problems. It follows the well-

known NSGA-II [7] to separate the individuals into different fronts and calculates a similar crowding measure. The 

value of F is adjusted according to how well the individuals are evenly distributed on the fronts and how many 

individuals are non-dominated solutions. The detailed equation is expressed in (2). Assume that there are k fronts and 

there are mj individuals in the j
th
 front. The symbol dij is the crowding measure of an individual i in the j

th
 front, 

j
d is the 

average crowding measure in the j
th
 front, d is the average crowding measure of all individuals, and df is the Euclidean 

distance between the two boundary solutions. |P| and |Q| denote the number of non-dominated solutions and the 

population size, respectively. Generally speaking, the value of F increases when the individuals are not evenly 

distributed and when the number of non-dominated solutions is small. 
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B. con/mul/rnd 

Yang et al. [8] focused on the control of the parameter F. They noticed that the normal distribution N(0, 1) is likely 

to produce small values and the Cauchy distribution has a greater probability of producing larger values. Thus, their 

NSDE adjusts the value of F by the two distributions in equal probability, as shown in (3). The mean and standard 

deviation of the normal distribution were taken after determining an empirical value for F. In (3),  is a Cauchy 

random variable with scale parameter t = 1. The value of F changes every time a donor vector is produced. 
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C. con/mul/pop 

The con/mul/pop strategy is extended from the con/mul/rnd strategy. It also draws the values of CR and F from 

specified random distributions. However, it does not use fixed values for the distribution parameters (e.g. the mean of 

the normal distribution). Instead, it adjusts the values of the distribution parameters based on the population statistics. 

The SaDE [9][10] has adaptive control of the mutation strategies and the value of CR. Given K mutation strategies, 

the algorithm calculates the probability pk,g of choosing a strategy k at generation g following (4) and (5). Simply 

speaking, it counts the number of successful trials nsk,j and the number of failed trials nfk,j of producing better offspring 

for each strategy k every LP generations. Then, the successful rate Sk,g is calculated, and each strategy is selected in a 

probability proportional to its successful rate. The additional parameter LP determines the duration of collecting 

statistics. Another additional parameter  was introduced to give small chances to the strategies with zero successful 

rates. 
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Control of the parameter CR is done in a similar way. The values of CR that lead to better offspring are recorded for 

each mutation strategy k. Then, the median CRmk of these successful CR values is taken as the mean of the normal 

distribution when the mutation strategy k is chosen. 
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Yang et al. [11] proposed the SaNSDE, which was derived from SaDE and NSDE. It uses the same mechanism of 

selecting among multiple mutation strategies as SaDE does. As for CR, it is like SaDE and considers more detailed 

information when calculating CRm. In addition to recording the successful CR values in the set CRrec, it also records the 

improvement on fitness of these successful CR values in frec. The value of CRm is the weighted average of all 

successful CR values, where the weight wj is the portion of the total improvement contributed by the j
th
 CR value. 
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To control the value of F, SaNSDE takes the dual-distribution design from NSDE. It is enhanced by adapting the 

probability fp of selecting between the normal and Cauchy distributions based on the successful rate of these two 

distributions. Another small difference is that the standard deviation of the normal distribution was changed from 0.5 to 

0.3. 
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The JADE proposed by Zhang and Sanderson [12] is another good representative of the con/mul/pop strategy. It 

adjusts the values of CR and F in the way similar to the method of controlling CR in SaDE. One difference is that 

JADE updates the distribution parameters progressively at each generation. As in (11), the new mean CR of the normal 

distribution in (10) is the weighted sum of the current mean and the arithmetic average of the successful CR values in 

CRrec. The method of adjusting F is the same except that the normal distribution and arithmetic mean are replaced by 

the Cauchy distribution and Lehmer mean, as described in (12)-(14). The use of the Cauchy distribution and the 

Lehmer mean is to place more chances on larger F values. The JADE2 [13] followed JADE and used the same 

parameter control methods. It dealt with multiobjective optimization problems. 
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Gong et al. [14] followed JADE and proposed the SaJADE. It utilizes the idea in JADE to control the selection 

among K mutation strategies. In (16) s is set by 0.5 and the standard deviation is set by 1/6 at the first generation (g = 1) 

to ensure that i is generated in the range [0, 1). After starting the collection of successful mutation strategies in Srec, the 

standard deviation is set smaller (0.1) to emphasize the adaptation effect. 
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D. con/idv/rnd 

Similar to the con/mul/rnd strategy, the con/idv/rnd strategy adjusts the parameter values based on specified 

probability distributions such as uniform distribution. The difference is in that the con/idv/rnd strategy records the 

parameter values on the individuals so that the selection procedure of the evolution process can help to identify good 

parameter values. 

The jDE proposed by Brest et al. [15] leads the studies in this category. Before an offspring is produced for a target 

vector i at generation (g+1), there is a probability (1 and 2 in (18) and (19)) of changing the values of F and CR to a 

random value within the predetermined range. In their experiments, the authors proposed to give a small probability of 

change and set 1 and 2 both by 0.1. 
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Later, Brest et al. proposed jDE-2 [16] by integrating the idea of multiple mutation strategies in SaDE into jDE. It 

records the values of F and CR for each of the three adopted mutation strategies. In addition, jDE-2 replaces the k worst 

individuals at every l generation with parameter values randomly selected from the feasible range. This may speed up 

the adaptation of parameter values. 

Soliman and Bui [17] proposed a control strategy like that in jDE but added more randomness in the control of F. 

Instead of controlling the value of F directly, their strategy samples the F value based on the Cauchy distribution and 

adjusts the scale parameter of the Cauchy distribution in a small probability (1). The value of CR is controlled in the 

same way as in jDE. Besides 1 and 2, three more parameters, , l, and  u are required. The authors did not name their 

strategy, and in the following we call it CSDE. 
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The strategy in MOSADE [18] can be viewed as a special case of that in jDE with 1 and 2 set by 1. In other words, 

the values of F and CR are re-sampled at every generation. 

E. con/idv/pop 

The con/idv/pop strategy records parameter values on the individuals and adjusts the values using the information on 

the target vector as well as the whole population. The RADE [19] calculates the accumulated fitness improvement fi 

for each individual i every  generations. The individuals whose fi is among the top 1/% keep their F values in the 

next  generations. The remaining individuals re-sample a random value within the feasible range [Fmin, Fmax]. The 

values of  and  were set by 5 and 2, respectively. The value of CR was a constant depending on the problem 

dimension. 
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Jia et al. [20] proposed the ISADE as an extension of the jDE. When the parameter value on an individual Xi is to be 

changed, ISADE has two options. If the fitness f(Xi) is smaller than the average fitness favg over the whole population, 

the value changes toward Fmin. The better the individual is, the smaller the value of F is. The rationale behind is to 

search locally for good individuals. If the fitness is equal to or greater than the average fitness, a random value within 

the specified range is chosen. The value of CR is controlled in exactly the same way, and thus the equation is omitted 

here. 
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F. con/idv/par 

The con/idv/par strategy evolves the parameter on the individuals in the same way as it evolves the decision 

variables. In other words, the parameter values are adjusted based on the information on the parents. This category 

matches the “self-adaptive” category in Eiben et al. [3]. (In fact, most of the so-called self-adaptive DE algorithms in 

the literature fall into the “adaptive” category according to their taxonomy. Our taxonomy helps to further identify their 

features.)  



7 

 

The SPDE by Abbass [21] adjusts the value of CR of a target vector i according to the values of CR of the three 
randomly selected parents r1, r2, and r3, as (24) defines. 

)()1,0(
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CRCRNCRCR                                                                         (24) 

Omran et al. [22] proposed the SDE, which adjusted the value of F by (25). Note that the individuals used to adjust 
the F value are different from the individuals used to adjust the decision variables. 
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Instead of using the normal distribution in the SPDE and SDE, the DESAP [23]  uses the value of scaling factor F in 

the adjustment of CR in (28). In the experiments, the value of F was fixed as one. 
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Zamuda et al. [24] proposed the DEMOwSA. The new value of CR is the product of a random variable e
N(0, 1)

 and 

the average CR over the target vector and three parents. The value of the extra parameter  was set by 1/(8 D2 ), D 

being the problem dimension. The value of F is adjusted in the same way, and the equation is omitted. 
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G. con/idv/idv 

As the name indicates, the con/idv/idv strategy adjusts the parameter values recorded on the individual based on the 

individual’s own information. The SFLSDE [25] is a descendant of the jDE. It is different from the jDE in that two 

local searches are carried out probabilistically to search for the proper F value for the best individual in the population. 

(The control mechanism for F of the remaining individuals and the control mechanism for CR of all individuals are 

identical to those of the jDE.) Given the best individual and its current F value, the local search procedure repeats 

generating new F values, using these F values to produce new offspring individuals, and accepting the F value that 

leads to the best individual. In (28), the golden section search and hill climbing search use different neighborhood 

functions to generate the new F values. Details are referred to [25]. 
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Pan et al. [26] proposed the SspDE, in which each individual i has its own lists CRLi, FLi, and SLi, recording CR 

values, F values, and mutation strategies, respectively. Each of these lists consists of LP elements and is updated every 

LP generations. In each generation each individual serves as the target vector and uses its own CR, F, and mutation 

strategy to produce an offspring. If the offspring is not worse, record the CR, F, and mutation strategy into another three 

lists wCRLi (w for winning), wFLi, and wSLi, respectively. Every LP generations, the CRLi list is refilled by the values 

in wCRLi in probability RP and by random values in probability (1 – RP). The FLi and SLi lists are updated in the same 

way. LP and RP are two additional parameters. 

H. con/var/pop 

The con/var/pop strategy is like the con/idv/pop strategy, but it associates parameter values with decision variables 

instead of individuals. The APDE [27] is an example. Based on a theoretical result [28] of the relation between the 

variance of values of decision variables Var(x
i
) and the values of CRi and Fi, APDE adjusts Fi values in even 

generations by (29) and adjusts CRi values in odd generations by (30). In (29) and (30), N denotes the population size, 

and ci is calculated based on Var(x
i
) and the variance of the objective values Var(fj) among the population in the 
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previous (g) and current (g+1) generations. The APDE deals with multiobjective optimization, and Var(f(g)) is the 

average of Var(fj(g)) over M objectives. In (31),  is an additional parameter and was set by 1.25 in the APDE. 
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I. dis/mul/pop 

Different from the above strategies, the dis/mul/pop is featured by a finite set of candidate parameter values. DEBR 

[29] pre-specified nine combinations of parameter values by CR = {0, 0.5, 1} and F = {0.5, 0.8, 1}. Let nh denote the 

number of successful trials of generating better offspring by a combination h in previous generations, the probability qh 

of selecting h is defined by (32). H is the total number of combinations. In general, the probability is proportional to the 

number of successes. The additional parameter n0 is introduced to avoid dramatic variation of the probability. If any 

probability qh decreases below a given limit , it will be reset to the starting value 1/H. 
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IV. RELATIONSHIP 

In last two sections we propose a taxonomy to identify the features of parameter control mechanisms of DE and 

review state-of-the-art studies in each category. The categorization helps to see the similarities and differences between 

the existing control mechanisms. In this section we summarize two relationships between these algorithms. 

The first is the design relationship, depicted in Fig. 1. In Fig. 1, A  B means that algorithm B is derived from 

algorithm A. For example, SaNSDE combines the idea of different statistical distributions in NSDE and the idea of 

adaptive probability in SaDE. As more new algorithms will be developed based on the existing ones, the design 

relationship will keep growing. This relationship could help researchers to track how an algorithm evolved in the 

history. 

Another relationship is constructed by a summary of the performance comparison results in the reviewed studies. 

When an algorithm A claimed that it was superior to algorithm B, we put an arrow as A  B in Fig. 2. Perhaps due to 

the simplicity, jDE is the most popular benchmark algorithm in the literature. Note that the testing functions and 

performance measures in these papers were not necessary identical (although many of them did use the same functions 

and measures). Another note is that performance difference between these algorithms is not totally determined by the 

parameter control mechanism. For example, the good performance of JADE is partially contributed by an external 

archive and the modified mutation strategy. On one hand, this relationship helps us to find out competitive benchmark 

algorithms for performance comparison. On the other hand, it reveals that more numerical studies are required to 

complete this relationship diagram. Neri and Tirronen [30] conducted an experimental analysis on eight advanced DE 
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including jDE, SaDE, and SFLSDE. They reported the good performance of jDE and SFLSDE. The analysis pointed 

out that the original DE employs too much a deterministic search logic and may suffer from the stagnation condition. 

The restricted randomization in the jDE enriches the set of moves, and the local search in the SFLSDE increases the 

exploitative pressure within the explorative DE structure. Researches like this experimental study are very helpful for 

the design of parameter control mechanisms. 

 

 

 

Fig. 1.  Design relationship 

 

 

Fig. 2.  Performance comparison relationship 

V. CONCLUSIONS AND RESEARCH DIRECTIONS 

In this study we reviewed literature on DE algorithms with parameter control and proposed a taxonomy and notation 

to classify these methods. These algorithms are different from one another mainly in the number of parameter values 

used in a single generation (1, mul, idv, and var) and the source of considered information (rnd, pop, par, and idv). Our 

three-field notation gives a quick and informative tag. Table II presents nine categories of parameter control 

mechanisms and representative algorithms. It also gives the additional parameters, the number of objectives in the 

optimization problems, and brief descriptions. There is still much to investigate. Here we give four directions for future 

research: 

1) Making the algorithm simpler: The motivation to do parameter control is twofold. One is to adapt parameter 
values to different problems, search stages, search regions, etc. to improve algorithm performance. The other is to 
reduce users’ burden on testing and finding the proper parameter setting. The new algorithms achieve better and better 
solution quality, but most of them replace the parameters of DE (i.e. CR and F) with another set of parameters of the 
proposed control mechanisms. For example, the jDE-like algorithms need to define the probability () of random 
changes and the SaDE-like algorithms need to set the learning period (LP). Although the algorithm performance was 
shown to be not sensitive to the values of these newly introduced parameter (e.g. [10][26]), it would be better if we 
can save this task for the users. 

2) Considering problem-oriented information: Various information has been considered for adjusting parameter 
values. In general, the information is either quality-based or diversity-based. A very common quality-based 
information is the (weighted) successful times/rate of producing better offspring. The relative quality of individuals to 
the population is sometimes used. Diversity-based information includes fitness difference between the best and worst 
individuals, variance of values of decision variables, and distribution along the Pareto front. All are search process-
oriented. They measure how well the search process goes. We should consider also problem-oriented information. 
Many useful experiences have been found in the literature on parameter tuning. If we can identify the problem 
characterisitcs such as unimodal/multimodal and separable/non-separable, we can do parameter control more 
strategically. 

3) Adapting with respect to multiple objectives: In our survey, the number of researches on adaptive DE for 
multiobjective optimization is still much fewer than that of the single-objective ones. We have seen algorithms that 
adapt parameter values in the individual-wise (/idv/) and variable-wise (/var/) manners. When multiple objectives 
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are to be minimized, it is likely that different values of CR and F must be used for different objectives. We are looking 
forward to seeing future researches investigating this issue. 

4) Doing parameter control through distributed DE: The /1/ and /idv/ strategies are the two extremes in terms of 
the control granularity. The former takes the whole population to find the good parameter values, and the latter lets 
every individual do by itself. Doing parameter control through several (structured) sub-populations may be a good 
balance. Some promising initial results can be found in [31] and [32]. 
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TABLE II.  PROPOSED TAXONOMY AND EXAMPLES 

Category* Algorithm 

Adjusted 

parameters 

Additional 

parameters** #Obj Brief descriptions  

con/1/pop DEPD 2004 F  SO (1) Fixed CR;  

(2) Increase F when abs(fmax/fmin) decreases. 

 FADE 2005 CR, F membership 

functions 

SO (1) Two fuzzy logic controllers for CR and F, respectively; 

(2) Inputs of the controllers are based on the average genotypic and 

phenotypic distances between two generations. 

 ADEA 2008 F  MO (1) Fixed CR;  

(2) Increase F when the individuals are not evenly distributed and when the 

number of non-dominated solutions is small. 

con/mul/rnd NSDE 2008 F  SO (1) CR~U(0, 1);  

(2) F~N(0.5, 0.5)/Cauchy in equal probability. 

con/mul/pop SaDE 2005/2009 CR, s LP,  SO (1) CR~N(CRm, 0.1), CRm as the median of successful CR values;  

(2) F~N(0.5, 0.3); 

(3) Selection probability of mutation strategies is proportional to the 

successful rate. 

 SaNSDE 2008 CR, F, s LP SO (1) Descendant of NSDE and SaDE;  

(2) CR~N(CRm, 0.1), CRm as the weighted average of successful CR values, 

where weights are the portion of improvement on fitness; 

(3) F~N(0.5, 0.5)/Cauchy with probability depending on the successful rate. 

 JADE 2009 CR, F c SO (1) CR~N(, 0.1),  as the weighted sum of current  and arithmetic mean of 

successful CR values; 

(2) F~C(, 0.1),  as the weighted sum of current  and Lehmer mean of 

successful CR values. 

 JADE2 2008 CR, F c MO (1) Descendant of JADE, using the same parameter control mechanism. 

 SaJADE 2011 CR, F, s c SO (1) Descendant of JADE; 

(2) Selection of mutation strategies by the same mechanism in JADE. 

con/idv/rnd jDE 2006 CR, F 1, 2 SO (1) Change CR by U(0, 1) with probability 1; 

(2) Change F by U(Fmin, Fmax) with probability 2. 

 jDE-2 2006 CR, F, s 1, 2, k, l SO (1) Descendant of jDE, adding multiple mutation strategies; 

(2) Re-initialize the parameter values of the worst k individuals every l 

generations. 

 CSDE 2008 CR, F 1, 2, , l, u SO (1) Change CR by U(0, 1) with probability 1; 

(2) Change F by C(, ) with probability 2,  ~U(l, u). 

 MOSADE 2010 CR, F  MO (1) Descendant of jDE; 

(2) CR~U(0.0, 0.5); 

(3) F~U(0.1, 0.9). 

con/idv/pop RADE 2008 F ,  SO (1) For the individuals whose accumulated fitness improvement is among the 

top 1/% in the population, keep their F values; for the remaining 

individuals, set random values 

(2) Update F values every  generations. 

 ISADE 2009 CR, F 1, 2 SO (1) Descendant of jDE; 

(2) Change the values of CR and F toward the lower bound if the individual’s 
fitness is better than the average fitness over the population.  

con/idv/par SPDE 2002 CR  MO (1) CRi = CRr1 + N(0, 1)(CRr2 – CRr3); 

(2) F~N(0, 1). 

SDE 2005 F  SO (1) CR~N(0.5, 0.15); 

(2) Fi = Fr4 + N(0, 0.5)(Fr5 – Fr6). 

DESAP 2006 CR  SO (1) CRi = CRr1 + F(CRr2 – CRr3); 

(2) Fixed F value. 

DEMOwSA 2007 CR, F  MO (1) CRi = (1/4)(CRi + CRr1 + CRr2 + CRr3) e
N(0, 1); 

(2) Fi = (1/4)(Fi + Fr1 + Fr2 + Fr3) e
N(0, 1). 

con/idv/idv SFLSDE 2009 CR, F 1, 2, 3, 4 SO (1) Descendant of jDE; 

(2) Use the golden section search and hill climbing search probabilistically to 

adjust the F value of the best individual. 

 SspDE 2011 CR, F, s LP, RP SO (1) Each individual has its own lists, CRLi, FLi, and SLi; 

(2) Successful CR, F, and strategy are recorded in wCRLi, wFLi, and wSLi; 

(3) Every LP generations, CRLi, FLi, and SLi are refilled by wCRLi, wFLi, and 

wSLi, respectively; 

(4) Refilled values are taken from the winning lists in probability RP. 

con/var/pop APDE 2004 CR, F  MO (1) Adjust the parameter values to maintain the variances of decision variables 

and average variance of objective values between two generations. 

dis/mul/pop DEBR 2009 CR, F, s n0,  SO (1) Use a prespecified combinations of CR, F, and mutation strategies; 

(2) Select one combination in a probability proportional to the successful rate. 
*Comparing with the classification scheme in [3], the //rnd category matches the deterministic parameter control category, the con/idv/par category matches the 

self-adaptive parameter control category, and the remaining categories match the adaptive parameter control category. 
** The upper bound and lower bound of CR and F values are not listed as additional parameters here. 


