

<< This paper is included in the Proceedings of IEEE International Conference on Industrial Engineering and Engineering

Management (IEEM), Singapore (virtual conference due to COVID-19), Dec. 14-17, 2020.. >>

Abstract – In power systems, economic dispatch (ED) deals with the power allocation of power generation nits to meet the

power demand and minimize the cost. Many metaheuristics have been proposed to solve the ED problem with promising results.

However, the performance of these algorithms might be sensitive to their parameter settings, and parameter tuning requires

considerable effort. In this paper, a reinforcement learning (RL)-based differential evolution (DE) is proposed to solve the ED

problem. We develop an RL mechanism to adaptively set two critical parameters, crossover rate (CR) and scaling factor (F), of

DE. The performance of the proposed RLDE is compared with the canonical DE and several algorithms in the literature using

three test systems. Our algorithm shows good solution quality and strong robustness.

Keywords - Economic dispatch, reinforcement learning, differential evolution.

I. INTRODUCTION

 The economic dispatch (ED) problem is a constrained continuous optimization problem, which is essential for the

efficient operation of power systems. In the ED problem, a power system consists of 𝑁 generating units. The problem aims

at allocating power output 𝑃𝑗 of each unit 𝑗 (𝑗 = 1, … , 𝑁) such that a load demand 𝑃𝐷 is satisfied at the minimum total fuel

cost under some operational constraints. In the literature [1]-[3], the objective of the problem is expressed in two different

forms. Some test cases define the objective function by a convex quadratic function as given in (1), where 𝑎𝑗 , 𝑏𝑗, and 𝑐𝑗 are

the cost coefficients of unit 𝑗. Other test cases use a more accurate objective function that includes a sinusoidal term

representing the valve-point effect as given in (2), where 𝑑𝑗 and 𝑒𝑗 are the coefficients of the valve-point effect. In this

paper, both nonconvex and convex ED test cases are solved. The problem includes two types of constraints: operating

boundary and power balance constraints. Operating boundary constraints limit the power output of each unit 𝑗 to be

between a lower bound 𝑃𝑗
𝑚𝑖𝑛 and an upper bound 𝑃𝑗

𝑚𝑎𝑥, as given in (3). The power balance constraint requires that the

total power output of the system is equal to the load demand 𝑃𝐷, as stated in (4).

𝐹𝑐𝑜𝑠𝑡 = ∑(𝑎𝑗 + 𝑏𝑗𝑃𝑗 + 𝑐𝑗𝑃𝑗
2)

𝑁

𝑗=1

 (1)

𝐹𝑐𝑜𝑠𝑡 = ∑(𝑎𝑗 + 𝑏𝑗𝑃𝑗 + 𝑐𝑗𝑃𝑗
2)

𝑁

𝑗=1

+ |𝑑𝑗{sin (𝑒𝑗(𝑃𝑗
𝑚𝑖𝑛 − 𝑃𝑗))}| (2)

subject to:

𝑃𝑗
𝑚𝑖𝑛 ≤ 𝑃𝑗 ≤ 𝑃𝑗

𝑚𝑎𝑥 𝑗 = 1, . . . , 𝑁 (3)

∑ 𝑃𝑗 − 𝑃𝐷 = 0

𝑁

𝑗=1

 (4)

Increasing attention to the ED problem has led to applications of numerous metaheuristic approaches to the problem.

Parameter tuning is required for metaheuristics to generate high-quality solutions. Hybrid metaheuristics might improve

performance, but they usually have more parameters. The mentioned aspect motivates us to propose a reinforcement

learning-based differential evolution (RLDE). The influential parameters of DE, including crossover rate (CR) and scaling

factor (F), are adaptively controlled by reinforcement learning. The rest of the paper is organized as follows. The related

studies are reviewed in Section II. The details of the proposed algorithm are described in Section III. Experimental results

and discussions are presented in Section IV. Conclusions and future work are lastly given in Section V.

Reinforcement Learning-Based Differential Evolution for Solving

Economic Dispatch Problems

Thammarsat Visutarrom1, Tsung-Che Chiang1, Abdullah Konak2, Sadan Kulturel-Konak3

1Department of Computer Science and Information Engineering, National Taiwan Normal University, Taipei, Taiwan
2Information Sciences and Technology, Penn State Berks, Reading, PA 19610, USA

3Management Information Systems, Penn State Berks, Reading, PA 19610, USA

thammarsat@gmail.com, tcchiang@ieee.org, auk3@psu.edu, sadan@psu.edu

II. LITERATURE REVIEW

 In this section, the ED studies using metaheuristics, especially those with adaptively controlled parameters, were

reviewed. The particle swarm optimization (PSO) was shown as an effective algorithm in several papers. In Gaing’s work

[1], PSO was utilized for solving small- and medium-size test cases. The inertia weight factor, controlling the inertial speed

of a particle in PSO, was linearly reduced according to the number of iterations. Cai et al. [2] presented the chaotic particle

swarm optimization (CPSO) for the ED problem. They controlled the inertia weight factor by the ratio of a particle’s fitness

to the average fitness of the population. This approach slightly performed better than Gaing’s PSO [1] in small-size test

cases, but it could not find the best-known solutions. Gholamghasemi et al. [3] introduced the phasor particle swarm

optimization (PPSO) for solving the problem. They removed the inertia weight factor and controlled the acceleration

coefficients and the step size of a particle by the cosine and sine functions, respectively. Their algorithm outperformed all

of the benchmark algorithms in all test cases used in their study.

Differential evolution (DE) [4] is another promising algorithm for solving the ED problem. Coelho and Mariani [5]

modified DE for handling small-size test cases. The parameter F was controlled by the sine function. Infeasible solutions

were fixed by a penalty mechanism. The algorithm performed better than the CPSO [2] even using a smaller population

size. Zou et al. [6] proposed the improved DE (IDE) algorithm, in which they modified the reproduction part of DE. Two

mutation operators were randomly applied to generate new solutions. As for parameters, F was randomly generated, and

the parameter CR was linearly reduced following the iteration numbers. The algorithm provided impressive results in small-

and medium-size test cases.

The mutation operators of DE were introduced in other algorithms to enhance performance. Wang and Li [7] introduced

a differential harmony search algorithm (DHS). The pitch adjustment was based on the DE/rand/1 mutation operator but

not the bandwidth in harmony search (HS). This modification led the algorithm to perform better than some other

algorithms such as GA and PSO [1]. Bhattacharya and Chattopadhyay [8] hybridized the mechanism of DE and

biogeography-based optimization (BBO) to generate new solutions. The gap between the best-found solutions and the

benchmark solutions was small. Xiong et al. [9] proposed multi-strategy ensemble biogeography-based optimization

(MsEBBO) for handling the ED problem. The migration rate and emigration rate were controlled by a cosine function,

which showed strong performance in some applications [10]. The DE/rand/1 mutation and crossover operators were carried

out after the migration process to improve search performance. The algorithm’s solution quality is quite similar to that of

the IDE [6] and PPSO [3] in solving 38- and 40-unit test cases, respectively.

 Moradi-Dalvand et al. [11] introduced the continuous quick group search optimizer (CQGSO). This algorithm found

the best-known solutions in small- and medium-size test cases. However, the average-case solution quality was still slightly

worse than that of PPSO [3]. Betar et al. [12] proposed the tournament-based harmony search algorithm (THS). The best-

found solution of this algorithm had a small gap to the benchmark, but the average-case solution quality was worse than

PPSO [3] and IDE [6]. Adarsh et al. [13] solved the ED problem by using the bat algorithm (BA). The loudness parameter

and the influential parameter of BA were chaotically updated by a sine function instead of using the linear equation. This

algorithm showed impressive results in test cases with different sizes.

Reinforcement learning (RL) is a technique in the field of machine learning. It is usually applied to help an agent to take

proper actions in the environment based on its experience to maximize the reward. The idea of RL fits the task of parameter

control for DE (choosing proper parameter values during the evolutionary process to generate high-quality solutions) but

was not extensively studied in the literature. Thus, we developed an RLDE and investigated its potential in this study.

III. PROPOSED ALGORITHM (RLDE)

 The proposed RLDE is introduced in this section. The pseudocode of the overall algorithm is given in Table I. The

initialization and constraint handling mechanisms are explained in Subsections A and B, respectively. Reproduction and

selection are presented in Subsection C. Subsection D details the proposed RL mechanism and how RL adaptively sets DE

parameters F and CR.

A. Solution Encoding and Initialization

A vector 𝑋𝑖 = [𝑃𝑖1, 𝑃𝑖2, … , 𝑃𝑖𝑗 , … , 𝑃𝑖𝑁] represents the 𝑖𝑡ℎ solution in the population, where 𝑃𝑖𝑗 denotes the output of power

generating unit 𝑗. Values of 𝑃𝑖𝑗 are initialized by random values in [𝑃𝑗
𝑚𝑖𝑛 , 𝑃𝑗

𝑚𝑎𝑥]. Infeasible solutions are fixed by our repair

strategy described in the next subsection. The initial solutions are sorted in the ascending order of the fitness value.

 TABLE I: THE OVERVIEW OF RLDE ALGORITHM

Notations

𝐺𝑚𝑎𝑥, 𝐺: maximum generation and current generation number

𝑃𝑜𝑝: population

𝑁𝑃: population size

𝑈: trial vector

𝑉: mutant vector

𝐹, 𝐶𝑅: list of scaling factor and crossover rate parameter

𝑄𝑇𝑎𝑏𝑙𝑒: Q table of reinforcement learning

𝑠: state of a solution

01 Initialize(𝑃𝑜𝑝)
02 Repair(𝑃𝑜𝑝)
03 Evaluate(𝑃𝑜𝑝)
04 Sort(𝑃𝑜𝑝)
05 Assign state 𝑠 to each solution

06 Select a random action (𝐹𝑖, 𝐶𝑅𝑖) for each solution Pop[i]
07 𝐺 = 1
08 while 𝐺 ≤ 𝐺𝑚𝑎𝑥 do
09 for 𝑖 = 1 to 𝑁𝑃 do

10 𝑋𝑖 = 𝑃𝑜𝑝[𝑖]
11 𝑉𝑖 = Mutate(𝑃𝑜𝑝, 𝐹𝑖)

12 𝑈𝑖 = Crossover(𝑋𝑖 , 𝑉𝑖 , 𝐶𝑅𝑖)
12 𝑈𝑖 = Repair(𝑈𝑖)
13 Evaluate(𝑈𝑖)
14 𝑃𝑜𝑝[𝑖] = Select(𝑋𝑖 , 𝑈𝑖)
15 end

16 Sort(𝑃𝑜𝑝)
17 Update 𝑄𝑇𝑎𝑏𝑙𝑒 by reinforcement learning

18 Select an action (𝐹𝑖, 𝐶𝑅𝑖) for each solution Pop[i] by the ε-greedy method
19 𝐺= 𝐺+1

20 end

21 Output the best solution in Pop

B. Constraint Handling

 Infeasible solutions may be created during reproduction. Infeasibility due to operating boundary constraints (3) can be

easily fixed by setting 𝑃𝑖𝑗 values to the closest boundary. However, an effective and efficient constraint handling approach

is required to keep the power balance constraint (4) satisfied. As handling the equality constraint (4) consumes an enormous

computation time, it is relaxed to be an inequality constraint. A solution will be accepted as a feasible one when the

difference Diff = |∑ 𝑃𝑖𝑗 − 𝑃𝐷
𝑁
𝑗=1 | is less than 10-10. Two repair mechanisms, single-unit repair (SR) and all-unit repair (AR),

are used. SR or AR is selected randomly to repair each infeasible solution. If Diff of the new solution is not less than 10-10

within 30 trials, the repair procedure stops and the trial solution 𝑈𝑖 will not survive to the next iteration.

All-unit repair (AR). The average difference is calculated by 𝐴𝑉𝐺𝑑𝑖𝑓𝑓 = (𝑃𝐷 − ∑ 𝑃𝑖𝑗 𝑁
𝑗=1)/𝑁. All power outputs 𝑃𝑖𝑗

are added by 𝐴𝑉𝐺𝑑𝑖𝑓𝑓 . If the new value of 𝑃𝑖𝑗 violates the constraint (3), it is set to the closest boundary.

Single-unit repair (SR): The difference between the load demand and total power output is calculated by Diff = 𝑃𝐷 −
∑ 𝑃𝑖𝑗 𝑁

𝑗=1 . In an infeasible solution, any variable 𝑃𝑖𝑗 that still satisfies the boundary constraint (3) after adding Diff is included

in a set S. If S is not empty, a 𝑃𝑖𝑗 from S is randomly selected; otherwise, a variable 𝑃𝑖𝑗 of the solution is randomly selected.

The selected 𝑃𝑖𝑗 is added by Diff. If the new value of 𝑃𝑖𝑗 violates the constraint (3), it is set to the closest boundary.

C. Reproduction and Solution Selection

The DE/rand/1 mutation and the binomial crossover are employed, as shown in (5) and (6). The new solution (trial

vector) replaces the old solution (target vector) if the new one is feasible and has better fitness.

𝑉𝑖 = 𝑋𝑟1 + 𝐹𝑖(𝑋𝑟2 − 𝑋𝑟3) (5)

𝑈𝑖: 𝑢𝑖𝑗 = {
𝑣𝑖𝑗 𝑖𝑓 𝑟𝑎𝑛𝑑 [0,1) ≤ 𝐶𝑅𝑖 𝑜𝑟 𝑗 = 𝑗𝑟𝑎𝑛𝑑

𝑃𝑖𝑗 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 (6)

D. Parameter Control based on Reinforcement Learning

RL has been receiving increasing attention in the field of optimization due to its effectiveness [14-16]. It is categorized

in the area of machine learning for multi-stage decision making, which aims to find the optimal actions to reach the goal

of the problem. Three components are essential in RL: states, actions, and rewards. States and actions represent the

situations and activities that can happen in the problem. The reward is the learning score obtained after taking an action in

a state. In this paper, we use the RL approach to set the values of CR and F in the DE adaptively. Each component is

detailed in the following.

State: At the end of each generation, the solutions are sorted by the fitness value, and the population is divided into

four quartiles. The state 𝑠 of each solution is defined as the quartile where the solution resides, 𝑠1 being the best 25% of

the solutions, 𝑠2 the second-best 25%, and so on. In case that the population cannot be equally divided, the number of

solutions NP/4 in each state is rounded down. Then, the number of solutions in state 𝑠1 is increased by one, and this step is

continued for other states sequentially until the total number of solutions in all states equals the population size. For example,

if the population size is ten (10/4=2.5), 𝑠1 and 𝑠2 include three solutions, and 𝑠3 and 𝑠4 include two as shown in Fig. 1 (❶).

Fig. 1. Illustration of the proposed RL mechanism.

Q-table: The Q-table consists of four states, and each state has 16 actions as shown in Fig.1 (❷). The value of 𝑄(𝑠, 𝑎)

represents the favorability of selecting action 𝑎 when a solution is in state 𝑠. Q-learning is applied to update the Q-table, as

given in (7), where 𝑅(𝑠, 𝑎) is the immediate reward of taking action 𝑎 in the current state and 𝑄(𝑠, 𝑎) is the accumulated

reward of taking action 𝑎 in state 𝑠 . The 𝑚𝑎𝑥𝑎𝑄(𝑠′, 𝑎) is the maximum reward of the new state 𝑠′ over all actions.

Updating Q-value is controlled by two parameters: the learning rate 𝛼 and the discount factor 𝛾.

𝑄(𝑠, 𝑎) = (1 − 𝛼)𝑄(𝑠, 𝑎) + 𝛼[𝑅(𝑠, 𝑎) + 𝛾 ∙ 𝑚𝑎𝑥𝑎𝑄(𝑠′, 𝑎)] (7)

Action: In our algorithm, an action refers to choosing the sub-ranges of F and CR for each solution. The ranges of F

and CR are (0, 0.9] and are divided into four equal sub-ranges as shown in Fig. 1 (❸). There are 44=16 candidate actions

in each state. At the first generation, each solution selects the action randomly. After that, solutions will select the action

by the ε-greedy mechanism. Specifically, the solution will take the action with the maximum reward of its state in

probability ε; otherwise, it will randomly select an action. After a solution 𝑋𝑖 takes an action, the actual values of 𝐹𝑖 and

𝐶𝑅𝑖 will be uniformly generated in their sub-ranges, and the mutant vector 𝑉𝑖 and trial vector 𝑈𝑖 are produced accordingly.

Reward: The reward of an action is defined by Table II. Let 𝑠 and 𝑠′ denote the states of the solution before and after

selection. If the fitness of 𝑈𝑖 is worse than that of 𝑋𝑖, the action receives a negative reward (line 2). We use Fig. 1 as an

example, where 𝑁𝑢𝑚𝑠𝑡𝑎𝑡𝑒𝑠 is 4. When a solution 𝑋𝑖 at state 1 is not improved by a trial vector 𝑈𝑖, the reward is (1 – 4 –

1) = -4. If the fitness of 𝑈𝑖 is better than that of 𝑋𝑖, the reward depends on the state change. If the state of 𝑈𝑖 is better than

that of 𝑋𝑖, two conditions are considered following lines 5 to 9. First, if the fitness of 𝑈𝑖 is smaller than the minimum fitness

value of the previous generation (𝑀𝑖𝑛), the action receives a positive reward (line 6). Second, if the fitness of 𝑈𝑖 is worse

than 𝑀𝑖𝑛, the action receives a positive reward from the similar equation from the first condition but controlled by the

linear equation of the ratio of current generation number 𝐺 to maximum generation 𝐺𝑚𝑎𝑥 . The reason that we add the second

condition in our algorithm is to select the most appropriate action to increase the speed of convergence rate of our

population in the beginning. Therefore, the action that cannot improve the quality of solutions better than the minimum

fitness value of the previous generation will get a lower reward. On the other hand, towards the end of the search, when it

might be hard to find the right action, the reward of the second condition will be increased similar to the first condition to

help the algorithm to avoid getting stuck at the local optima. Lastly, if the state of 𝑈𝑖 is not better than the state of 𝑋𝑖, the

action receives a negative reward (line 11).

0 < 𝐶𝑅 ≤ 0.225
0.225 < 𝐶𝑅 ≤ 0.45 0.45 < 𝐶𝑅 ≤ 0.675 0.675 < 𝐶𝑅 ≤ 0.9

1 2 3 4

5 6 7 8

9 10 11 12

 13 14 15 16

0 < 𝐹 ≤ 0.225

0.225 < 𝐹 ≤ 0.45

0.45 < 𝐹 ≤ 0.675

0.675 < 𝐹 ≤ 0.9

Action

❸ ❷

Q table

State 𝑠4 (Group 4)

State 𝑠3 (Group 3)

❶

Group of solutions after sorting

12

15

18

20

25

30

35

38

40

45

State 𝑠1 (Group 1)

State 𝑠2 (Group 2)

TABLE II: REWARD CALCULATION

Notations
𝑁𝑢𝑚𝑆𝑡𝑎𝑡𝑒𝑠: number of states
𝑠, 𝑠′: states of the solution before and after section
𝐺𝑚𝑎𝑥, 𝐺: maximum generation and generation number
𝑀𝑖𝑛: minimum fitness value in each generation
𝑋𝑖 , 𝑈𝑖: target and trial vector

01 if 𝑓(𝑈𝑖) > 𝑓(𝑋𝑖) then
02 𝑅(𝑠, 𝑎) = 𝑠 − 𝑁𝑢𝑚𝑆𝑡𝑎𝑡𝑒𝑠 − 1
03 else
04 if 𝑠′ ≤ 𝑠 then
05 if 𝑀𝑖𝑛 > 𝑓(𝑈𝑖)
06 𝑅(𝑠, 𝑎) = (𝑁𝑢𝑚𝑠𝑡𝑎𝑡𝑒𝑠 − 𝑠′) + 1
07 else
08 𝑅(𝑠, 𝑎) = ((𝑁𝑢𝑚𝑠𝑡𝑎𝑡𝑒𝑠 − 𝑠′) + 1) ∗ (𝐺/𝐺𝑚𝑎𝑥)

09 end
10 else
11 𝑅(𝑠, 𝑎) = 𝑠 − 𝑠′
12 end
13 end

IV. EXPERIMENTS AND RESULTS

A. Test Cases and Parameter Setting

Three ED test cases were chosen to investigate the performance of the proposed RLDE, including 13-, 38-, and 40-

unit test cases. Details of these test cases can be found in [6] and [13]. Two load demands, 1800 MW and 2520 MW, were

tested for the 13-unit test case, but here we only showed the results of one of them since the results are similar. The load

demands are 6000 MW and 10500 MW in 38- and 40-unit cases, respectively. The 13- and 40-unit test cases are non-

convex ED problems (i.e., using (2) as the objective function), and the 38-unit test case is a convex ED problem (i.e., using

(1) as the objective function).

The RLDE was run with the population sizes 30, 30, and 50 and with the maximum number of generations 550, 700,

1000 for 13- 38-, and 40-unit test cases, respectively. For the proposed RL mechanism, the learning rate 𝛼, discount factor

𝛾, and ε probability were set to 0.2 0.6, and 0.7, respectively, as it achieves the best solution quality in all test cases. We

ran the RLDE 50 times to solve each test case.

B. Analysis of Solution Quality

Tables III-V summarize the results obtained by our RLDE, canonical DE with random parameters (Random DE),

canonical DE with the most effective parameter setting of 81 combinations of values of CR and F (DE81), and several

algorithms in the literature. The second, third, and fourth columns present the minimum, average, and maximum cost

obtained by each algorithm. Our RLDE found the best-known solutions for the 13-unit cases and the 40-unit case. For the

38-units case, the deviation percentage from the best-known solution was lower than 0.01%. The RLDE performed better

than Random DE in all cases, which shows that RLDE can select parameter values appropriately. The RLDE outperformed

DE81 for seven out of nine metrics. Although DE81 had lower average and maximum costs than RLDE in the 40-unit case,

it required a lot of effort on parameter tuning.

TABLE III: RESULTS OF 13-UNIT SYSTEM (1800 MW)

Algo. Min Avg. Max Ref.

IDE 17960.37 17961.47 17969.49 [6]

DHS 17960.37 17968.36 17969.57 [7]

RLDE 17960.37 17969.1 17970.89
THS 17960.37 17977.6 - [12]

SADE 17960.41 17966.35 17969.39 [6]

DE81(0.5, 0.5) 17975.46 17978.26 17980.59
Random DE 17991.88 18014.67 18147.35

MBDE 18024.88 18172.98 18452.96 [6]

TABLE IV: RESULTS OF 38-UNIT SYSTEM (6000 MW)

Algo. Min Avg. Max Ref.

MsEBBO 9417235.78 9417235.78 9417235.78 [9]
DE/BBO 9417235.78 - - [8]

IDE 9417235.79 9417235.79 9417235.79 [6]
MBDE 9417235.79 9417235.79 9417235.79 [6]

RLDE 9417235.79 9417235.83 9417235.9

DE81(0.5, 0.8) 9417235.79 9417245 9417273
Random DE 9417241.39 9417368.59 9417396.96

SADE 9417241.93 9417252.85 9417274.92 [6]

TABLE VI: RESULTS OF 40-UNIT SYSTEM (10500 MW)

Algo. Min Avg. Max Ref.
MsEBBO 121412.53 121417.19 121450 [9]
RLDE 121412.53 121441.76 121506.69
PPSO 121412.54 121412.59 121413.95 [3]
CBA 121412.55 121418.98 121436.15 [13]
CQGSO 121412.55 121423.52 121438.69 [11]
DE81(0.1, 0.1) 121415.07 121432.76 121473.98
THS 121425.15 121528.65 - [12]
Random DE 121429.62 121566.88 121823.58

C. Analysis of Algorithm Robustness

This research aims to propose an algorithm that is able to find good solutions with little effort on parameter tuning.

We proposed the RL mechanism to adaptively control the values of F and CR of DE. Since our RL introduced some hyper-

parameters, we compared the canonical DE and the proposed RLDE in terms of their performance sensitivity to parameter

setting. The canonical DE used fixed values of F and CR through the whole evolutionary process. We tested nine values

{0.1, 0.2, 0.3, …, 0.9} for F and CR of the canonical DE and for 𝛼 and 𝛾 of the RLDE. The population size and the number

of maximum generations were the same for both algorithms. Fig. 2 shows the average-case solution quality of 99=81

parameter settings for both algorithms by heat maps. The darker the color is, the better the solution quality is. Only a small

portion of parameter settings can lead the canonical DE to find high-quality solutions, and different parameter values are

required for solving different problems. On the contrary, the RLDE can find good solutions under most parameter settings.

These results show the strong robustness of the RLDE with respect to parameter settings.

Fig. 2. The average performance of DE and RLDE using different parameter settings.

V. CONCLUSIONS AND FUTURE WORK

Economic dispatch is an important optimization problem in the power industry. Although many metaheuristics

algorithms were able to find high-quality solutions, their performance could be sensitive to parameter settings, and

parameter tuning could be a time-consuming process. In this paper, we proposed the RLDE, in which we utilized the RL

technique to adaptively control the critical parameters of DE. We tested the RLDE by three test cases and compared its

performance with many existing algorithms. Our RLDE showed competitive results. Moreover, we tested the sensitivity

of RLDE to the parameter setting and compared the sensitivity with the canonical DE. Unlike the canonical DE, our RLDE

can find good solutions under a wide range of parameter settings, hence increasing the robustness of DE.

 We will continue this research in several directions for future work. First, we will investigate the reward mechanism

for a better selection of actions. Second, we will improve the RLDE to solve large-size test cases such as 110- and 140-unit

test systems. Third, we will apply the RLDE to other continuous optimization problems.

0.1

0.5

0.9

0.1

0.5

0.9

0.1 0.5 0.9 0.1 0.5 0.9 0.1 0.5 0.9 0.1 0.5 0.9

18092 17969 24166 24365 9417235 9561367 121432 122867

DE

RLDE

13-unit system (1800 WM) 13-unit system (2520 WM) 39-unit system (6000 WM)

40-unit system (10500 WM)

CR CR CR CR

F F F F

γ

γ

γ

γ

 α

α

α

α

0.1 0.5 0.9 0.1 0.5 0.9 0.1 0.5 0.9 0.1 0.5 0.9

0.1

0.5

0.9

0.1

0.5

0.9

0.1

0.5

0.9

0.1

0.5

0.9

0.1

0.5

0.9

0.1

0.5

0.9

REFERENCES

[1] Z. L. Gaing, “Particle swarm optimization to solving the economic dispatch considering the generator constraints,” IEEE

Transactions on Power Systems, vol. 18, pp. 1187-1195, 2003.

[2] J. Cai, X. Ma, L. Li, and H. Peng, “Chaotic particle swarm optimization for economic dispatch considering the generator constraints,”

Energy Conversion and Management, vol. 48, pp. 645-653, 2007.

[3] M. Gholamghasemi, E. Akbari, M. B. Asadpoor, and M. Ghasemi, “A new solution to the non-convex economic load dispatch

problems using phasor particle swarm optimization,” Applied Soft Computing, vol. 79, pp. 111-124, 2019.

[4] R. Storn and K. Price, “Differential evolution – a simple and efficient heuristic for global optimization over continuous spaces,”

Journal of Global Optimization, vol. 11, pp. 341–359, 1997.

[5] L. D. S. Coelho and V. C. Mariani, “Improved differential evolution algorithms for handling economic dispatch optimization with

generator constraints,” Energy Conversion and Management, vol. 48, pp. 1631-1639, 2007.

 [6] D. Zou, S. Li, G. G. Wang, Z. Li, and H. Ouyang, “An improved differential evolution algorithm for the economic load dispatch

problems with or without valve-point effects,” Applied Energy, vol. 181, pp. 375-390, 2016.

[7] L. Wang and L. P. Li, “An effective differential harmony search algorithm for the solving non-convex,” Electrical Power and

Energy Systems, vol. 44, pp. 832-843, 2013.

[8] A. Bhattacharya and P. K. Chattopadhyay, “Hybrid differential evolution with biogeography-based optimization for solution of

economic load dispatch,” IEEE Transactions on Power Systems, vol. 25, pp. 1955-1964, 2010.

[9] G. Xiong, D. Shi, and X. Duan, “Multi-strategy ensemble biogeography-based optimization for economic dispatch problems,”

Applied Energy, vol. 111, pp. 801-811, 2013.

[10] H. Ma, “An analysis of the equilibrium of migration models for biogeography-based optimization,” Information Sciences, vol. 180,

pp. 3444-3464, 2010.

[11] M. Moradi-Dalvand, B. Mohammadi-Ivatloo, A. Najafi, and A. Rabiee, “Continuous quick group search optimizer for solving non-

convex economic dispatch problems,” Electric Power Systems Research, vol. 93, pp. 93-105, 2012.

[12] M. A. A. Betar, M. A. Awadallah, A. T. Khader, and A. L. Bolaji, “Tournament-based harmony search algorithm for non-convex

economic load dispatch problem,” Applied Soft Computing, vol. 47, pp. 449–459, 2016.

[13] B. R. Adarsh, T. Raghunathan, T. Jayabarathi, and X. S. Yang, “Economic dispatch using chaotic bat algorithm,” Energy, vol. 96,

pp. 666-675, 2016.

[14] Y. Z. Hsieh and M. C. Su, “A Q-learning-based swarm optimization algorithm for economic dispatch problem,” Neural Computing

& Applications, vol. 27, pp. 2333-2350, 2016.

[15] Y. Liu, H. Lu, S. Cheng, and Y. Shi, “An adaptive online parameter control algorithm for particle swarm optimization based on

reinforcement learning,” in Proceedings of IEEE Congress Evolution Computation, pp. 815–822, 2019.

[16] M. Sharma, A. Komninos, M. Lopez Ibanez, and D. Kazakov, “Deep reinforcement learning based parameter control in differential

evolution,” in Proceedings of Genetic and Evolutionary Computation Conference, pp. 709–717, 2019.

