
A rule-centric memetic algorithm to minimize the number of tardy
jobs in the job shop

T. C. CHIANG† and L. C. FU‡*

† Full address:

Department of Computer Science and Information Engineering, National Taiwan University, No. 1,

Sec. 4, Roosevelt Road, 106, Taipei, Taiwan, R.O.C.

Email: tcchiang@ieee.org

Telephone: (+886-2) 2362-2209

Fax: (+886-2) 2365-7887

‡ Full address:

Department of Computer Science and Information Engineering, National Taiwan University, No. 1,

Sec. 4, Roosevelt Road, 106, Taipei, Taiwan, R.O.C.

Email: lichen@ntu.edu.tw

Telephone: (+886-2) 2362-2209

Fax: (+886-2) 2365-7887

* To whom correspondence should be addressed.

Abstract

This paper addresses the job shop scheduling problem with minimizing the number of tardy jobs as the

objective. This problem is usually treated as a job sequencing problem, and the permutation-based

representation of solutions was commonly used in the existing search-based approaches. In this paper, the

flaw of the permutation-based representation is discussed, and a rule-centric concept is proposed to deal

with it. A memetic algorithm is then developed to realize the proposed idea by tailored genome

encoding/decoding schemes and local search procedure. Two benchmark approaches, a multi-start hill

climbing approach and a simulated annealing approach, are compared in the experiments. The results

show that the proposed approach significantly outperforms the benchmarks.

Keywords: job shop scheduling, memetic algorithm, priority rules

 1

1. Introduction

Production scheduling is a research field that attracts researchers in the academia and engineers in the

industry for last several decades. Many problems in this field fall into the category of discrete optimization

problems and their NP-hard nature is challenging and interesting to researchers. In the manufacturing

industry, scheduling is a critical issue in the phase of shop floor control. Engineers in the factory rely on a

good scheduling approach to arrange the resources so that a satisfactory performance can be achieved.

There are several well formulated problems in this field, such as single machine scheduling, flow shop

scheduling, job shop scheduling, and so on. In this paper we take the job shop scheduling problem as the

target since it is generic for the presence of multiple machines and allowance of different routes of jobs.

In the literature, the objectives of job shop scheduling problems can be divided into flow time-based

ones and due date-based ones. The flow time of a job is the duration from when its first operation starts to

when its last operation finishes. Among the flow time-based objectives, the makespan, which refers to the

maximum flow time of all jobs, is the most well known one. Recently, due date-based objectives gradually

received more attention from researchers since meeting due dates becomes an important requirement for

industry practitioners. Given a due date, a job is marked as tardy if its last operation is finished later than

the due date. In this paper, our objective is to minimize the number of tardy jobs, or to maximize the

meet-due-date rate.

The paper proceeds as follows. Section 2 gives the problem definition of the job shop scheduling

problem. In Section 3, we provide a literature survey for the approaches that were commonly used to solve

the job shop scheduling problem. Section 4 describes the details of the proposed approach, which

integrates two promising approaches, the priority rules and the memetic algorithms. Experiments and

numerical results of the performance of the proposed approach and two benchmark approaches are given

in Section 5. Finally, conclusions are made in Section 6.

 2

2. Problem definition

Scheduling is actually a task of allocation of resources to requests under certain constraints to meet the

concerned criteria. In a job shop, resources refer to the machines and requests are the jobs to be processed.

Given N jobs and M machines in the job shop, each job i has M operations denoted by Oij, i = 1…N, j =

1…M. An operation refers to processing of a job on a particular machine, and each job must be processed

by each machine exactly once. Each operation Oij has a fixed processing time pij. Let tij mean the starting

time of operation Oij in the schedule, its completion time Cij can then be calculated as Cij = tij + pij. For

each operation Oij, assume the preceding operation on its dedicated machine is Okl. Then tij can not be

smaller than max{Ci(j-1), Ckl} considering the precedence constraint of operations of a job and the machine

capacity constraint. For any operation Oij that is the first operation on its dedicated machine, the constraint

of tij is modified to be no smaller than Ci(j-1) only. The value of Ci0 is zero for i = 1…N, which stands for

that all jobs are ready to process at time zero. There are no setup times, no preemption, and no machine

breakdowns. The number of buffers is assumed infinite, and the transportation issue is not considered.

Each job i has a due date di. We set Ui as one if CiM is greater than di; otherwise, Ui is set as zero. The

objective in this paper is to find a schedule that minimizes the number of tardy jobs ∑
= Ni

iU
...1

, or

equivalently, to maximize the meet-due-date rate 1 – ∑
= Ni

iU
...1

/N.

3. Literature survey

The job shop scheduling problem is essentially a job sequencing problem – to determine the

processing orders of jobs on each machine to satisfy the performance criterion. Among the approaches to

this sequencing problem, priority rules are pervasively adopted in the industry due to its ease of

implementation, small computation requirement, satisfactory performance, and the flexibility to

incorporate domain knowledge and engineers’ expertise. The wide acceptance can be seen in

Appleton-Day and Shao (1997), Giegandt and Nicholson (1998), Hsu and Lan (2000), and Kim et al.

(2001). By using the priority rule, each time a machine is free, the rule is invoked to calculate a priority

value for each waiting job in the queue of this machine. Then the job with the highest priority value is

 3

taken as the next one to process. To develop a rule, researchers need to identify the important factors

relevant to jobs and machines, and then manipulate these factors to come up with an appropriate numerical

value as the priority. Vepsalainen and Morton (1987) proposed a parameterized rule, well known as the

Apparent Tardiness Cost (ATC) rule to minimize weighted tardiness in the job shop. It assigned priorities

to jobs according to the expected delay cost per imminent machine processing time. Anderson and

Nyirenda (1990) developed two rules using dynamic operation due dates based on the remaining

allowance times to minimize due date-based objectives in the job shop. The shop floor utilization level

was taken to adjust the weights to the processing time and due date information in the rule proposed by

Raghu and Rajendran (1993). A critical ratio-based rule exploiting group information of jobs was devised

by Chiang and Fu (2004) to minimize the number of tardy jobs. For other reports and surveys of priority

rules, see Panwalkar (1977), Kim and Kim (1994), Chang et al. (1996), Sabuncuoglu (1998), and Costa

and Ferreira (1999).

Local search-based approaches were also common for solving job sequencing problems since they are

general and often provide promising results. To use local search-based approaches, a complete schedule

should be given as an initial solution. Then a search process proceeds by examining the neighboring

solutions generated from the so-called neighborhood functions. Different searching strategies in the

neighborhood result in different local search approaches, such as simulated annealing (SA)(Van Laarhoven

et al. 1987) and tabu search (Glover 1989). He et al. (1996) showed a SA approach for due-dates job shop

scheduling. Armentano and Ronconi (1999) and Yang et al. (2004) adopted the tabu search approach to

minimize total tardiness in the flowshop. Combining local search-based approaches is also a possible

alternative, as can be seen in Adenso-Diaz (1996) and Kreipl (2000). Other surveys of local search-based

approaches can be found in Crauwels et al. (1996), Dorn et al. (1996), and Vaessens et al. (1996).

After Goldberg’s book was published in 1989, the genetic algorithm became popular in solving

optimization problems. Unlike local search-based approaches, the genetic algorithm is a global search

approach achieved by a population-based search process. It mimics the evolutionary process in the nature

by realizing Darwin’s principle – natural selection and survival of the fittest with artificial genetic

 4

operators including selection, crossover, mutation, and so on. Solutions are first encoded as genomes and

constitute a population. Based on the performance/quality of the corresponding solution, each genome is

given a fitness value. Then genomes are selected according to their fitness values so that fitter genomes

participate more times in offspring breeding. When parents are selected, the offspring are generated by

crossover and mutation. At last, the reproduction scheme decides which genomes can survive to the next

generation. Generation by generation, genomes become better and better, and finally we can expect that an

optimal or near-optimal solution will be obtained. Different encoding/decoding mechanisms and different

implementations of the genetic operators make up various genetic algorithms. A comprehensive survey of

job shop scheduling using genetic algorithms was provided by Cheng et al. (1996, 1999).

Although the genetic algorithm has the global search ability, sometimes it was outperformed by other

search algorithms due to its slow convergence speed (Vaessens et al. 1996, Dorn et al. 1996, Mattfeld and

Bierwirth 2004, Goncalves et al. 2005). To increase the performance of genetic algorithms, a new

approach called the memetic algorithm (Moscato 1989), was growing in recent years. The memetic

algorithm, also known as the genetic local search, is a combination of the genetic algorithm and the local

search-based approach in order to possess both the global search ability and search efficiency from these

two kinds of approaches. Cai et al. (2000) proposed a memetic algorithm which embedded a hill climbing

local search procedure to minimize the makespan in the job shop. The SA algorithm was adopted as the

local search component to minimize the makespan in the job shop in Wang and Zheng (2001). In

Goncalves et al. (2005), the hill climbing was also used but with a different neighborhood function from

Cai et al. (2000). Other applications of the memetic algorithm on job sequencing problems can be found in

Murata et al. (1998), Franca et al. (2001), and Sevaux and Dauzere-Peres (2003).

4. The rule-centric memetic algorithm

As what we can see from the literature, priority rules and the memetic algorithms are two promising

approaches to solve the job shop scheduling problem. Priority rules break the job shop scheduling problem

into many decisions of processing orders of jobs, and make the decisions dynamically based on the status

 5

of the shop. The memetic algorithms, on the other hand, intend to solve the job shop scheduling problem

by searching among a very large number of possible solutions efficiently through a sophisticated search

mechanism. In this work, we will propose an approach which exploits the dynamic decision ability of

priority rules and the search ability of memetic algorithms in an integrated manner. The details will be

given in this section. Before going into the details of each component in our approach, we give an

overview of the entire procedure first as follows:

Step 0. Determine the genome encoding and decoding schemes. (Section 4.2, 4.3)

Step 1. Initialize the population, and evaluate their fitness. (Section 4.8)

Step 2. Reproduce the population in the next generation.

 Do the following steps with a certain times.

Step 2.1 Apply selection to pick two individuals as parents (Section 4.5)

Step 2.2 Apply crossover to generate two offspring. (Section 4.5)

Step 2.3 Apply mutation to each offspring probabilistically. (Section 4.5)

Step 2.4 Determine which two individuals can survive based on the reproduction scheme. (Section

4.6)

Step 3. Apply the local search procedure to the population. (Section 4.7)

Step 4. Evaluate the individuals in the population. (Section 4.4)

Step 5. If the stopping criterion is reached, ends; otherwise, go back to Step 2.

4.1 The concept of rule-centric

As mentioned, to solve the job shop scheduling problem is to sequence the operations on the machines.

In the literature, the solution was usually encoded as a permutation of operations. Then the corresponding

schedule is derived by processing operations on each machine following the order in the permutation.

Figure 1 gives an example of this conventional encoding and decoding mechanism.

[Insert figure 1 about here]

 6

With the permutation-based representation, new solutions are usually generated by changing the order

of operations, for example, by pairwise interchange (also known as swap) and insertion (also known as

shift) in the local search-based approaches, as illustrated in figure 2. In this way, different schedules can be

derived from different permutations of operations.

[Insert figure 2 about here]

However, we think this kind of local and static modification could have some problem that reduces the

search efficiency. We use figure 3 to explain the potential problem. We have four jobs and two machines,

and the permutation which indicates the processing orders of operations on the machines is as illustrated in

the figure. Suppose job 3 is tardy and the insertion (INS) neighborhood function is used. After applying

INS, the new permutation is formed by moving the operation O31 to be the first to be processed on

machine M1 while the relative processing order of all other operations are retained. The problem is that

should the processing order of the remaining operations on M1 change adaptively? For example, if the

operation O11 becomes tardy inevitably after processing O31 first, O11 should not be processed earlier than

the other two operations. Besides the need of adaptively changing the processing order of the remaining

operations on the same machine as O31, we may also need to adjust the order of operations on the machine

(M2) on which the succeeding operation of O31 (namely, O32) is to be processed. In the original

permutation, the operation O32 will be processed at the last on M2. If this order is not changed in the new

permutation, then processing O31 at the first on M1 is useless to make job 3 meet its due date since the

finish time of this job is not getting earlier.

[Insert figure 3 about here]

In short, we hope that each time we make a modification in one part of the schedule, a chain reaction

will take place to broadcast this modification and the entire schedule is adjusted accordingly. This

requirement reminds us of the dynamic decision ability of priority rules. In practice, a priority rule is

applied to determine the processing order of operations based on the shop status when a machine is

 7

available. This characteristic will be utilized in our approach to realize the chain reaction. Note that the

integration scheme proposed here is not the same as the conventional one to combine priority rules and the

search mechanism. In the conventional scheme, the priority rule is simply used to generate the initial

solution(s) for the search mechanism. However, in the proposed rule-centric scheme, the priority rule and

the search mechanism will interact with each other. Figure 4 depicts the relationship between the priority

rule and the search mechanism in the conventional and the proposed integration scheme. Details of the

interaction between the priority rule and the search mechanism will be explained in the following

sub-sections.

[Insert figure 4 about here]

4.2 Genome encoding

Since we use the priority rule to dynamically determine the processing order of operations, we do not

record the order of operations statically as the permutation-based representation does. Instead, each

operation is associated with a level, and the genome in our memetic algorithm is a string of these levels of

all operations. The spirit of the proposed rule-centric approach is that the adopted priority rule is expected

to generate a correct processing order for most operations, and the levels associated with operations are

used only if some correction is necessary. The level is an integer in current implementation, and an

example of the genome is given in figure 5 (a).

[Insert figure 5 about here]

4.3 Genome decoding

Given a genome, a schedule is derived based on the associated levels of operations recorded in the

genome and the adopted priority rule. Each time when a machine is available, the operations waiting to be

processed are firstly collected. In figure 5 (b), for example, we have three awaiting operations – O11, O21,

and O31. Then the operations with the highest level are ranked by the priority rule to decide the next

processing target. From the genome in figure 5 (a), the levels of operations O11 and O12 are one, and the

level of operation O31 is zero. Hence, only operations O11 and O12 will be considered by the priority rule.

 8

At last, the machine starts to process the selected target. This selection process will take place each time

when a machine becomes available. Here, when machine M1 finishes O11, the priority rule will be invoked

again to determine the next processing target.

[Insert figure 6 about here]

Assume that the level of operation O31 is changed to two, as illustrated in figure 6 (a), then another

schedule will be derived. In figure 6 (b), only O31 has the highest level (two) among three awaiting

operations. Therefore, O31 is certainly the next processing target. Comparing to figure 5 (b), the first

operation processed on machine M1 is changed from O11 to O31. The shop status after machine M1

processed the first operation in figure 5 (b) and 6 (b) might be different, and the second-time invocation of

the priority rule in these two cases might make different decisions. This is the dynamic decision ability that

we mentioned in section 4.1. A change of the first operation can cause adaptive changes of processing

orders of other operations.

In addition to the influence on the candidate operations of the priority rule, the associated levels of

operations are also used for the virtual preemption during construction of the schedule. When a machine is

busy and an operation with a higher priority level arrives, the in-process operation will be preempted. The

entire process of the preempted operation needs to restart (not resume) when next time it is selected to be

processed. “Virtual” refers to the fact that the preemption only takes place during schedule generation and

does not really happen in reality. This virtual preemption paradigm was proposed in Chiang et al. (2005),

and was shown to improve the performance of the conventional paradigm of using priority rules.

[Insert figure 7 about here]

4.4 Fitness function

In our memetic algorithm, the fitness value of each genome is calculated according to two performance

measures of the corresponding schedule. The primary measure is the meet-due-date rate, which is the

objective in our target problem. Since the benefit of incorporating the second criterion was presented in

 9

Duvivier et al. (1998) and Hertz and Widmer (2003), we add the total tardiness as the second measure to

help identifying the quality of genomes in a finer manner. Denote the meet-due-date rate and total

tardiness of a genome g by rg and tg, the fitness value fg is calculated by the following equation:

fg = w1 ⋅ (rg – min{ri})/(max{ri} – min{ri}) + w2 ⋅ (max{ti} – tg)/(max{ti} – min{ti}) i ∈ current population

Simply speaking, the fitness value is a linear weighted sum of the normalized values of the

meet-due-date rate and total tardiness. The values of weights will be set through preliminary experiments.

4.5 Selection, crossover, and mutation

Roulette wheel selection is adopted, in which a genome is selected as a parent in the probability in

proportion to its fitness value. Since we do not encode the processing order of operations explicitly in the

genome, simple crossover operators can be applied. Here we tested one-point crossover and two-point

crossover. By a preliminary experiment, two-point crossover gave better performance and was chosen. As

for mutation, we randomly pick an operation on each machine, and its associated level is increased or

decreased by one in equal probability.

4.6 Reproduction scheme

The reproduction scheme determines which individuals in the current generation can survive to the

next generation. Besides the biased selection operators like roulette wheel selection, the reproduction

scheme is the main force to push the entire population to converge to better individuals. We tested three

existing schemes in our approach, but found that their performance is not good in our application.

The first scheme was proposed in Goncalves et al. (2005), and is illustrated in figure 8 (a). In this

scheme, the best several individuals in the current generation are first copied to the next generation. Then a

portion of the population in the next generation is filled with offspring produced by mating the individuals

in the current population. Finally, some randomly generated individuals are included to complete the entire

population. In our test, this scheme did not provide good convergence pressure due to two reasons: first,

the offspring produced by mating are directly put into the next generation but they do not guarantee to be

 10

better than their parents; second, individuals brought in by random immigration are usually much worse

than other individuals after the evolutionary process proceeds several generations, and hence this portion

of population has little effects.

In order to strengthen the convergence pressure, we then tested the second scheme, which was used in

Wang and Zheng (2001). In this scheme, n offspring are produced by mating where n is the population size.

Then best n individuals from the current population and offspring survive to the next generation. This n/2n

scheme is illustrated in figure 8 (b). Strong convergence pressure was exhibited in the test, but it was also

the problem. When two parents with high fitness produce two offspring that also have high fitness, all four

individuals may survive and which means the size of this family doubles. This phenomenon causes

premature convergence in only several generations and reduces the searching efficiency.

The third scheme, which can be seen as a modified version of the second one, is shown in figure 8 (c).

In this scheme, best two individuals of the two selected parents and two offspring produced by mating

survive to the next generation. This is called the 2/4 scheme, and was adopted in Cai et al. (2000). In our

test, the premature convergence phenomenon still appeared, though later than in the second scheme.

After trying three existing schemes, we found that they are not suitable in our application. Therefore, a

new scheme is proposed here. The major difference between our scheme and the third scheme is that the

best two individuals among two parents and two offspring “replace” the parents so that we do not have a

fast growth of a family. To maintain diversity, we further restrict that the best two individuals must have

different meet-due-date rates or total tardiness. (The only exception is when all four individuals have the

same meet-due-date rate and total tardiness.) Random immigration in the first scheme is also employed

here, but they will replace the worst individuals in our scheme, which is different from the way in which

the first scheme does.

[Insert figure 8 about here]

 11

4.7 Local search procedure

‘GA can easily identify different solution subspaces with good characteristics, but they lack the “killer

instinct” that would allow them to intensify the search in these areas (Taillard et al. 2001).’ To provide the

fine-grained search ability, the local search procedures are incorporated into the genetic algorithms, and

applications of the resulted memetic algorithm grew in recent years. There are three key components in the

design of a local search procedure – configuration representation, neighborhood function, and searching

strategy. Here the representation of configuration is the same as that of genome, and the details of other

two components are given in the following subsections.

4.7.1 Probabilistic level up (PLU) neighborhood

In the proposed approach, we expect that the adopted priority rule should determine appropriate

processing order of most operations. Certainly the rule might not generate a perfect order and some

operations that should be processed early are processed late. We push these delayed operations to be

processed earlier by increasing their associated levels. This is the main idea of our neighborhood function.

To generate a neighboring genome gn of a base genome gb, firstly the tardy jobs in the corresponding

schedule of gb are identified. Then each of these jobs is marked as ‘to-be-leveled-up’ in probability PJ.

Finally, for each of these ‘to-be-leveled-up’ jobs, each of its operations that experience positive waiting

time receives an increment of level by one in probability PO. Let us use figure 9 to explain how it works.

Assume that job 2 and job 3 are tardy in the corresponding schedule of gb. Assume PJ = 0.5, which means

that on average half of the tardy jobs will be marked as ‘to-be-leveled-up,’ and PO = 0.5, which means on

average half of operations will receive an increment of level. Among job 2 and 3, suppose job 3 is marked

as ‘to-be-leveled-up.’ Then among two operations of job 3, suppose O31 is selected to receive an increment

of level. Finally we can get the neighboring genome as illustrated. We call this neighborhood function

‘probabilistic level up (PLU),’ and the idea behind it is to try to make a portion of tardy jobs meet due

dates by leveling up some operations of these jobs so that these operations are processed earlier and

consequently push these jobs to be finished earlier.

 12

[Insert figure 9 about here]

4.7.2 Searching strategy

The configuration determines the search space; the neighborhood function and the evaluation function

sketch the landscape of the search space, and the searching strategy leads the path during searching.

Among several searching strategies, the hill climbing strategy is the most common in the local search

procedure in memetic algorithms because it provides intensive search ability and does not take too much

computation time (Goncalves et al. 2005, Sevaux et al. 2003). We also use this strategy in our local search

procedure. When a neighboring genome is generated, it is accepted only if it has higher meet-due-date rate,

or the same meet-due-date rate and lower total tardiness. For each base genome, a fixed number of

neighboring genomes are generated. If no genome in the neighborhood is better, the local search procedure

stops.

In section 4.7.1, we mentioned that there is a parameter PJ in the neighborhood function. This

parameter represents the percentage of jobs to be ‘saved’ from being tardy. To apply the local search

procedure to a genome g, the value of PJ is set as PJ
0
/(1+lg), where PJ

0
 is the parameter of the memetic

algorithm, and lg is the number of applications of the local search procedure to this genome. This

adjustment reflects the idea that the percentage of jobs that can be ‘saved’ would get smaller and smaller

as the genome is improved by the local search procedure more and more times. By decreasing PJ based on

the search progress, the resulted neighborhood by the PLU neighborhood function will also change

adaptively. It would be beneficial to generate good solutions more easily.

4.8 Generation of the initial population

In the initial population, there is always one genome with all zero levels. This genome represents the

schedule purely determined by the adopted priority rule. The remaining population is filled with genomes

generated by randomly assigning each level with zero and one in equal probability.

 13

5. Experiments and results

5.1 Generation of problem instances

We generated two data sets, each with ten instances. There are 20 machines. The processing time of

each operation is a random number in [1, 50], and setup time is considered to be included in the processing

time. The numbers of jobs are 20 in the first data set and 60 in the second one, respectively. Each instance

is generated by determining the processing route of each job and the processing time of each operation

randomly. The due date of each job is assigned by r⋅p, where r is a random real number in [1, d] and p is

the total processing time of this job. The value of d is chosen so that the meet-due-date rate of each

problem instance is approximately between 0.75 and 0.8 when the ECR rule (Chiang and Fu 2004) is used.

5.2 Two benchmark approaches

To examine the performance of the proposed memetic algorithm, two other approaches are

implemented. They are local search-based approaches, and use the conventional permutation-based

representation. For each approach, both pairwise interchange and insertion neighborhood functions are

considered. These two neighborhood functions are pervasively used with the permutation-based

representation, for example, see Cai et al. (2000), Hsieh et al. (2003), and Yang et al. (2004).

The first approach is a multi-start hill climbing (also known as descent search) approach. The initial

solution is generated by a selected priority rule. Then a hill climbing search starts. For a base configuration,

a fixed number of neighboring solutions are generated. Whenever no better solution is found in the

neighborhood, the search process restarts again from the initial solution. The above process will repeat

until the time limit is reached. At last, the best solution found during searching is reported. The multi-start

hill climbing is a common benchmark, as can be seen in Crauwels et al. (1996), Franca et al. (2001), and

Rajendran and Ziegler (2003). In the experiments, we set the time limit as four minutes.

The second approach is a SA algorithm. In SA, better configuration in the neighborhood is absolutely

accepted. Besides, worse configuration can also be accepted, but with a probability related to the loss of

solution quality. This kind of strategy is useful to jump out from the local optima and to reach the global

optima. In our implementation, a worse neighboring configuration is accepted with the probability as

 14

follows:

cb: the base configuration, cn: the neighboring configuration,

r(.): meet-due-date rate, t(.): total tardiness, T: temperature, exp(.): exponential distribution

Case 1: If r(cn) < r(cb), prob. = exp(−(1 – r(cn)/r(cb))/T)

Case 2: If r(cn) = r(cb) and t(cn) > t(cb), prob. = exp(−(t(cn)/t(cb) – 1)/T)

The cooling schedule has three parameters, the initial temperature, the final temperature, and the

cooling rate. The initial temperature is 0.36, obtained by accepting a neighboring configuration with a 50%

loss of quality in probability 0.25 (i.e. exp(– 0.5/0.36) = 0.25). The final temperature is 0.0027, obtained

by accepting a neighboring configuration with a 1% loss of quality in probability 0.025. The cooling rate is

set to control the computation time to be four minutes.

5.3 Experimental results

In our first experiment, the performance of the multi-start hill climbing approach was examined. We

used five priority rules to generate the initial configuration – ECR (Chiang and Fu 2004), modified due

date (MDD), shortest processing time (SPT), least slack (SLACK), and random (RND) rule. The equations

for the first four rules are given in Appendix. Three neighborhood sizes, 20, 40, and 60, were tested. Hence,

totally we had thirty versions of this multi-start hill climbing approach by five rules, three neighborhood

sizes, and two neighborhood functions (pairwise interchange and insertion). Each problem instance was

solved by each version by five times, and the minimal, average, and maximal meet-due-date rates among

five runs were recorded. Then the averages of the minimal, average, and maximal meet-due-date rates over

ten problem instances in each of two data sets were calculated. These three values were taken to measure

the performance of each version in the worst, average, and the best cases, respectively. Since the results

obtained by using pairwise interchange and insertion as neighborhood functions were quite similar, we

only show the results by using pairwise interchange in table 1.

[Insert table 1 about here]

 15

In table 1, we first observe that the initial solution has a significant impact on the performance. Using

the ECR rule to generate the initial solution can provide the best performance. The MDD and SLACK

rules have close performance, and the SPT rule is worse than the previous three rules. In data set 1, using

the RND rule to generate the initial solution is better than using the SPT rule, however, the result is

reversed in data set 2. It reveals that with larger problem size, which implies a larger solution space, the

chance for a random initial solution to fall in a good region becomes smaller. The benefit of the domain

knowledge in priority rules shows up more evidently.

As for the effects of the neighborhood size, larger neighborhood size is useful for all rules except the

RND rule in data set 1. A large neighborhood size could cause the search process to take much time in a

region even if the initial solution generated by the RND rule is bad. Therefore, the RND rule prefers a

smaller neighborhood because it can try more initial solutions to find a good region within the

computation time limit. In data set 2, the RND still performs better with a smaller neighborhood. For the

other rules, the effect of the neighborhood size is not obvious.

In the second experiment, we studied the performance of the SA benchmark approach. Like the first

experiment, we also tested thirty versions of this approach. The versions with insertion as the

neighborhood function performed slightly better than those with pairwise interchange. Hence, we report

the results of the versions using insertion neighborhood function in table 2.

[Insert table 2 about here]

In data set 1, we find that the impact of the initial solution reduces with the global search ability of the

SA approach. No matter which rule is used to generate the initial solution, we can obtain close

performance in the best case. Nevertheless, the initial solution still has a great influence on the

performance in data set 2. The reason could be that the computation time becomes insufficient for the SA

approach to reach a stable state at each temperature when the problem size gets larger.

Performance of the proposed memetic algorithm was investigated in the third experiment. Since the

priority rule is expected to generate an appropriate processing order of operations in our approach, the

 16

RND rule was not considered. In order to prevent the local search procedure from taking too much

computation time, we tested three smaller neighborhood sizes, 10, 20, and 30. The population size was 20,

and the mutation rate was 0.2. The weights w1 and w2 in the fitness function were set as three and one,

which were obtained from a preliminary test on several different combinations of values. In each

generation, 16 offspring are generated, and the worst four individuals are replaced by random immigration.

The value of PJ
0
 mentioned in section 4.7.2 is 0.5. The time limit is also four minutes, which is the same as

the two benchmarks. There are twelve versions of the proposed approach in total by four priority rules and

three neighborhood sizes, and the results are shown in table 3.

[Insert table 3 about here]

The performance obtained by adopting different rules is different, especially in data set 2, whose

instances have larger problem size. This can be easily realized since the priority rule plays an important

role in our “rule-centric” approach. The proposed approach performs the best with the ECR rule. The

MDD and SLACK rules follow, and the SPT rule is the worst again. To solve problem instances in data set

2, the adopted rule must manage more operations than it does to solve instances in data set 1. Hence, the

dynamic decision ability of different rules leads to much more significant performance gap.

In the proposed approach and two benchmarks, each priority rule was tested with many different

settings (such as different neighborhood sizes). The best results obtained among those settings are now

summarized in table 4. The first four rows show the meet-due-date rates obtained by purely using the

priority rules. Table 4 shows that no matter which rule is adopted, the proposed rule-centric memetic

algorithm significantly outperforms the two benchmark approaches in either the best, average, or worst

cases. The meet-due-date rate is raised by 5.5% at least and 9.5% at most in data set 1. In data set 2, the

increment is between 5.5% and 7.8%. These are significant improvement.

[Insert table 4 about here]

 17

6. Conclusions

In recent years, search-based approaches are common to solve job shop scheduling problems. Whether

local search-based or population-based search methods are used, the representation of solution is

undoubtedly the most important issue. In this paper, first we show the flaw of the permutation-based

representation, which is a popular representation in the literature. To eliminate this flaw, we proposed an

idea that a modification in one part of the schedule must trigger a chain reaction to broadcast this

modification and the entire schedule is adjusted accordingly. The dynamic decision ability of priority rules

is suitable to realize this idea, and thus we developed a rule-centric memetic algorithm that tightly coupled

the search process and the priority rules. New genome encoding/decoding schemes, reproduction schemes,

and local search procedure were devised. The performance of our approach was shown evidently superior

to two search-based approaches in the experiments.

Incorporation of domain knowledge and heuristics in the search-based algorithms is an unavoidable

trend, as reported in Cheng et al. (1999) and Taillard et al. (2001). The rule-centric concept in our

approach is actually one kind of realization. Domain knowledge and heuristics are incorporated into the

memetic algorithm in the form of priority rules. The priority rule constructs the schedule based on the

embedded knowledge; the search mechanism makes some corrections to the schedule; and then the

priority rule adapts the schedule to the corrections by its dynamic decision ability. Through the interactions

between priority rules and the memetic search mechanism, schedules with higher quality can be obtained

more easily, as can be seen in the experiments. There is no restriction on the priority rules which can be

used in the proposed approach. Managers and engineers in the shop can integrate their rules into this

approach effortlessly. Domain knowledge could also be added in other components in the proposed

approach, for example, the crossover, mutation, and the neighborhood function. This will be the research

direction in our future work.

 18

Appendix

Four priority rules used in this work

Rules Priority value Notations

SPT Zi = pi

MDD Zi = max{di, t + ri}

SLACK Zi = di – ti – ri

ECR ∑
∈

−−

−
+

−−

=

jobscompetingj ii

ii

jj

j

i
ptd

pr

ptd

r
Z

22
)()(

p: processing time of the imminent operation

r: remaining processing time of the job (including p)

t: system time, the time at which the dispatching decision is

to be made

d: due date of the job

References

Adenso-Diaz, B., 1996, An SA/TS mixture algorithm for the scheduling tardiness problem, European

Journal of Operational Research, 88, 516 – 524.

Appleton-Day, K. and Shao, L., 1997, Real-time dispatch gets real-time results in AMD’s Fab25, Proc. of

IEEE/SEMI Advanced Semiconductor Manufacturing Conference and Workshop, 444 – 447.

Anderson, E. J. and Nyirenda, J. C., 1990, Two new rules to minimize tardiness in a job shop,

International Journal of Production Research, 28, 2277 – 2292.

Armentano, V. A. and Ronconi, D. P., 1999, Tabu search for total tardiness minimization in flowshop

scheduling problems, Computers and Operations Research, 26, 219 – 235.

Cai, L.W., Wu, Q.H., and Yong, Z.Z., 2000, A genetic algorithm with local search for solving job problems,

Lecture Notes on Computer Science, 1803, 107 – 116.

Chang, Y.-L., Sueyoshi, T., and Sullivan, R.S., 1996, Ranking dispatching rules by data envelopment

analysis in a job shop environment, IIE Transactions, 28, 631 – 642.

Cheng, R., Gen, M., and Tsujimura, Y., 1996, A tutorial survey of job-shop scheduling problems using

genetic algorithms – I. representation, Computers in Engineering, 30, 983 – 997.

Cheng, R., Gen, M., and Tsujimura, Y., 1999, A tutorial survey of job-shop scheduling using genetic

algorithms – II. Hybrid genetic search strategies, Computers in Engineering, 36, 343 – 364.

Chiang, T.-C. and Fu, L.-C., 2004, Solving the FMS scheduling problem by critical ratio-based heuristics

and the genetic algorithm, Proc. of IEEE Conference on Robotics and Automation, 3131 – 3136.

 19

Chiang, T.-C. and Fu, L.-C., 2005, A virtual preemption paradigm for using priority rules for solve job

shop scheduling problems, Proc. of IEEE Conference on Robotics and Automation, 3714 – 3719.

Costa, M.T. and Ferreira, J.S., 1999, A simulation analysis of sequencing rules in a flexible flowline,

European Journal of Operational Research, 119, 440 – 450.

Crauwels, H.A.J., Potts, C.N., and Van Wassehnhove, L.N., 1996, Local search heuristics for

single-machine scheduling with batching to minimize the number of late jobs, European Journal of

Operational Research, 90, 200 – 213.

Croce, F.D., 1995, Generalized pairwise interchanges and machine scheduling, European Journal of

Operational Research, 83, 310 – 319.

Dorn, J., Girsch, M., Skele, G., and Slany, W., 1996, Comparison of iterative improvement techniques for

schedule optimization, European Journal of Operational Research, 94, 349 – 361.

Duvivier, D., Preux, Ph., Fonlupt, C., Robilliard, D., and Talbi, E.-G., 1998, The fitness function and its

impact on local search methods, Proc. of IEEE International Conference on Systems, Man, and

Cybernetics, 3, 11 – 14.

Franca, P.M., Mendes, A., and Moscato, P., 2001, A memetic algorithm for the total tardiness single

machine scheduling problem, European Journal of Operational Research, 132, 224 – 242.

Giegandt, A. and Nicholson, G., 1998, Better dispatch application – a success story, Proc. of IEEE/SEMI

Advanced Semiconductor Manufacturing Conference and Workshop, 396 – 399.

Glover, F., 1989, Tabu search-part I, ORSA Journal on Computing, 1, 190 – 206.

Glover, F., 1989, Tabu search-part II, ORSA Journal on Computing, 2, 4 – 32.

Goldberg, D.E., 1989, Genetic algorithms in search, optimization and machine learning, MA:

Addison-Wesley.

Goncalves, J.F., Mendes, J.J. de M., and Resende, M.G.C., 2005, A hybrid genetic algorithm for the job

shop scheduling problem, European Journal of Operational Research, 167, 77 – 95.

He, Z., Yang, T., and Tiger, A., 1996, An exchange heuristic imbedded with simulated annealing for

due-dates job-shop scheduling, European Journal of Operational Research, 91, 99 – 117.

 20

Hertz, A. and Widmer, M., 2003, Guidelines for the use of meta-heuristics in combinatorial optimization,

European Journal of Operational Research, 151, 247 – 252.

Hsieh, J.-C., Chang, P.-C., and Hsu, L.-C., 2003, Scheduling of drilling operations in printed circuit board

factory, Computers & Industrial Engineering, 44, 461 – 473.

Hsu, K.H. and Lan, C.C., 2000, Photolithography area dispatching scheme for advanced technology in

foundry fabs, Proc. of Semiconductor Manufacturing Technology Workshop, 211 – 216.

Kim, M.H. and Kim, Y.-D., 1994, Simulation-based real-time scheduling in a flexible manufacturing

system, Journal of Manufacturing Systems, 13, 85 – 93.

Kim, Y.-D., Kim, J.G., Choi, B., and Kim, H.-U., 2001, Production scheduling in a semiconductor wafer

fabrication facility producing multiple product types with distinct due dates, IEEE Trans. on Robotics

and Automation, 17, 589 – 598.

Kreipl, S., 2000, A large step random walk for minimizing total weighted tardiness in a job shop, Journal

of Scheduling, 3, 125 – 138.

Mattfeld, D.C. and Bierwirth, C., 2004, An efficient genetic algorithm for job shop scheduling with

tardiness objectives, European Journal of Operational Research, 155, 616 – 630.

Moscato, P., 1989, On evolution, search, optimization, genetic algorithms and martial arts: Towards

memetic algorithms, Caltech Concurrent Computation Program, C3P Report 826.

Murata, T., Ishibuchi, H., and Gen, M., 1998, Neighborhood structures for genetic local search algorithms,

Proc. of International Conference on Knowledge-based Intelligent Electronic Systems, 259 – 263.

Panwalkar, S.S., 1977, A survey of scheduling rules, Operations Research, 25, 45 – 61.

Raghu, T. S. and Rajendran, C., 1993, An efficient dynamic dispatching rule for scheduling in a job shop,

International Journal of Production Economics, 32, 30 – 313.

Rajendran, C.and Ziegler, H., 2003, Scheduling to minimize the sum of weighted flowtime and weighted

tardiness of jobs in a flowshop with sequence-dependent setup times, European Journal of Operational

Research, 149, 513 – 522.

Sabuncuoglu, I., 1998, A study of scheduling rules of flexible manufacturing systems: a simulation

 21

approach, International Journal of Production Research, 36, 527 – 546.

Sevaux, M. and Dauzere-Peres, S., 2003, Genetic algorithms to minimize the weighted number of late jobs

on a single machine, European Journal of Operational Research, 151, 296 – 306.

Taillard, E.D., Gambardella, L.M., Gendreau, M., and Potvin, J.-Y., 2001, Adaptive memory programming:

a unified view of metaheuristics,” European Journal of Operational Research, 135, 1 – 16.

Vaessens, R.J.M., Aarts, E.H.L. and Lenstra, J.K., 1996, Job shop scheduling by local search, INFORMS

Journal on Computing, 8, 302 – 317.

Van Laarhoven, P.J.M. and Aarts, E.H.L., 1987, Simulated annealing: theory and applications, Reidel,

Dordrecht.

Vepsalainen, A.P.J. and Morton, T.E., 1987, Priority rules for job shops with weighted tardiness costs,

Management Science, 33, 1035 – 1047.

Wang, L. and Zheng, D.-Z., 2001, An effective hybrid optimization strategy for job-shop scheduling

problems, Computers & Operations Research, 28, 585 – 596.

Yang, T., Kuo, Y., and Chang, I., 2004, Tabu-search simulation optimization approach for flow-shop

scheduling with multiple processors – a case study, International Journal of Production Research, 42,

4015 – 4030.

 22

Table 1. Performance of the multi-start hill climbing approach

 Data set 1 (20 jobs) Data set 2 (60 jobs)

Rule Nb size Min. Avg. Max. Min. Avg. Max.

20 0.790 0.798 0.800 0.817 0.819 0.823

40 0.795 0.806 0.815 0.815 0.820 0.825 ECR

60 0.810 0.814 0.820 0.812 0.819 0.825

20 0.735 0.748 0.760 0.675 0.679 0.685

40 0.745 0.760 0.775 0.675 0.681 0.690 MDD

60 0.750 0.766 0.780 0.675 0.683 0.692

20 0.700 0.707 0.715 0.585 0.588 0.592

40 0.705 0.711 0.715 0.585 0.590 0.595 SPT

60 0.715 0.718 0.725 0.585 0.588 0.593

20 0.740 0.752 0.770 0.667 0.673 0.677

40 0.740 0.760 0.780 0.670 0.675 0.682 SLACK

60 0.750 0.768 0.785 0.670 0.676 0.678

20 0.735 0.757 0.790 0.527 0.544 0.565

40 0.720 0.756 0.785 0.517 0.532 0.555 RND

60 0.725 0.750 0.775 0.508 0.527 0.548

Table 2. Performance of the simulated annealing approach

 Data set 1 (20 jobs) Data set 2 (60 jobs)

Rule Nb size Min. Avg. Max. Min. Avg. Max.

20 0.765 0.791 0.820 0.805 0.806 0.807

40 0.765 0.784 0.810 0.805 0.805 0.805 ECR

60 0.765 0.793 0.820 0.805 0.806 0.807

20 0.740 0.764 0.795 0.655 0.656 0.660

40 0.745 0.771 0.805 0.655 0.657 0.663 MDD

60 0.745 0.764 0.790 0.655 0.655 0.657

20 0.720 0.768 0.810 0.575 0.575 0.575

40 0.740 0.774 0.815 0.575 0.576 0.580 SPT

60 0.745 0.773 0.805 0.575 0.576 0.578

20 0.725 0.760 0.810 0.653 0.655 0.658

40 0.720 0.760 0.800 0.650 0.657 0.667 SLACK

60 0.740 0.776 0.810 0.657 0.659 0.667

20 0.735 0.768 0.805 0.455 0.484 0.513

40 0.725 0.767 0.815 0.462 0.492 0.520 RND

60 0.740 0.768 0.805 0.463 0.491 0.512

 23

Table 3. Performance of the proposed approach

 Data set 1 (20 jobs) Data set 2 (60 jobs)

Rule Nb size Min. Avg. Max. Min. Avg. Max.

10 0.875 0.895 0.915 0.843 0.859 0.877

20 0.875 0.889 0.910 0.840 0.858 0.873 ECR

30 0.880 0.891 0.910 0.847 0.863 0.880

10 0.835 0.859 0.880 0.702 0.727 0.753

20 0.830 0.857 0.885 0.700 0.724 0.753 MDD

30 0.830 0.859 0.890 0.697 0.719 0.745

10 0.815 0.835 0.870 0.632 0.647 0.665

20 0.815 0.837 0.865 0.637 0.652 0.673 SPT

30 0.815 0.831 0.865 0.627 0.646 0.665

10 0.835 0.865 0.895 0.695 0.724 0.750

20 0.840 0.865 0.890 0.693 0.719 0.750 SLACK

30 0.835 0.862 0.885 0.683 0.712 0.738

Table 4. Performance comparison

 Data set 1 (20 jobs) Data set 2 (60 jobs)

Search

approach

Nb size Min. Avg. Max. Min. Avg. Max.

ECR 0.760 0.805

MDD 0.645 0.655

SPT 0.655 0.575
−

SLACK 0.635 0.650

ECR 0.810 0.814 0.820 0.815 0.820 0.825

MDD 0.750 0.766 0.780 0.675 0.683 0.692

SPT 0.715 0.718 0.725 0.585 0.590 0.595

iterative

improvement

SLACK 0.750 0.768 0.785 0.670 0.675 0.682

ECR 0.765 0.793 0.820 0.805 0.806 0.807

MDD 0.745 0.771 0.805 0.655 0.657 0.663

SPT 0.740 0.774 0.815 0.575 0.576 0.580

simulated

annealing

SLACK 0.740 0.776 0.810 0.657 0.659 0.667

ECR 0.875 0.895 0.915 0.847 0.863 0.880

MDD 0.830 0.859 0.890 0.702 0.727 0.753

SPT 0.815 0.835 0.870 0.637 0.652 0.673

memetic

algorithm

SLACK 0.835 0.865 0.895 0.695 0.724 0.750

 24

Figures

Figure 1. An example of the conventional permutation-based representation

Figure 2. The pairwise interchange and insertion neighborhood function

Figure 3. The motivation of the rule-centric concept

Figure 4. The conventional and the rule-centric integration scheme

Figure 5. (a) An example of the rule-centric genome representation

(b) Generating a schedule with the representation in (a)

Figure 6. (a) Another example of the rule-centric genome representation

(b) Generating a schedule with the representation in (a)

Figure 7. An example of the virtual preemption based on the priority level

Figure 8. (a) elitism + mating + immigration scheme

(b) n/2n scheme

(c) 2/4 scheme

(d) the proposed scheme

Figure 9. An example of the probabilistic level up (PLU) neighborhood

 25

Figure 1. An example of the conventional permutation-based representation

Figure 2. The pairwise interchange and insertion neighborhood function

O11 O21 O42 O31

O41 O22 O12 O32O11 O21 O42O31

insertion

Should the processing

order of these operations

change adaptively?

Should the processing

order on the machine that

processes the succeeding

operation of O31 change

accordingly?

original

permutation

new

permutation

O41 O22 O12 O32

M1 M2

M1

M2

Due dates of job 1 and job 3

M1

M2

Figure 3. The motivation of the rule-centric concept

 26

Figure 4. The conventional and the rule-centric integration scheme

Figure 5. (a) An example of the rule-centric genome representation

(b) Generating a schedule with the representation in (a)

Figure 6. (a) Another example of the rule-centric genome representation

(b) Generating a schedule with the representation in (a)

 27

Figure 7. An example of the virtual preemption based on the priority level

Figure 8. (a) elitism + mating + immigration scheme (b) n/2n scheme (c) 2/4 scheme (d) the proposed scheme

Figure 9. An example of the probabilistic level up (PLU) neighborhood

