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Abstract 

This paper addresses the job shop scheduling problem with minimizing the number of tardy jobs as the 

objective. This problem is usually treated as a job sequencing problem, and the permutation-based 

representation of solutions was commonly used in the existing search-based approaches. In this paper, the 

flaw of the permutation-based representation is discussed, and a rule-centric concept is proposed to deal 

with it. A memetic algorithm is then developed to realize the proposed idea by tailored genome 

encoding/decoding schemes and local search procedure. Two benchmark approaches, a multi-start hill 

climbing approach and a simulated annealing approach, are compared in the experiments. The results 

show that the proposed approach significantly outperforms the benchmarks. 

 

Keywords: job shop scheduling, memetic algorithm, priority rules 
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1. Introduction 

Production scheduling is a research field that attracts researchers in the academia and engineers in the 

industry for last several decades. Many problems in this field fall into the category of discrete optimization 

problems and their NP-hard nature is challenging and interesting to researchers. In the manufacturing 

industry, scheduling is a critical issue in the phase of shop floor control. Engineers in the factory rely on a 

good scheduling approach to arrange the resources so that a satisfactory performance can be achieved. 

There are several well formulated problems in this field, such as single machine scheduling, flow shop 

scheduling, job shop scheduling, and so on. In this paper we take the job shop scheduling problem as the 

target since it is generic for the presence of multiple machines and allowance of different routes of jobs. 

In the literature, the objectives of job shop scheduling problems can be divided into flow time-based 

ones and due date-based ones. The flow time of a job is the duration from when its first operation starts to 

when its last operation finishes. Among the flow time-based objectives, the makespan, which refers to the 

maximum flow time of all jobs, is the most well known one. Recently, due date-based objectives gradually 

received more attention from researchers since meeting due dates becomes an important requirement for 

industry practitioners. Given a due date, a job is marked as tardy if its last operation is finished later than 

the due date. In this paper, our objective is to minimize the number of tardy jobs, or to maximize the 

meet-due-date rate.  

The paper proceeds as follows. Section 2 gives the problem definition of the job shop scheduling 

problem. In Section 3, we provide a literature survey for the approaches that were commonly used to solve 

the job shop scheduling problem. Section 4 describes the details of the proposed approach, which 

integrates two promising approaches, the priority rules and the memetic algorithms. Experiments and 

numerical results of the performance of the proposed approach and two benchmark approaches are given 

in Section 5. Finally, conclusions are made in Section 6. 
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2. Problem definition 

Scheduling is actually a task of allocation of resources to requests under certain constraints to meet the 

concerned criteria. In a job shop, resources refer to the machines and requests are the jobs to be processed. 

Given N jobs and M machines in the job shop, each job i has M operations denoted by Oij, i = 1…N, j = 

1…M. An operation refers to processing of a job on a particular machine, and each job must be processed 

by each machine exactly once. Each operation Oij has a fixed processing time pij. Let tij mean the starting 

time of operation Oij in the schedule, its completion time Cij can then be calculated as Cij = tij + pij. For 

each operation Oij, assume the preceding operation on its dedicated machine is Okl. Then tij can not be 

smaller than max{Ci(j-1), Ckl} considering the precedence constraint of operations of a job and the machine 

capacity constraint. For any operation Oij that is the first operation on its dedicated machine, the constraint 

of tij is modified to be no smaller than Ci(j-1) only. The value of Ci0 is zero for i = 1…N, which stands for 

that all jobs are ready to process at time zero. There are no setup times, no preemption, and no machine 

breakdowns. The number of buffers is assumed infinite, and the transportation issue is not considered. 

Each job i has a due date di. We set Ui as one if CiM is greater than di; otherwise, Ui is set as zero. The 

objective in this paper is to find a schedule that minimizes the number of tardy jobs ∑
= Ni

iU
...1

, or 

equivalently, to maximize the meet-due-date rate 1 – ∑
= Ni

iU
...1

/N. 

 

3. Literature survey 

The job shop scheduling problem is essentially a job sequencing problem – to determine the 

processing orders of jobs on each machine to satisfy the performance criterion. Among the approaches to 

this sequencing problem, priority rules are pervasively adopted in the industry due to its ease of 

implementation, small computation requirement, satisfactory performance, and the flexibility to 

incorporate domain knowledge and engineers’ expertise. The wide acceptance can be seen in 

Appleton-Day and Shao (1997), Giegandt and Nicholson (1998), Hsu and Lan (2000), and Kim et al. 

(2001). By using the priority rule, each time a machine is free, the rule is invoked to calculate a priority 

value for each waiting job in the queue of this machine. Then the job with the highest priority value is 
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taken as the next one to process. To develop a rule, researchers need to identify the important factors 

relevant to jobs and machines, and then manipulate these factors to come up with an appropriate numerical 

value as the priority. Vepsalainen and Morton (1987) proposed a parameterized rule, well known as the 

Apparent Tardiness Cost (ATC) rule to minimize weighted tardiness in the job shop. It assigned priorities 

to jobs according to the expected delay cost per imminent machine processing time. Anderson and 

Nyirenda (1990) developed two rules using dynamic operation due dates based on the remaining 

allowance times to minimize due date-based objectives in the job shop. The shop floor utilization level 

was taken to adjust the weights to the processing time and due date information in the rule proposed by 

Raghu and Rajendran (1993). A critical ratio-based rule exploiting group information of jobs was devised 

by Chiang and Fu (2004) to minimize the number of tardy jobs. For other reports and surveys of priority 

rules, see Panwalkar (1977), Kim and Kim (1994), Chang et al. (1996), Sabuncuoglu (1998), and Costa 

and Ferreira (1999). 

Local search-based approaches were also common for solving job sequencing problems since they are 

general and often provide promising results. To use local search-based approaches, a complete schedule 

should be given as an initial solution. Then a search process proceeds by examining the neighboring 

solutions generated from the so-called neighborhood functions. Different searching strategies in the 

neighborhood result in different local search approaches, such as simulated annealing (SA)(Van Laarhoven 

et al. 1987) and tabu search (Glover 1989). He et al. (1996) showed a SA approach for due-dates job shop 

scheduling. Armentano and Ronconi (1999) and Yang et al. (2004) adopted the tabu search approach to 

minimize total tardiness in the flowshop. Combining local search-based approaches is also a possible 

alternative, as can be seen in Adenso-Diaz (1996) and Kreipl (2000). Other surveys of local search-based 

approaches can be found in Crauwels et al. (1996), Dorn et al. (1996), and Vaessens et al. (1996). 

After Goldberg’s book was published in 1989, the genetic algorithm became popular in solving 

optimization problems. Unlike local search-based approaches, the genetic algorithm is a global search 

approach achieved by a population-based search process. It mimics the evolutionary process in the nature 

by realizing Darwin’s principle – natural selection and survival of the fittest with artificial genetic 
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operators including selection, crossover, mutation, and so on. Solutions are first encoded as genomes and 

constitute a population. Based on the performance/quality of the corresponding solution, each genome is 

given a fitness value. Then genomes are selected according to their fitness values so that fitter genomes 

participate more times in offspring breeding. When parents are selected, the offspring are generated by 

crossover and mutation. At last, the reproduction scheme decides which genomes can survive to the next 

generation. Generation by generation, genomes become better and better, and finally we can expect that an 

optimal or near-optimal solution will be obtained. Different encoding/decoding mechanisms and different 

implementations of the genetic operators make up various genetic algorithms. A comprehensive survey of 

job shop scheduling using genetic algorithms was provided by Cheng et al. (1996, 1999). 

Although the genetic algorithm has the global search ability, sometimes it was outperformed by other 

search algorithms due to its slow convergence speed (Vaessens et al. 1996, Dorn et al. 1996, Mattfeld and 

Bierwirth 2004, Goncalves et al. 2005). To increase the performance of genetic algorithms, a new 

approach called the memetic algorithm (Moscato 1989), was growing in recent years. The memetic 

algorithm, also known as the genetic local search, is a combination of the genetic algorithm and the local 

search-based approach in order to possess both the global search ability and search efficiency from these 

two kinds of approaches. Cai et al. (2000) proposed a memetic algorithm which embedded a hill climbing 

local search procedure to minimize the makespan in the job shop. The SA algorithm was adopted as the 

local search component to minimize the makespan in the job shop in Wang and Zheng (2001). In 

Goncalves et al. (2005), the hill climbing was also used but with a different neighborhood function from 

Cai et al. (2000). Other applications of the memetic algorithm on job sequencing problems can be found in 

Murata et al. (1998), Franca et al. (2001), and Sevaux and Dauzere-Peres (2003).  

 

4. The rule-centric memetic algorithm 

As what we can see from the literature, priority rules and the memetic algorithms are two promising 

approaches to solve the job shop scheduling problem. Priority rules break the job shop scheduling problem 

into many decisions of processing orders of jobs, and make the decisions dynamically based on the status 
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of the shop. The memetic algorithms, on the other hand, intend to solve the job shop scheduling problem 

by searching among a very large number of possible solutions efficiently through a sophisticated search 

mechanism. In this work, we will propose an approach which exploits the dynamic decision ability of 

priority rules and the search ability of memetic algorithms in an integrated manner. The details will be 

given in this section. Before going into the details of each component in our approach, we give an 

overview of the entire procedure first as follows: 

Step 0. Determine the genome encoding and decoding schemes. (Section 4.2, 4.3) 

Step 1. Initialize the population, and evaluate their fitness. (Section 4.8) 

Step 2. Reproduce the population in the next generation.  

  Do the following steps with a certain times. 

Step 2.1 Apply selection to pick two individuals as parents (Section 4.5) 

Step 2.2 Apply crossover to generate two offspring. (Section 4.5) 

Step 2.3 Apply mutation to each offspring probabilistically. (Section 4.5) 

Step 2.4 Determine which two individuals can survive based on the reproduction scheme. (Section 

4.6) 

Step 3. Apply the local search procedure to the population. (Section 4.7) 

Step 4. Evaluate the individuals in the population. (Section 4.4) 

Step 5. If the stopping criterion is reached, ends; otherwise, go back to Step 2. 

4.1 The concept of rule-centric 

As mentioned, to solve the job shop scheduling problem is to sequence the operations on the machines. 

In the literature, the solution was usually encoded as a permutation of operations. Then the corresponding 

schedule is derived by processing operations on each machine following the order in the permutation. 

Figure 1 gives an example of this conventional encoding and decoding mechanism. 

[Insert figure 1 about here] 
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With the permutation-based representation, new solutions are usually generated by changing the order 

of operations, for example, by pairwise interchange (also known as swap) and insertion (also known as 

shift) in the local search-based approaches, as illustrated in figure 2. In this way, different schedules can be 

derived from different permutations of operations.  

[Insert figure 2 about here] 

 

However, we think this kind of local and static modification could have some problem that reduces the 

search efficiency. We use figure 3 to explain the potential problem. We have four jobs and two machines, 

and the permutation which indicates the processing orders of operations on the machines is as illustrated in 

the figure. Suppose job 3 is tardy and the insertion (INS) neighborhood function is used. After applying 

INS, the new permutation is formed by moving the operation O31 to be the first to be processed on 

machine M1 while the relative processing order of all other operations are retained. The problem is that 

should the processing order of the remaining operations on M1 change adaptively? For example, if the 

operation O11 becomes tardy inevitably after processing O31 first, O11 should not be processed earlier than 

the other two operations. Besides the need of adaptively changing the processing order of the remaining 

operations on the same machine as O31, we may also need to adjust the order of operations on the machine 

(M2) on which the succeeding operation of O31 (namely, O32) is to be processed. In the original 

permutation, the operation O32 will be processed at the last on M2. If this order is not changed in the new 

permutation, then processing O31 at the first on M1 is useless to make job 3 meet its due date since the 

finish time of this job is not getting earlier. 

 

[Insert figure 3 about here] 

 

In short, we hope that each time we make a modification in one part of the schedule, a chain reaction 

will take place to broadcast this modification and the entire schedule is adjusted accordingly. This 

requirement reminds us of the dynamic decision ability of priority rules. In practice, a priority rule is 

applied to determine the processing order of operations based on the shop status when a machine is 
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available. This characteristic will be utilized in our approach to realize the chain reaction. Note that the 

integration scheme proposed here is not the same as the conventional one to combine priority rules and the 

search mechanism. In the conventional scheme, the priority rule is simply used to generate the initial 

solution(s) for the search mechanism. However, in the proposed rule-centric scheme, the priority rule and 

the search mechanism will interact with each other. Figure 4 depicts the relationship between the priority 

rule and the search mechanism in the conventional and the proposed integration scheme. Details of the 

interaction between the priority rule and the search mechanism will be explained in the following 

sub-sections. 

[Insert figure 4 about here] 

 

4.2 Genome encoding 

Since we use the priority rule to dynamically determine the processing order of operations, we do not 

record the order of operations statically as the permutation-based representation does. Instead, each 

operation is associated with a level, and the genome in our memetic algorithm is a string of these levels of 

all operations. The spirit of the proposed rule-centric approach is that the adopted priority rule is expected 

to generate a correct processing order for most operations, and the levels associated with operations are 

used only if some correction is necessary. The level is an integer in current implementation, and an 

example of the genome is given in figure 5 (a). 

 

[Insert figure 5 about here] 

 

4.3 Genome decoding 

Given a genome, a schedule is derived based on the associated levels of operations recorded in the 

genome and the adopted priority rule. Each time when a machine is available, the operations waiting to be 

processed are firstly collected. In figure 5 (b), for example, we have three awaiting operations – O11, O21, 

and O31. Then the operations with the highest level are ranked by the priority rule to decide the next 

processing target. From the genome in figure 5 (a), the levels of operations O11 and O12 are one, and the 

level of operation O31 is zero. Hence, only operations O11 and O12 will be considered by the priority rule. 
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At last, the machine starts to process the selected target. This selection process will take place each time 

when a machine becomes available. Here, when machine M1 finishes O11, the priority rule will be invoked 

again to determine the next processing target. 

 

[Insert figure 6 about here] 

 

Assume that the level of operation O31 is changed to two, as illustrated in figure 6 (a), then another 

schedule will be derived. In figure 6 (b), only O31 has the highest level (two) among three awaiting 

operations. Therefore, O31 is certainly the next processing target. Comparing to figure 5 (b), the first 

operation processed on machine M1 is changed from O11 to O31. The shop status after machine M1 

processed the first operation in figure 5 (b) and 6 (b) might be different, and the second-time invocation of 

the priority rule in these two cases might make different decisions. This is the dynamic decision ability that 

we mentioned in section 4.1. A change of the first operation can cause adaptive changes of processing 

orders of other operations. 

In addition to the influence on the candidate operations of the priority rule, the associated levels of 

operations are also used for the virtual preemption during construction of the schedule. When a machine is 

busy and an operation with a higher priority level arrives, the in-process operation will be preempted. The 

entire process of the preempted operation needs to restart (not resume) when next time it is selected to be 

processed. “Virtual” refers to the fact that the preemption only takes place during schedule generation and 

does not really happen in reality. This virtual preemption paradigm was proposed in Chiang et al. (2005), 

and was shown to improve the performance of the conventional paradigm of using priority rules. 

 

[Insert figure 7 about here] 

4.4 Fitness function 

In our memetic algorithm, the fitness value of each genome is calculated according to two performance 

measures of the corresponding schedule. The primary measure is the meet-due-date rate, which is the 

objective in our target problem. Since the benefit of incorporating the second criterion was presented in 
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Duvivier et al. (1998) and Hertz and Widmer (2003), we add the total tardiness as the second measure to 

help identifying the quality of genomes in a finer manner. Denote the meet-due-date rate and total 

tardiness of a genome g by rg and tg, the fitness value fg is calculated by the following equation: 

fg = w1 ⋅ (rg – min{ri})/(max{ri} – min{ri}) + w2 ⋅ (max{ti} – tg)/(max{ti} – min{ti}) i ∈ current population 

Simply speaking, the fitness value is a linear weighted sum of the normalized values of the 

meet-due-date rate and total tardiness. The values of weights will be set through preliminary experiments. 

4.5 Selection, crossover, and mutation 

Roulette wheel selection is adopted, in which a genome is selected as a parent in the probability in 

proportion to its fitness value. Since we do not encode the processing order of operations explicitly in the 

genome, simple crossover operators can be applied. Here we tested one-point crossover and two-point 

crossover. By a preliminary experiment, two-point crossover gave better performance and was chosen. As 

for mutation, we randomly pick an operation on each machine, and its associated level is increased or 

decreased by one in equal probability. 

4.6 Reproduction scheme 

The reproduction scheme determines which individuals in the current generation can survive to the 

next generation. Besides the biased selection operators like roulette wheel selection, the reproduction 

scheme is the main force to push the entire population to converge to better individuals. We tested three 

existing schemes in our approach, but found that their performance is not good in our application.  

The first scheme was proposed in Goncalves et al. (2005), and is illustrated in figure 8 (a). In this 

scheme, the best several individuals in the current generation are first copied to the next generation. Then a 

portion of the population in the next generation is filled with offspring produced by mating the individuals 

in the current population. Finally, some randomly generated individuals are included to complete the entire 

population. In our test, this scheme did not provide good convergence pressure due to two reasons: first, 

the offspring produced by mating are directly put into the next generation but they do not guarantee to be 
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better than their parents; second, individuals brought in by random immigration are usually much worse 

than other individuals after the evolutionary process proceeds several generations, and hence this portion 

of population has little effects. 

In order to strengthen the convergence pressure, we then tested the second scheme, which was used in 

Wang and Zheng (2001). In this scheme, n offspring are produced by mating where n is the population size. 

Then best n individuals from the current population and offspring survive to the next generation. This n/2n 

scheme is illustrated in figure 8 (b). Strong convergence pressure was exhibited in the test, but it was also 

the problem. When two parents with high fitness produce two offspring that also have high fitness, all four 

individuals may survive and which means the size of this family doubles. This phenomenon causes 

premature convergence in only several generations and reduces the searching efficiency. 

The third scheme, which can be seen as a modified version of the second one, is shown in figure 8 (c). 

In this scheme, best two individuals of the two selected parents and two offspring produced by mating 

survive to the next generation. This is called the 2/4 scheme, and was adopted in Cai et al. (2000). In our 

test, the premature convergence phenomenon still appeared, though later than in the second scheme. 

After trying three existing schemes, we found that they are not suitable in our application. Therefore, a 

new scheme is proposed here. The major difference between our scheme and the third scheme is that the 

best two individuals among two parents and two offspring “replace” the parents so that we do not have a 

fast growth of a family. To maintain diversity, we further restrict that the best two individuals must have 

different meet-due-date rates or total tardiness. (The only exception is when all four individuals have the 

same meet-due-date rate and total tardiness.) Random immigration in the first scheme is also employed 

here, but they will replace the worst individuals in our scheme, which is different from the way in which 

the first scheme does. 

 

[Insert figure 8 about here] 

 



 11 

4.7 Local search procedure 

‘GA can easily identify different solution subspaces with good characteristics, but they lack the “killer 

instinct” that would allow them to intensify the search in these areas (Taillard et al. 2001).’ To provide the 

fine-grained search ability, the local search procedures are incorporated into the genetic algorithms, and 

applications of the resulted memetic algorithm grew in recent years. There are three key components in the 

design of a local search procedure – configuration representation, neighborhood function, and searching 

strategy. Here the representation of configuration is the same as that of genome, and the details of other 

two components are given in the following subsections. 

4.7.1 Probabilistic level up (PLU) neighborhood 

In the proposed approach, we expect that the adopted priority rule should determine appropriate 

processing order of most operations. Certainly the rule might not generate a perfect order and some 

operations that should be processed early are processed late. We push these delayed operations to be 

processed earlier by increasing their associated levels. This is the main idea of our neighborhood function. 

To generate a neighboring genome gn of a base genome gb, firstly the tardy jobs in the corresponding 

schedule of gb are identified. Then each of these jobs is marked as ‘to-be-leveled-up’ in probability PJ. 

Finally, for each of these ‘to-be-leveled-up’ jobs, each of its operations that experience positive waiting 

time receives an increment of level by one in probability PO. Let us use figure 9 to explain how it works. 

Assume that job 2 and job 3 are tardy in the corresponding schedule of gb. Assume PJ = 0.5, which means 

that on average half of the tardy jobs will be marked as ‘to-be-leveled-up,’ and PO = 0.5, which means on 

average half of operations will receive an increment of level. Among job 2 and 3, suppose job 3 is marked 

as ‘to-be-leveled-up.’ Then among two operations of job 3, suppose O31 is selected to receive an increment 

of level. Finally we can get the neighboring genome as illustrated. We call this neighborhood function 

‘probabilistic level up (PLU),’ and the idea behind it is to try to make a portion of tardy jobs meet due 

dates by leveling up some operations of these jobs so that these operations are processed earlier and 

consequently push these jobs to be finished earlier. 
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[Insert figure 9 about here] 

 

4.7.2 Searching strategy 

The configuration determines the search space; the neighborhood function and the evaluation function 

sketch the landscape of the search space, and the searching strategy leads the path during searching. 

Among several searching strategies, the hill climbing strategy is the most common in the local search 

procedure in memetic algorithms because it provides intensive search ability and does not take too much 

computation time (Goncalves et al. 2005, Sevaux et al. 2003). We also use this strategy in our local search 

procedure. When a neighboring genome is generated, it is accepted only if it has higher meet-due-date rate, 

or the same meet-due-date rate and lower total tardiness. For each base genome, a fixed number of 

neighboring genomes are generated. If no genome in the neighborhood is better, the local search procedure 

stops. 

In section 4.7.1, we mentioned that there is a parameter PJ in the neighborhood function. This 

parameter represents the percentage of jobs to be ‘saved’ from being tardy. To apply the local search 

procedure to a genome g, the value of PJ is set as PJ
0
/(1+lg), where PJ

0
 is the parameter of the memetic 

algorithm, and lg is the number of applications of the local search procedure to this genome. This 

adjustment reflects the idea that the percentage of jobs that can be ‘saved’ would get smaller and smaller 

as the genome is improved by the local search procedure more and more times. By decreasing PJ based on 

the search progress, the resulted neighborhood by the PLU neighborhood function will also change 

adaptively. It would be beneficial to generate good solutions more easily. 

4.8 Generation of the initial population 

In the initial population, there is always one genome with all zero levels. This genome represents the 

schedule purely determined by the adopted priority rule. The remaining population is filled with genomes 

generated by randomly assigning each level with zero and one in equal probability.  

 



 13 

5. Experiments and results 

5.1 Generation of problem instances 

We generated two data sets, each with ten instances. There are 20 machines. The processing time of 

each operation is a random number in [1, 50], and setup time is considered to be included in the processing 

time. The numbers of jobs are 20 in the first data set and 60 in the second one, respectively. Each instance 

is generated by determining the processing route of each job and the processing time of each operation 

randomly. The due date of each job is assigned by r⋅p, where r is a random real number in [1, d] and p is 

the total processing time of this job. The value of d is chosen so that the meet-due-date rate of each 

problem instance is approximately between 0.75 and 0.8 when the ECR rule (Chiang and Fu 2004) is used. 

5.2 Two benchmark approaches 

To examine the performance of the proposed memetic algorithm, two other approaches are 

implemented. They are local search-based approaches, and use the conventional permutation-based 

representation. For each approach, both pairwise interchange and insertion neighborhood functions are 

considered. These two neighborhood functions are pervasively used with the permutation-based 

representation, for example, see Cai et al. (2000), Hsieh et al. (2003), and Yang et al. (2004). 

The first approach is a multi-start hill climbing (also known as descent search) approach. The initial 

solution is generated by a selected priority rule. Then a hill climbing search starts. For a base configuration, 

a fixed number of neighboring solutions are generated. Whenever no better solution is found in the 

neighborhood, the search process restarts again from the initial solution. The above process will repeat 

until the time limit is reached. At last, the best solution found during searching is reported. The multi-start 

hill climbing is a common benchmark, as can be seen in Crauwels et al. (1996), Franca et al. (2001), and 

Rajendran and Ziegler (2003). In the experiments, we set the time limit as four minutes. 

The second approach is a SA algorithm. In SA, better configuration in the neighborhood is absolutely 

accepted. Besides, worse configuration can also be accepted, but with a probability related to the loss of 

solution quality. This kind of strategy is useful to jump out from the local optima and to reach the global 

optima. In our implementation, a worse neighboring configuration is accepted with the probability as 
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follows: 

cb: the base configuration, cn: the neighboring configuration,  

r(.): meet-due-date rate, t(.): total tardiness, T: temperature, exp(.): exponential distribution 

Case 1: If r(cn) < r(cb), prob. = exp( −(1 – r(cn)/r(cb))/T ) 

Case 2: If r(cn) = r(cb) and t(cn) > t(cb), prob. = exp( −(t(cn)/t(cb) – 1)/T )  

The cooling schedule has three parameters, the initial temperature, the final temperature, and the 

cooling rate. The initial temperature is 0.36, obtained by accepting a neighboring configuration with a 50% 

loss of quality in probability 0.25 (i.e. exp(– 0.5/0.36) = 0.25). The final temperature is 0.0027, obtained 

by accepting a neighboring configuration with a 1% loss of quality in probability 0.025. The cooling rate is 

set to control the computation time to be four minutes. 

5.3 Experimental results 

In our first experiment, the performance of the multi-start hill climbing approach was examined. We 

used five priority rules to generate the initial configuration – ECR (Chiang and Fu 2004), modified due 

date (MDD), shortest processing time (SPT), least slack (SLACK), and random (RND) rule. The equations 

for the first four rules are given in Appendix. Three neighborhood sizes, 20, 40, and 60, were tested. Hence, 

totally we had thirty versions of this multi-start hill climbing approach by five rules, three neighborhood 

sizes, and two neighborhood functions (pairwise interchange and insertion). Each problem instance was 

solved by each version by five times, and the minimal, average, and maximal meet-due-date rates among 

five runs were recorded. Then the averages of the minimal, average, and maximal meet-due-date rates over 

ten problem instances in each of two data sets were calculated. These three values were taken to measure 

the performance of each version in the worst, average, and the best cases, respectively. Since the results 

obtained by using pairwise interchange and insertion as neighborhood functions were quite similar, we 

only show the results by using pairwise interchange in table 1. 

 

[Insert table 1 about here] 
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In table 1, we first observe that the initial solution has a significant impact on the performance. Using 

the ECR rule to generate the initial solution can provide the best performance. The MDD and SLACK 

rules have close performance, and the SPT rule is worse than the previous three rules. In data set 1, using 

the RND rule to generate the initial solution is better than using the SPT rule, however, the result is 

reversed in data set 2. It reveals that with larger problem size, which implies a larger solution space, the 

chance for a random initial solution to fall in a good region becomes smaller. The benefit of the domain 

knowledge in priority rules shows up more evidently. 

As for the effects of the neighborhood size, larger neighborhood size is useful for all rules except the 

RND rule in data set 1. A large neighborhood size could cause the search process to take much time in a 

region even if the initial solution generated by the RND rule is bad. Therefore, the RND rule prefers a 

smaller neighborhood because it can try more initial solutions to find a good region within the 

computation time limit. In data set 2, the RND still performs better with a smaller neighborhood. For the 

other rules, the effect of the neighborhood size is not obvious. 

In the second experiment, we studied the performance of the SA benchmark approach. Like the first 

experiment, we also tested thirty versions of this approach. The versions with insertion as the 

neighborhood function performed slightly better than those with pairwise interchange. Hence, we report 

the results of the versions using insertion neighborhood function in table 2. 

 

[Insert table 2 about here] 

 

In data set 1, we find that the impact of the initial solution reduces with the global search ability of the 

SA approach. No matter which rule is used to generate the initial solution, we can obtain close 

performance in the best case. Nevertheless, the initial solution still has a great influence on the 

performance in data set 2. The reason could be that the computation time becomes insufficient for the SA 

approach to reach a stable state at each temperature when the problem size gets larger.  

Performance of the proposed memetic algorithm was investigated in the third experiment. Since the 

priority rule is expected to generate an appropriate processing order of operations in our approach, the 
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RND rule was not considered. In order to prevent the local search procedure from taking too much 

computation time, we tested three smaller neighborhood sizes, 10, 20, and 30. The population size was 20, 

and the mutation rate was 0.2. The weights w1 and w2 in the fitness function were set as three and one, 

which were obtained from a preliminary test on several different combinations of values. In each 

generation, 16 offspring are generated, and the worst four individuals are replaced by random immigration. 

The value of PJ
0
 mentioned in section 4.7.2 is 0.5. The time limit is also four minutes, which is the same as 

the two benchmarks. There are twelve versions of the proposed approach in total by four priority rules and 

three neighborhood sizes, and the results are shown in table 3. 

 

[Insert table 3 about here] 

 

The performance obtained by adopting different rules is different, especially in data set 2, whose 

instances have larger problem size. This can be easily realized since the priority rule plays an important 

role in our “rule-centric” approach. The proposed approach performs the best with the ECR rule. The 

MDD and SLACK rules follow, and the SPT rule is the worst again. To solve problem instances in data set 

2, the adopted rule must manage more operations than it does to solve instances in data set 1. Hence, the 

dynamic decision ability of different rules leads to much more significant performance gap. 

In the proposed approach and two benchmarks, each priority rule was tested with many different 

settings (such as different neighborhood sizes). The best results obtained among those settings are now 

summarized in table 4. The first four rows show the meet-due-date rates obtained by purely using the 

priority rules. Table 4 shows that no matter which rule is adopted, the proposed rule-centric memetic 

algorithm significantly outperforms the two benchmark approaches in either the best, average, or worst 

cases. The meet-due-date rate is raised by 5.5% at least and 9.5% at most in data set 1. In data set 2, the 

increment is between 5.5% and 7.8%. These are significant improvement. 

[Insert table 4 about here] 
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6. Conclusions 

In recent years, search-based approaches are common to solve job shop scheduling problems. Whether 

local search-based or population-based search methods are used, the representation of solution is 

undoubtedly the most important issue. In this paper, first we show the flaw of the permutation-based 

representation, which is a popular representation in the literature. To eliminate this flaw, we proposed an 

idea that a modification in one part of the schedule must trigger a chain reaction to broadcast this 

modification and the entire schedule is adjusted accordingly. The dynamic decision ability of priority rules 

is suitable to realize this idea, and thus we developed a rule-centric memetic algorithm that tightly coupled 

the search process and the priority rules. New genome encoding/decoding schemes, reproduction schemes, 

and local search procedure were devised. The performance of our approach was shown evidently superior 

to two search-based approaches in the experiments. 

Incorporation of domain knowledge and heuristics in the search-based algorithms is an unavoidable 

trend, as reported in Cheng et al. (1999) and Taillard et al. (2001). The rule-centric concept in our 

approach is actually one kind of realization. Domain knowledge and heuristics are incorporated into the 

memetic algorithm in the form of priority rules. The priority rule constructs the schedule based on the 

embedded knowledge; the search mechanism makes some corrections to the schedule; and then the 

priority rule adapts the schedule to the corrections by its dynamic decision ability. Through the interactions 

between priority rules and the memetic search mechanism, schedules with higher quality can be obtained 

more easily, as can be seen in the experiments. There is no restriction on the priority rules which can be 

used in the proposed approach. Managers and engineers in the shop can integrate their rules into this 

approach effortlessly. Domain knowledge could also be added in other components in the proposed 

approach, for example, the crossover, mutation, and the neighborhood function. This will be the research 

direction in our future work.  
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Appendix 

Four priority rules used in this work 

Rules Priority value Notations 

SPT Zi = pi 

MDD Zi = max{di, t + ri} 

SLACK Zi = di – ti – ri 
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p: processing time of the imminent operation 

r: remaining processing time of the job (including p) 

t: system time, the time at which the dispatching decision is 

to be made 

d: due date of the job 
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Table 1. Performance of the multi-start hill climbing approach 

   Data set 1 (20 jobs)  Data set 2 (60 jobs) 

Rule Nb size Min. Avg. Max.  Min. Avg. Max. 

20 0.790 0.798 0.800  0.817 0.819 0.823 

40 0.795 0.806 0.815  0.815 0.820 0.825 ECR 

60 0.810 0.814 0.820  0.812 0.819 0.825 

20 0.735 0.748 0.760  0.675 0.679 0.685 

40 0.745 0.760 0.775  0.675 0.681 0.690 MDD 

60 0.750 0.766 0.780  0.675 0.683 0.692 

20 0.700 0.707 0.715  0.585 0.588 0.592 

40 0.705 0.711 0.715  0.585 0.590 0.595 SPT 

60 0.715 0.718 0.725  0.585 0.588 0.593 

20 0.740 0.752 0.770  0.667 0.673 0.677 

40 0.740 0.760 0.780  0.670 0.675 0.682 SLACK 

60 0.750 0.768 0.785  0.670 0.676 0.678 

20 0.735 0.757 0.790  0.527 0.544 0.565 

40 0.720 0.756 0.785  0.517 0.532 0.555 RND 

60 0.725 0.750 0.775  0.508 0.527 0.548 

 

 

Table 2. Performance of the simulated annealing approach 

   Data set 1 (20 jobs)  Data set 2 (60 jobs) 

Rule Nb size Min. Avg. Max.  Min. Avg. Max. 

20 0.765 0.791 0.820  0.805 0.806 0.807 

40 0.765 0.784 0.810  0.805 0.805 0.805 ECR 

60 0.765 0.793 0.820  0.805 0.806 0.807 

20 0.740 0.764 0.795  0.655 0.656 0.660 

40 0.745 0.771 0.805  0.655 0.657 0.663 MDD 

60 0.745 0.764 0.790  0.655 0.655 0.657 

20 0.720 0.768 0.810  0.575 0.575 0.575 

40 0.740 0.774 0.815  0.575 0.576 0.580 SPT 

60 0.745 0.773 0.805  0.575 0.576 0.578 

20 0.725 0.760 0.810  0.653 0.655 0.658 

40 0.720 0.760 0.800  0.650 0.657 0.667 SLACK 

60 0.740 0.776 0.810  0.657 0.659 0.667 

20 0.735 0.768 0.805  0.455 0.484 0.513 

40 0.725 0.767 0.815  0.462 0.492 0.520 RND 

60 0.740 0.768 0.805  0.463 0.491 0.512 
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Table 3. Performance of the proposed approach 

   Data set 1 (20 jobs)  Data set 2 (60 jobs) 

Rule Nb size Min. Avg. Max.  Min. Avg. Max. 

10 0.875 0.895 0.915  0.843 0.859 0.877 

20 0.875 0.889 0.910  0.840 0.858 0.873 ECR 

30 0.880 0.891 0.910  0.847 0.863 0.880 

10 0.835 0.859 0.880  0.702 0.727 0.753 

20 0.830 0.857 0.885  0.700 0.724 0.753 MDD 

30 0.830 0.859 0.890  0.697 0.719 0.745 

10 0.815 0.835 0.870  0.632 0.647 0.665 

20 0.815 0.837 0.865  0.637 0.652 0.673 SPT 

30 0.815 0.831 0.865  0.627 0.646 0.665 

10 0.835 0.865 0.895  0.695 0.724 0.750 

20 0.840 0.865 0.890  0.693 0.719 0.750 SLACK 

30 0.835 0.862 0.885  0.683 0.712 0.738 

 

 

Table 4. Performance comparison 

   Data set 1 (20 jobs)  Data set 2 (60 jobs) 

Search 

approach 

Nb size Min. Avg. Max.  Min. Avg. Max. 

ECR 0.760  0.805 

MDD 0.645  0.655 

SPT 0.655  0.575 
− 

SLACK 0.635  0.650 

ECR 0.810 0.814 0.820  0.815 0.820 0.825 

MDD 0.750 0.766 0.780  0.675 0.683 0.692 

SPT 0.715 0.718 0.725  0.585 0.590 0.595 

iterative 

improvement 

SLACK 0.750 0.768 0.785  0.670 0.675 0.682 

ECR 0.765 0.793 0.820  0.805 0.806 0.807 

MDD 0.745 0.771 0.805  0.655 0.657 0.663 

SPT 0.740 0.774 0.815  0.575 0.576 0.580 

simulated 

annealing 

SLACK 0.740 0.776 0.810  0.657 0.659 0.667 

ECR 0.875 0.895 0.915  0.847 0.863 0.880 

MDD 0.830 0.859 0.890  0.702 0.727 0.753 

SPT 0.815 0.835 0.870  0.637 0.652 0.673 

memetic 

algorithm 

SLACK 0.835 0.865 0.895  0.695 0.724 0.750 
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Figures 

 

Figure 1. An example of the conventional permutation-based representation 

Figure 2. The pairwise interchange and insertion neighborhood function 

Figure 3. The motivation of the rule-centric concept 

Figure 4. The conventional and the rule-centric integration scheme 

Figure 5. (a) An example of the rule-centric genome representation  

(b) Generating a schedule with the representation in (a) 

Figure 6. (a) Another example of the rule-centric genome representation 

(b) Generating a schedule with the representation in (a) 

Figure 7. An example of the virtual preemption based on the priority level  

Figure 8. (a) elitism + mating + immigration scheme  

(b) n/2n scheme  

(c) 2/4 scheme  

(d) the proposed scheme 

Figure 9. An example of the probabilistic level up (PLU) neighborhood 
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Figure 1. An example of the conventional permutation-based representation 

 

 

 

Figure 2. The pairwise interchange and insertion neighborhood function 
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Figure 3. The motivation of the rule-centric concept 
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Figure 4. The conventional and the rule-centric integration scheme 

 

 

 

Figure 5. (a) An example of the rule-centric genome representation  

(b) Generating a schedule with the representation in (a) 

 

 

 

 

 

Figure 6. (a) Another example of the rule-centric genome representation  

(b) Generating a schedule with the representation in (a) 
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Figure 7. An example of the virtual preemption based on the priority level  

 

 

 
Figure 8. (a) elitism + mating + immigration scheme (b) n/2n scheme (c) 2/4 scheme (d) the proposed scheme 

 

 

Figure 9. An example of the probabilistic level up (PLU) neighborhood 


