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Abstract

This paper addresses the scheduling problem in the wafer probe center. The proposed approach is

based on the dispatching rule, which is popularly used in the semiconductor manufacturing industry.

Instead of designing new rules, this paper proposes a new paradigm to utilize these rules. The proposed

paradigm formulates the dispatching process as a 2-D assignment problem with the consideration of

information from multiple lots and multiple pieces of equipment in an integrated manner. Then, the

dispatching decisions are made by maximizing the gains of multiple possible decisions simultaneously.

Besides, we develop a genetic algorithm (GA) for generating good dispatching rules through combining

multiple rules with linear weighted summation. The benefits of the proposed paradigm and GA are verified

with a comprehensive simulation study on three due date-based performance measures. The experimental

results show that under the proposed paradigm the dispatching rules and GA can perform much better than

under the traditional one.
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1. Introduction

Semiconductor manufacturing is among the most complicated and capital-intensive manufacturing

industry in the world. To survive in the highly competitive market, the wafer manufacturing industry needs

to utilize the resources very well not only to reach the internal performance criteria such as cycle time and

throughput but also to satisfy customers’requests including delivery date and quantity. Thus, scheduling

becomes an inevitable task in this industry (Johri, 1992). Wafer manufacturing consists of four stages, and

wafer probing is the second one. Wafers are fabricated in the first stage, and then tested for functionality

by means of electrical probes in the probe center before packaging and final testing. In the literature, much

more research works were done for scheduling in the wafer fabrication facilities than in the probe centers.

However, the performance of the probe center is found to be critical to the entire wafer manufacturing

process, and scheduling in the probe center started to attract the attention of more and more researchers.

Scheduling in the wafer probe center can be viewed as a job shop scheduling problem with many

complex problem characteristics including dynamic job arrivals, machine unavailability, sequence

dependent setup times, alternative machines, and batch-type processing. Since the classic job shop

scheduling problem was already proven to be NP hard, scheduling in the wafer probe center is certainly a

difficult problem, which motivates the research works on developing effective and efficient scheduling

approaches. (For a thorough review of system characteristics and scheduling issues in the semiconductor

manufacturing industry, readers are invited to the works by Uzsoy et al. in 1992 and 1994.) In the past,

most literature about scheduling in the semiconductor manufacturing industry concentrated on cycle

time-based objectives since production lots were usually not related to a particular order under the

make-to-stock fashion. However, with Application Specific Integrated Circuit (ASIC) and specialty

processors gaining more and more market share and production volume, the capability of meeting due

dates is becoming a critical factor in the make-to-order environment.
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In this work, we address the wafer probing scheduling problem with three due date-based objectives

including the tardy rate, total tardiness, and the maximum tardiness. A survey of previous research works

is provided in section 2, in which we will see that the dispatching rule is the most popular approach for

scheduling in the semiconductor manufacturing industry. In the literature, the researchers devoted

themselves on designing a good dispatching rule or on generating a combined rule with some optimization

algorithms. To our best knowledge, all of them applied the dispatching rules under a typical paradigm. In

section 3, we will indicate the drawback of this traditional dispatching paradigm, and will also propose a

new paradigm to utilize the dispatching rules better. In addition to the dispatching paradigm, we develop a

GA to generate appropriate dispatching rules according to the system status and concerned performance

criteria. Section 4 will detail the components of the proposed GA. Experiments and results are provided in

section 5 to see the benefits of the proposed approach. Conclusions and future research directions are

given in section 6.

2. Literature review

In the literature, there were several approaches proposed to solve the scheduling problem in the

semiconductor testing facilities. Chen et al. (1995) presented a Lagrangian relaxation approach to the IC

sort and test facility to minimize the total weighted tardiness. A class of preemptive scheduling problems

was addressed in this work. Ovacik and Uzsoy (1996) proposed a decomposition method to minimize the

maximum lateness. Their problem considered multiple stages, sequence dependent setup times, and

parallel machines. However, only two kinds of operations are modeled and uncertainties such as machine

breakdown were not taken into account. Yang and Chang (1998) also adopted the Lagrangian relaxation

approach and tried to minimize weighted tardiness and flow time simultaneously. Their model contained

only one stage and no setup times. Periodic rescheduling was used to cope with the uncertainties. Pearn et

al. (2002) transformed the wafer probing scheduling problem into a vehicle routing problem and solved it

with an existing approach. In their later work (Pearn et al., 2004), they extended the model from single
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stage to multiple stages consisting of both serial and batch stages. Uncertainties, nevertheless, were still

not taken into consideration. Ellis et al. (2004) provided a survey of more than ten approaches and

indicated that only their work studied the problem characteristics including multiple wafer types, multiple

test stations, sequence-dependent setup times, and so on. Even though their problem incorporated many

characteristics, they did not model uncertainties and batch stages.

As can be seen, scheduling in the semiconductor manufacturing system must take account of many

problem characteristics such as sequence dependent setup times, uncertainties, various types of operations,

etc. Among the scheduling approaches to this kind of problem, dispatching rules could be the most popular

in the industry. They are favored by the practitioners because of ease of implementation, intuitive appeal,

flexibility to incorporate domain knowledge, small requirement of computational effort, and convenience

to deal with the dynamic environment. There are many reports from the industry to show successful

applications of dispatching rules, for example, see Appleton-Day and Shao (1997) from AMD, Giegandt

and Nicholson (1998) from Siemens, and Ham and Dillard (2005) from Samsung.

With the wide acceptance of dispatching rules in the industry, many researchers in the academia also

devoted themselves on developing good dispatching rules. Lu et al. (1994) proposed a class of fluctuation

smoothing policies to reduce mean and variance of cycle time. The main idea is to reduce the fluctuations

such as the burstiness of arrivals to each buffer in the queueing network. Li et al. (1996) investigated the

minimum inventory variability scheduling policy, also aiming to reduce mean and variance of cycle time.

Their scheduling policy tried to reduce variability by introducing the maximum correlation between

inter-arrivals and services. Kim et al. (1998b) proposed three rules for lot release control, mask scheduling,

and batch scheduling to minimize mean flow time and work-in-process inventory and to maximize

throughput rate. All these three rules were built based on the concept of load balancing. Hung and Chen

(1998) explored a simulation-based dispatch rule and a queue prediction dispatch rule for achieving the

goal of reducing flow times while maintaining high machine utilization. Their study emphasized that

accurate prediction and exploitation of future flow times can improve the schedule performance. Sethi et
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al. (1999) improved the scheduling policy from Lu et al. by considering the issues of setup times and

batch processing. Yoon and Lee (2000) proposed an operation due date rule to reduce the variance of the

flow time. In their rule, the operation due date was set to be proportional to the utilization of the capable

workstations. Most research works of applying dispatching rules for scheduling in the semiconductor

manufacturing systems put the focus on the cycle time (flow time)-related performance measures except

the works by Kim et al. (1998a, 2001), whose objectives were to minimize the total tardiness. Due date

information of lots was put into their dispatching rules for lot release, lot scheduling, and batch scheduling.

Other interesting research works include Lee et al. (2001), Lee et al. (2002), Rose (2002, 2003), Chern

(2003), and Chen (2005).

Besides devising good dispatching rules, there is another stream of research on automatic and

intelligent selecting or combining dispatching rules. For example, Hsieh et al. (2001) proposed the ordinal

optimization-based approach to select good rules under different initial states, performance indices, and

time horizons. To generate a good combined dispatching rule by mixing multiple rules, a popular method

is to associate each rule with a weight value and then to generate different combined rules by adjusting the

weight values. The rule with larger weight has higher impact on the dispatching result obtained by the

combined rule. Huang and Lin (1998) developed a human-computer interactive scheduler to adjust the

weights of dispatching rules. In their scheduler, many rules were built to relate the criterion to be improved

and the rule to be intensified. There are several other approaches to set the weights of rules to generate a

combined rule. For instance, Chen et al. (2001) used the GA, Min and Yih (2003) took the neural network

(NN), and Dabbas et al. (2001) and Lin et al. (2005) adopted the response surface method (RSM).
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3. The proposed paradigm for rule-based scheduling

3.1 Basic concept

In the previous section, we have seen that using dispatching rule is a common approach to solve lot

scheduling problem in the semiconductor manufacturing industry. However, the typical paradigm for

applying the dispatching rules in the existing works has some drawbacks. In this subsection, first we will

describe the traditional dispatching paradigm and show its defects. Then, we will describe the basic

concept of the dispatching paradigm proposed in this paper.

Under the traditional dispatching paradigm, the dispatching rule is invoked each time when a piece of

equipment is released after finishing a testing operation or being repaired. We use figure 1(a) as an

example. Eqp1 is released, and there are four waiting lots that it can process. By using the specified

dispatching rule in the probe center, Eqp1 will rank these four lots and then the lot with the highest priority

value will be the next one to be processed. In this way, the production managers and engineers can embed

their expertise into the rule and use it to select the most suitable lot according to the status at the decision

point. That is the reason why the dispatching rule is flexible and fit for the dynamic and complex

environment, and therefore is attractive to the practitioners.

However, there is still some space to make this paradigm perform better. Firstly, the traditional

paradigm uses information only from the viewpoint of the equipment initiating the invocation of

dispatching rules. In the example in figure 1(a), Eqp1 selects its most preferred lot, say Lot3, regardless of

the existence and status of other equipment such as Eqp2, which might be more suitable to process Lot3

than Eqp1. Secondly, the goal of the traditional paradigm is to find the best match between just one lot and

one piece of equipment. But it should be a better way to search for the best set of matches among multiple

lots and pieces of equipment simultaneously.

<< Insert figure 1 about here >>
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Based on our observations, we propose a dispatching paradigm in order to fix the above defects so

that the dispatching rules can be utilized more effectively. The basic concept is illustrated in figure 1(b).

Under the proposed paradigm, not only the equipment will rank the waiting lots by the dispatching rules

but the waiting lots will also rank the equipment by the machine selection rules at each decision point. In

addition to the equipment that initiates the dispatching process, other pieces of equipment that have the

same processing capability may also be involved. In figure 1(b), when there are two pieces of equipment

and four lots involved in the dispatching process, totally eight possible matches will be evaluated and the

matching preference of each possible match is calculated based on the ranking results from both sides of

lot and equipment. Then, the best set of two matches is to be found so as to maximize the sum of matching

preferences. Mathematically, we formulate the dispatching process as a 2-D assignment problem as

follows.

Maximize 
 21 , SjSi

ijij xa

subject to 



2

1
Sj

ijx , i = 1,… |S1|, (1)





1

1
Si

ijx , j = 1,… |S2|,

0 xij, i S1 and j S2.

Given two sets of lots and equipment involved in the dispatching process, S1 denotes the set with

smaller size, and S2 denotes the other one. The variable xij is 1 if the entities i and j are matched together;

otherwise, xij is 0. The preference of a match of i and j is denoted by aij, and the goal is to find the set of

matches that maximize the sum of matching preferences.

In the following subsections, section 3.2 describes how we choose the lots and equipment to be

involved in the dispatching process, namely, how to form S1 and S2; section 3.3 details the calculation of

matching preferences (aij); section 3.4 gives a brief description of an existing approach to solve the 2-D

assignment problem, and finally section 3.5 presents the linkage of the results of the assignment problem

and the dispatching decision.
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3.2 Collection of lot and equipment candidates

Each time a piece of equipment is released, the first step is to collect the lot and equipment candidates

that participate in the dispatching process. Intuitively, all waiting lots that can be processed by this

equipment are collected. If there is any piece of idle equipment that has the same processing capability, it

is also collected. The non-trivial part of collection is to collect the busy equipment that has the same

capability, which we call it the“look-ahead”feature.

To process the waiting lots on the currently idle equipment may not always be the best choice. For

example, suppose there are two pieces of equipment, say Eqp1 and Eqp2, and one waiting lot, say Lot1.

Eqp1 is idle, and Eqp2 is busy and will finish its current operation after 10 minutes. Processing of Lot1 on

Eqp1 requires 30 minutes for setup since the previous operation on Eqp1 is different from the current

operation of Lot1. However, processing of Lot1 on Eqp2 needs no setup because Eqp2 is testing the same

operation as Lot1. In this situation, it seems more reasonable to let Lot1 wait until the release of Eqp2 than

to process Lot1 immediately on Eqp1.

The problem is how to justify if it is worthy to hold the lots to wait for the busy equipment. In this

work, we propose a heuristic to do the judgment. Denote the set of idle equipment by EI, the set of waiting

lots by L, the processing time and sequence dependent setup time of lot i on equipment j by pij and sij. For

each busy equipment k, denote the time to its finishing time of current operation by wk. Then, a piece of

busy equipment k is collected if and only if there exists at least one i L such that pik + sik + wk 

}{max ijijEj sp
I

 .

The rationale behind the heuristic is that a piece of busy equipment is worthy of being collected if it

is possible to finish the processing of at least one waiting lot earlier than at least one piece of idle

equipment.

3.3 Calculation of matching preferences

After collecting the lot and equipment candidates, the next step is to evaluate all possible matches.

The matching preference of the match of lot i and equipment j is composed of two parts, the priority of
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choosing i from the perspective of j and the priority of choosing j from the perspective of i. These two

priority values are calculated by the dispatching rules and machine selection rules. Denote E as the set of

equipment candidates, L as the set of lot candidates, Rj(i) as the index value of choosing lot i from the

perspective of equipment j by the dispatching rule R, and Ri(j) as the index value of choosing equipment j

from the perspective of lot i by the machine selection rule R. Then, the matching preference (aij) of the

match of lot i and equipment j is defined as

)}({min)}({max
)}({min)(

)}({min)}({max
)}({min)(

''

''

yRyR
yRjR

xRxR
xRiR

a
iEyiEy

iEyi

jLxjLx

jLxj
ij
















 . (2)

Here we assume that larger index value means higher priority. In brief, the matching preference is the

product of the normalized index values obtained by the dispatching rule and machine selection rule. The

index value is normalized into the same interval [0, 1] since different rules could have different ranges of

index values.

Note that the matching preference is the product of two normalized index values, not the sum of them.

This is to realize an“urgent-to-efficient”strategy. Take figure 2 as an example. Suppose we use the sum of

the normalized index values as the matching preference, as illustrated in figure 2(a), we can not distinguish

the matching results {(Lot1, Eqp1), (Lot2, Eqp2)} and {(Lot1, Eqp2), (Lot2, Eqp1)} since the sums of

matching preferences associated with these two results are both equal to two. In practice, the

lot/equipment with greater normalized index value usually means that it is more urgent/efficient. Thus, we

often favor the later matching result since the urgent lot (Lot2) is processed by the efficient equipment

(Eqp1). By using the product of the normalized index values as the matching preference, as illustrated in

figure 2(b), we can clearly distinguish the above two matching results because the sum of matching

preferences of the former one is 0.18 while that of the later one is 0.82.

<< Insert figure 2 about here >>

There is no restriction on the dispatching rules and machine selection rules to be used. Common

examples of dispatching rules include earliest due date (EDD), critical ratio (CR), and least slack
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(SLACK). Machine selection rules were rarely discussed in the literature. In this paper, we propose to use

the SSPT rule, whose definition is given in table 1. For practitioners who want to adopt the proposed

dispatching paradigm, it is flexible for them to use the rules that are already implemented in their plant.

3.4 Solving the 2-D assignment problem

The next step, after preparing an instance of the 2-D assignment problem, is to find the best set of

matches. Here we adopt a well-known algorithm, the auction algorithm, developed by Bertsekas (1991).

The auction algorithm solves the assignment problem by the idea from the auction process in the real

world. There are two parties–persons and objects. A benefit is defined for matching a certain person to a

certain object, and the goal is to maximize the total benefits under the constraints that one person should

be matched to exactly one object and one object should be matched to at most one person. The auction

algorithm is an iterative process, and the persons (bidders) will raise the price of a preferred object by a

bidding increment. The bidding increments and price increases spur competition by making the bidder’s

own preferred object less attractive to other potential bidders. Bidding from the viewpoint of persons is

called the forward auction. By the similar idea, objects can also bid for persons, which is the main idea of

the reverse auction. In Bertsekas (1991), a combined forward/reverse auction algorithm was shown to be

much more efficient than the forward version. Therefore, we use the combined auction algorithm in our

approach. For more details about the auction algorithms, readers are invited to Bertsekas (1991).

3.5 Linking of assignment result and dispatching decision

Finally, the assignment problem is solved and the best set of matches is found. We examine all the

matches and pick up the lots that are matched with idle equipment. These lots will be dispatched to their

matched equipment and start processing or setup right away. As for the other lots, which are matched with

busy equipment, they will be held until they are matched to idle equipment in later invocations of the

dispatching process. Note that we do not reserve the busy equipment according to the matching result. For

example, suppose the lot Lot1 is matched to the busy equipment Eqp1 after solving the assignment

problem, it does not mean that Eqp1 will definitely process Lot1 right after it finishes the current operation.
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Instead, it will initiate the dispatching process after its current processing, and the most suitable lot to be

processed next is determined based on the system status at that time. This strategy can ensure that the

decision is made with respect to the latest information in the dynamic environment.

4. Optimization of rules by GA

In the previous section, we propose a paradigm for utilizing the dispatching rules more effectively.

However, there is another issue to be solved–which rule is to be used under the paradigm. In the literature,

it was often reported that no single rule is dominant in all conditions. For example, the cost over time

(COVERT) rule usually performs well on minimizing the total tardiness while the EDD rule usually

provides good performance on minimizing the maximum tardiness. To combine the advantages of multiple

rules, a popular methodology is to mix them by linear weighted summation. (For more details of this

methodology, readers are invited to the work by Chen et al., 2001, Dabbas et al., 2001, and Min and Yih,

2003.) The weight of each rule refers to its importance in the mixed rule. With different combinations of

weights, different mixed rules can be generated. In this work, we develop a GA in order to determine the

appropriate weights of rules automatically and intelligently.

GA (Goldberg, 1989) is a population-based search algorithm mimicking the natural evolutionary

process by artificial genetic operators. It starts with a set of individuals forming the initial population.

Each individual in the population is often termed as a genome. The genome encodes the solution to the

target problem in a form that is convenient for the genetic operations. During the execution of GA,

individuals in the population evolve generation by generation toward optimal or near-optimal ones. In each

generation, the individuals are evaluated by decoding back to the corresponding solutions and using the

fitness function to calculate their fitness values. Based on the fitness values, individuals are processed by

mating selection, crossover, mutation, and environmental selection to produce offspring and the new

population. The above process repeats until the stopping criterion is reached, and the best individual in the

final population is taken as the best solution to the target problem. The following subsections will detail

each component in our GA.
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4.1 Genome encoding and decoding

As mentioned, the goal of our GA is to determine the weights of rules to generate the mixed rule.

Hence, the genome is encoded as a string of weight values, as illustrated in figure 3.

<< Insert figure 3 about here >>

There are two kinds of genes in the genome. One kind of gene, g, represents the weight vector of

dispatching rules, and the other kind of gene, g, represents the weight vector of machine selection rules. If

X dispatching rules and Y machine selection rules are adopted to generate the mixed rules, genes g and g

are actually a vector of X and Y real numbers, respectively. Given E equipment groups and P product types

of lots, the length of genome is E+P. In other words, we set for each equipment group and product type a

distinct weight vector for mixing rules.

To decode a genome to a solution, a simulator is used. During simulation, each time the dispatching

decision is to be made, the mixed dispatching and machine selection rules should be used to calculate the

matching preferences (see section 3.3) under the proposed paradigm. For example, if we want to calculate

the matching preference for a lot of product type 2 and a piece of equipment in equipment group 3, the

weight vectors recorded in g2 and g3 will be taken to generate the mixed dispatching and machine

selection rules, respectively, and then to calculate the priority values and finally the preference. After

simulation, a complete schedule is derived, and then the concerned performance measures can be obtained.

These measures will be used in the fitness function to calculate the fitness of a genome.

4.2 Fitness function

In our GA, two types of fitness functions are used. The first type is to calculate the sum of the scores

of multiple performance measures according to the pre-specified weights, while the second one is to

calculate the product of these scores according to the weights. Given K performance measures, these two

fitness functions are defined as follows.

F1(G) = 



K

i
iii Gfhw

1

))(( .
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F2(G) = 


K

i

w
ii

iGfh
1

)))(((

In the above equations, G denotes the genome to be evaluated, fi() denotes the ith performance

measure, and hi() is the function to calculate the score with respect to the ith performance measure. Here

the function hi() is a normalization function to convert the performance measure into the range of [0, 1]. Its

purpose is to make the selection of the value of wi more intuitively and reasonably. After normalization, if

we assign w1 with a value greater than w2, it reflects that the 1st performance measure is more important

than 2nd measure in the fitness function. In the current implementation, the value of weight wi associated

with each performance measure is open to users so that they can decide the importance of different

measures based on their opinions.

4.3Mating selection, crossover, and mutation

After evaluating all individuals with the fitness function, mating selection is responsible for selecting

individuals as parents for doing crossover and mutation to produce the offspring. In our GA, the

2-tournament selection is used as the mating selection mechanism. By the 2-tournament selection, two

individuals are picked randomly and the one with higher fitness value is selected as the parent. For the

crossover operator, we adopt the arithmetic crossover. In brief, each value in the gene of the offspring is

the linear weighted summation of the corresponding values of the parents, and the weight is based on the

fitness of the parents. An example is given in figure 4. We choose this crossover operator since its

performance is better than the 2-point crossover in our preliminary experiments. The single-gene

substitution mutation serves as our mutation operator. By this operator, a gene is randomly picked and then

is replaced by a vector of random real values whose sum is equal to one.

<< Insert figure 4 about here >>

4.4 Environmental selection

As we know, “survival of the fittest”is an important principle to be carried out in the GA. The

environmental selection mechanism is the component to deal with this issue. In the literature, two kinds of
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environmental selection mechanisms were usually used. The first one, the direct replacement mechanism,

put the offspring produced after mating selection, crossover, and mutation directly into the next population.

The second one, called the n/2n mechanism, put the best n individuals among n individuals in the current

population and n produced offspring into the next population. The symbol n denotes the population size. In

our experience, the direct replacement mechanism has weak converging power while the n/2n mechanism

loses population diversity quickly. Thus, we propose to use another mechanism.

In our mechanism, the best two of two parents and two offspring will replace the parents. Keeping the

best two from four individuals, this mechanism has much larger converging power than the direct

replacement mechanism. Besides, replacing the parents but not the worst two individuals in the population,

we can avoid the rapid loss of population diversity. Figure 5 is a graphical explanation.

<< Insert figure 5 about here >>

4.5 Initialization and terminating criterion

Individuals in the initial population are generated randomly. Each gene of an individual is a vector of

random real values whose sum is equal to one. In current implementation, the precision of real values is

0.1. The GA terminates when the number of generations reaches a predefined generation number.

In this section, we introduced the proposed GA for generating appropriate mixed rules to be used under

the proposed dispatching paradigm. The architecture of the entire proposed approach including the

dispatching paradigm and the GA is illustrated in figure 6.

<< Insert figure 6 about here >>

5. Experiments and results

5.1 System descriptions and experimental settings

In the tested wafer probe center, ten types of products are considered. There are seven kinds of

operations, and the route of each product consists of two to seven stages. Each operation corresponds to an

equipment group, which contains one to three pieces of equipment. There are five operations of serial
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processing, and the processing times range from 20 to 150 minutes. The processing times of the other two

batch-type operations range from 900 to 1800 minutes. The sequence dependent setup times range from 10

to 60 minutes. The processing time depends on the product type and the operation, while the setup time

depends on not only the previous two factors but also the product type of the previous processed lot. The

mean time between failures (MTBF) and mean time to repair (MTTR) of equipment depend on the

equipment types.

The lots are released into the probe center after they arrive, and the inter-arrival times follow the

exponential distribution. The arrival rate is adjusted to keep the equipment utilization at least 80%. The

due date of a lot is set as ta + rP, where ta is the arrival time, P is the raw total processing time, and r is a

random real value uniformly distributed in the interval [1, 4].

We used the batch means method to collect the simulation output data. The warm-up period was set

as one month based on the observations of the curves of average cycle time and WIP level. Eleven batches

were collected, and each batch contained data in one month. Hence, each run of experiment simulated for

one year. The probe center was assumed to be empty at the beginning of simulation. In this work, our

focus is on the dispatching of stages of serial processing, and we use the first-in-first-out (FIFO) policy for

the batch-type stages.

Three due date-based performance measures are considered, including the tardy rate, total tardiness,

and the maximum tardiness. Denote Ci and Di as the completion time and due date of a lot i, respectively.

For each lot i, Ui is 1 if Ci is greater than Di; otherwise, Ui is 0. Let L denote the set of lots completed

during a batch. The three measures are defined as follows:

tardy rate (T%) = Li iU
L ||
1

,

total tardiness (T) = 


Li ii DC },0max{ ,

maximum tardiness (Tmax) = maxiL {max{0, Ci–Di}}.
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The entire system was implemented using C++ language, and the experiments were conducted on the

personal computer with 1 GHz CPU and 256 RAM. Simulation over one year took about four seconds.

5.2 Experiment1: the effects of dispatching paradigms with different dispatching rules

In the first experiment, we want to examine the benefit of the proposed dispatching paradigm with

eleven popular dispatching rules. The definitions of these rules are summarized in table 1. The machine

selection rule is fixed as the SSPT rule. For the COVERT and ATC rules, which have parameters, we

tested ten values from 1 to 10 in increment of 1 for ka and kb and picked the best performance measures.

Two scenarios were tested. In scenario 1, each equipment group consists of identical equipment, namely,

the processing times on all equipment in a group are the same. The assumption of parallel identical

equipment is common in the literature. In scenario 2, all pieces of equipment in a group are identical

except one piece of faster equipment. The processing time on the faster equipment is 10% shorter than that

on the others. In the real-world cases, an equipment group usually contains identical equipment initially.

After running the manufacturing system for a while, new (and faster) equipment is often bought to

increase manufacturing capacity or to replace the old equipment. Therefore, we used scenario 2 to reflect

the practical situation in the industry.

Four dispatching paradigms were tested in the experiments:

P1: the traditional dispatching paradigm (see section 3.1),

P2: the proposed dispatching paradigm but without the look-ahead feature (see section 3.2),

P3: the proposed dispatching paradigm,

P4: the proposed dispatching paradigm but using “summation”when calculating the matching

preferences (see section 3.3).

Given two scenarios, four dispatching paradigms, and eleven dispatching rules, totally 88 runs of

simulation were conducted. For each simulation run, the average tardy rate was calculated over 11 batches,

and so were the average total tardiness and average maximum tardiness. The results are then summarized

in table 2 –7. Take table 2 as an example, the average tardy rate by the FIFO rule under paradigm P1 in
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scenario 1 is 21.87%. By changing the paradigm from P1 to P2, the average tardy rate is reduced to

21.42%, and the improvement percentage over P1 is 2.1%. In all these tables, the cells marked with gray

color indicate an improvement percentage over 5%. The cell with number bold-faced is the best

performance measure in the table. In addition, we also conducted the paired t-test to check if there is

statistically significant difference between the performance under the new paradigms (P2, P3, and P4) and

under the traditional paradigm (P1). For example, the average tardy rate obtained by using the ODD rule

under the paradigm P3 is significantly different from that under the paradigm P1 at significance level 5%.

Based on these experimental results, we have the following observations.

First, in scenario 1, where each equipment group consists of identical equipment, the proposed

paradigm P3 can provide the highest improvement percentage over the traditional paradigm P1. By using

P3, the average tardy rates of all 11 dispatching rules get improved, and 4 of them get more than 5%

improvement. The result from paired t-test shows that five rules have significantly different performance

from their performance under P1. As for the average total tardiness, performance of 10 rules is improved,

and six of them get more than 5% improvement by changing from the paradigm P1 to P3. However, only

one rule is identified to have significantly different performance. By observing the total tardiness values of

11 batches obtained by applying the SLACK rule, we found that in some batches its performance is worse

under P3 than under P1, although the average performance over all batches is 8.3% better under P3 than

under P1. The occasional performance degradation causes higher variance of the performance difference,

and therefore makes the performance difference under two paradigms harder to be distinguished

statistically. Similar observations were made from the data of other rules including CR, CR+SPT, and so

on. By using the paradigm P3, the maximum tardiness of six rules is reduced, and five of them get more

than 5% improvement. However, none of them can be shown to be significantly different under P3 from

under P1. The reason is similar to what we have found for the total tardiness.

Regarding the effect of the proposed paradigm on the three concerned performance measures, the

proposed paradigm is the most beneficial for the tardy rate, followed by the total tardiness, and finally the
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maximum tardiness. The relatively smaller benefit for the later two performance measures could be due to

the idle time of equipment. Let us use figure 7 as an example. In figure 7(a), the equipment Eqp1 is

released and there is a waiting lot Lot1. The equipment Eqp2 is busy now and will be released after 20

time units. The processing times of Lot1 on Eqp1 and Eqp2 are both 60 time units, and the setup times on

Eqp1 and Eqp2 are 30 and 0, respectively. With the proposed paradigm, Lot1 will be assigned to Eqp2

since it is found to be finished earlier on Eqp2 than on Eqp1. However, suppose a lot Lot2, which is at the

same step as Lot1, comes after 20 time units. Since it takes too long time to wait for Eqp2 (60 time units),

Lot2 will be processed on Eqp1. With the due dates of Lot1 and Lo2 as 85 and 100, respectively, the

schedule built under the proposed paradigm has total tardiness as 10. Figure 7(b) shows the schedule built

under the traditional paradigm. Lot1 is assigned to be processed on Eqp1 since there is only one piece of

idle equipment at the time to dispatch Lot1. This decision might look not so good for Lot1, but the entire

schedule considering both Lot1 and Lot2 is better than the schedule in 7(a). The total tardiness in the

schedule in 7(b) is only 5.

The above example shows that under our proposed paradigm, the saving of setup times sometimes

accompanies the equipment idle time and consequently the capacity loss. This kind of capacity loss will

reflect the occasional performance degradation on the total tardiness and the maximum tardiness. For the

total tardiness, the performance degradation is infrequent since the increment of tardiness of some lots

caused by capacity loss is usually compensated by the decrement of tardiness of other lots by the saving of

setup times. Therefore, the overall performance is still improved for most rules under the proposed

paradigm. However, the occasional performance degradation will make it difficult to statistically

distinguish the performance under the proposed and the traditional paradigm, as we have mentioned earlier.

The capacity loss from equipment idle time is more detrimental on the maximum tardiness because the

increment of the maximum tardiness can not be compensated like the total tardiness. Hence, in table 4 we

can find that only six rules get improved on the maximum tardiness under the proposed paradigm and

none of them shows statistically significant performance difference between the traditional and the
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proposed paradigms. To enhance the proposed paradigm, we can consider the incoming lots and/or use a

machine selection rule that involves the equipment idle time. This will be left as our future works.

Second, in scenario 2, where there is a piece of faster equipment in each equipment group, the

proposed paradigm P3 is still the best paradigm with regard to all concerned performance measures. Under

the traditional paradigm P1, the best performance values among 11 rules on the tardy rate, total tardiness,

and the maximum tardiness are 13.17 (ATC), 520.8 (COVERT), and 27.3 (MOD), respectively. By using

the paradigm P3, the best performance values are all improved, with the values as 12.38 (ATC), 466.0

(MDD), and 25.4 (MDD), respectively. The number of rules whose performance is getting improved is 11,

10, and 9 on the average tardy rate, total tardiness, and the maximum tardiness, respectively. In other

words, almost all rules get improved. There are 5, 8, and 6 rules getting more than 5% improvement on the

three performance measures, respectively. Besides, 9 and 3 rules are shown to have significantly different

performance under paradigms P1 and P3 on the average tardy rate and the average total tardiness. Similar

to what we have observed in the experimental results of scenario 1, the effect of the proposed paradigm on

reducing the tardy rate is the most significant and the effect on reducing the maximum tardiness is the least

significant. Comparing the results of scenario 1 and 2, the proposed paradigm is more effective in scenario

2. This larger performance gain is understandable since in scenario 2 the proposed paradigm can improve

the performance by not only saving the setup times but also exploiting the flexibility of a piece of faster

equipment in each equipment group.

Thirdly, the paradigm P3 is better than the other two paradigms P2 and P4. This result can verify the

benefits of the “look-ahead” feature and the “urgent-to-efficient”strategy in the design of our paradigm.

One noteworthy observation is that the paradigm P3 is much better than P2 on the tardy rate and total

tardiness, but the advantage is less obvious on the maximum tardiness. This observation indicates again

that the capacity loss from equipment idling caused by the “look-ahead”feature should be dealt with

properly, especially when the maximum tardiness is concerned.
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5.3 Experiment2: the effects of dispatching paradigms with GA optimization

After verifying the benefits of the proposed paradigm by using only dispatching rules, the second

experiment was conducted to see its benefit with GA optimization. In the experiment, the population size,

generation number, and mutation rate are 30, 50, and 0.05, respectively. Based on the result of experiment

1, four dispatching rules that perform the best on the three performance measures are encoded, including

MDD, ODD, SLK/RPT+SPT, and ATC. The machine selection rule is fixed as the SSPT rule. Two

versions of GA were tested.

GA-Sum: the fitness function is F1 in section 4.2. The weights are all equal, with the value as 0.33.

GA-Product: the fitness function is F2 in section 4.2. The weights are all equal, with the value as 1.

We ran each version of GA for four times. The average performance measures of the best genomes

over four runs are summarized in table 8 and 9. In each table, the cells with number bold-faced are the best

performance values for the three concerned measures. In order to see if the performance of GA under the

traditional and proposed paradigms is significantly different, the t-test was conducted. In these tables, we

also provide the best performance values obtained by using only the dispatching rules.

Based on the results, we have the following two observations:

First, although the GA can improve the performance under either dispatching paradigm P1 or P3, the

benefits under P3 are much more significant than that under P1. Take scenario 1 for example, the GA can

improve the performance by 16% on the tardy rate, 28% on the total tardiness, and 17% on the maximum

tardiness under paradigm P3, but it can generate no more than 6% improvement on any performance

measure under paradigm P1. Based on the result of t-test, the performance of GA under the proposed

paradigm is significantly different from its performance under the traditional paradigm at the significance

level 5%. This result is interesting and encouraging. As mentioned in section 2, many research works were

done on optimizing the dispatching rules, for example, by combining multiple rules with weights tuned by

GA, NN, or RSM. On one hand, the result shows that the paradigm under which the dispatching rules are

used also has significant impact on the performance and deserves more research on this topic. On the other
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hand, the result also demonstrates the potential of improving the performance of aforementioned

approaches by replacing the tradition dispatching paradigm inside them by our proposed one.

Second, the performance of two versions of GA is similar. For the practitioners, this result can serve

as a reference that either fitness function is good when the importance of multiple performance measures

is equal. More experiments are required to explore the difference between these two fitness functions

when the importance of performance measures is different.

6. Conclusions and future research

Scheduling in the semiconductor manufacturing industry is often achieved by using the dispatching

rules. Previous works in the literature focused on the design of dispatching rules, but none of them noticed

the paradigm of using the rules. This paper proposes a new paradigm to utilize the dispatching rules with

two features: first, multiple lots and equipment are considered simultaneously when evaluating the

possible matches; second, the dispatching decision is made by seeking for the best set of matches, rather

than just a single best match. These two features extend the scope of not only the information used in the

dispatching process but also the dispatching process itself. In addition to the dispatching paradigm, we

also develop a GA to generate the appropriate dispatching rules automatically and intelligently. Benefits of

both the proposed paradigm and GA are verified with a model of wafer probe center on three due

date-based performance measures. The experimental results show that the proposed dispatching paradigm

can improve the performance of the traditional one by 5% ~ 25% when using dispatching rules only. When

the proposed GA is applied to enhance the rules, the performance can be improved further by 16% ~ 28%,

which is higher than under the traditional paradigm by at least 10%.

In the future, there are several directions to continue this research:

(1) Besides busy equipment, in-process lots could also be considered in the dispatching process. Just

like the proposed heuristic of collecting busy equipment in this paper, we need to figure out a good way to

collect the in-process lots.

(2) Under the proposed dispatching paradigm, lots may be held to wait for the busy equipment.
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Sometimes holding the lots could cause the waste of manufacturing capacity. In the future works, we will

need a sophisticated algorithm to justify this kind of waiting.

(3) In the proposed GA, users are given the flexibility to set the weights of performance measures in

the fitness function. On the other hand, setting the weights could be a burden for them. Recently a research

stream of multiobjective evolutionary algorithm is growing quickly. We will try to apply this kind of

technique to deal with the issue of multiple objectives in the next generation of our approach.
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Table 1. The descriptions of dispatching rules and machine selection rule

Dispatching rules
Rule Index value Z = Rule Priority value Z =
FIFO a CR (d–t)/r
EDD d CR+SPT max{(d–t)/rp, p}
MDD max{d, t+r} S/RPT+SPT max{(s/r)p, p}
ODD s+p COVERT (1/p)(1–s/(kbr))+

MOD max{s+p, p} ATC (1/p)exp(-(s/(kal))
+)

SLACK s

Notations

a lot arrival time p processing time of current
stage

d lot due date s d–t–c(r–p)–p
t system time c parameter for calculating s
r remaining processing time kb parameter of COVERT
s d–t–r ka parameter of ATC

Machine selection rules
Rule Index value Z =
SSPT w + p + s

Notations
p processing time of the lot on

the equipment
s sequence dependent setup

time on the equipment
w waiting time (non-zero only

if the equipment is busy at
the decision point)

For all rules except COVERT and ATC, the smaller the index value is, the higher the priority is.
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Table 2. Average tardy rate under different paradigms and dispatching rules in scenario 1

P1 P2 P3 P4
T% T% +/-% T% +/-% T% +/-%

FIFO 21.87 21.42 -2.1 20.50* -6.3 20.74* -5.2
EDD 14.37 14.12 -1.8 13.87 -3.5 13.97 -2.8
MDD 14.03 14.07 0.3 13.80 -1.7 14.01 -0.1
ODD 14.53 14.14 -2.7 13.81* -5.0 14.32 -1.4
MOD 14.45 13.97 -3.3 13.64* -5.6 13.68* -5.3
SLACK 14.24 14.27 0.2 13.84* -2.8 14.15 -0.6
CR 14.42 14.15 -1.8 13.93 -3.4 14.19 -1.6
CR+SPT 14.29 14.21 -0.5 13.48* -5.6 14.10 -1.3
SLK/RPT+SPT 13.99 13.71 -2.0 13.45 -3.8 13.43 -4.0
COVERT 14.19 13.85 -2.4 13.66 -3.7 13.62* -4.0
ATC 14.03 13.58 -3.2 13.63 -2.8 13.45* -4.1

* means that the performance under P2/P3/P4 is significantly different from that under P1 at significant level 5%

Table 3. Average total tardiness under different paradigms and dispatching rules in scenario 1

P1 P2 P3 P4
T T +/-% T +/-% T +/-%

FIFO 1508.5 1548.8 2.7 1461.7 -3.1 1434.0 -4.9
EDD 575.1 590.0 2.6 569.6 -0.9 596.1 3.7
MDD 570.9 615.6 7.8 578.5 1.3 587.0 2.8
ODD 618.8 601.5 -2.8 546.8* -11.6 584.0 -5.6
MOD 633.7 595.3 -6.1 561.0 -11.5 569.8 -10.1
SLACK 608.9 613.7 0.8 558.2 -8.3 595.2 -2.2
CR 614.2 590.0 -3.9 584.0 -4.9 616.5 0.4
CR+SPT 601.9 645.1 7.2 569.9 -5.3 607.3 0.9
SLK/RPT+SPT 621.5 626.9 0.9 584.4 -6.0 585.8 -5.8
COVERT 595.8 564.6 -5.2 552.2 -7.3 575.9 -3.3
ATC 582.7 550.6 -5.5 554.2 -4.9 568.9 -2.4

* means that the performance under P2/P3/P4 is significantly different from that under P1 at significant level 5%

Table 4. Average maximum tardiness under different paradigms and dispatching rules in scenario 1

P1 P2 P3 P4
Tmax Tmax +/-% Tmax +/-% Tmax +/-%

FIFO 37.2 36.0 -3.2 33.8 -9.0 33.1 -11.1
EDD 29.1 28.2 -3.0 31.7 8.7 30.5 4.9
MDD 28.2 37.7 33.8 37.3 32.1 30.9 9.4
ODD 38.0 34.3 -9.8 28.4 -25.3 33.8 -11.2
MOD 37.1 28.0* -24.4 31.8 -14.2 28.4* -23.5
SLACK 35.6 30.8 -13.4 32.0 -9.9 34.6 -2.6
CR 30.8 31.0 0.7 33.2 7.8 30.3 -1.4
CR+SPT 34.6 31.5 -8.8 31.8 -8.1 37.5 8.6
SLK/RPT+SPT 30.6 36.3 18.6 30.8 0.6 31.3 2.4
COVERT 27.6 27.4 -0.6 27.1 -1.6 31.6 14.4
ATC 25.3 27.4 8.2 28.6 12.9 28.3 11.6

* means that the performance under P2/P3/P4 is significantly different from that under P1 at significant level 5%
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Table 5. Average tardy rate under different paradigms and dispatching rules in scenario 2

P1 P2 P3 P4
T% T% +/-% T% +/-% T% +/-%

FIFO 19.80 19.70 -0.5 19.19 -3.1 18.74* -5.4
EDD 13.55 13.29 -2.0 12.48* -7.9 12.92 -4.7
MDD 13.35 13.23 -0.9 12.57* -5.9 12.65* -5.3
ODD 13.51 13.55 0.3 12.94 -4.2 12.73* -5.8
MOD 13.29 12.73* -4.2 12.65* -4.8 12.95 -2.6
SLACK 13.53 13.12 -3.1 12.46* -7.9 12.85* -5.0
CR 13.35 13.29 -0.4 12.80* -4.2 13.05 -2.3
CR+SPT 13.31 13.28 -0.2 12.67* -4.8 12.96 -2.7
SLK/RPT+SPT 13.30 13.05 -1.9 12.65* -4.8 12.53* -5.8
COVERT 13.20 13.01 -1.4 12.40* -6.0 12.53* -5.0
ATC 13.17 12.88 -2.2 12.38* -6.0 12.46* -5.4

* means that the performance under P2/P3/P4 is significantly different from that under P1 at significant level 5%

Table 6. Average total tardiness under different paradigms and dispatching rules in scenario 2

P1 P2 P3 P4
T T +/-% T +/-% T +/-%

FIFO 1313.8 1324.0 0.8 1315.8 0.2 1268.4 -3.5
EDD 569.1 571.9 0.5 493.8 -13.2 543.0 -4.6
MDD 543.8 541.8 -0.4 466.0* -14.3 494.0 -9.2
ODD 550.2 532.8 -3.2 542.5 -1.4 560.3 1.8
MOD 534.8 530.2 -0.9 498.3 -6.8 567.0 6.0
SLACK 558.5 542.9 -2.8 506.2 -9.4 538.9 -3.5
CR 550.4 573.1 4.1 503.2* -8.6 552.4 0.3
CR+SPT 563.5 549.3 -2.5 519.0 -7.9 558.7 -0.9
SLK/RPT+SPT 573.0 559.4 -2.4 551.3 -3.8 514.4 -10.2
COVERT 520.8 511.2 -1.8 485.1* -6.8 486.3 -6.6
ATC 539.4 521.4 -3.3 493.5 -8.5 485.7 -10.0

* means that the performance under P2/P3/P4 is significantly different from that under P1 at significant level 5%

Table 7. Average maximum tardiness under different paradigms and dispatching rules in scenario 2

P1 P2 P3 P4
Tmax Tmax +/-% Tmax +/-% Tmax +/-%

FIFO 38.2 35.7 -6.6 40.7 6.4 39.2 2.7
EDD 36.1 33.0 -8.5 32.1 -11.0 33.5 -7.0
MDD 32.4 33.1 2.1 25.4 -21.7 32.0 -1.4
ODD 32.1 27.2 -15.3 29.8 -7.3 38.8 20.7
MOD 27.3 30.4 11.5 30.3 11.2 41.2 51.1
SLACK 35.2 29.1 -17.4 32.2 -8.6 33.6 -4.4
CR 32.1 34.7 8.2 30.4 -5.2 38.4 19.5
CR+SPT 37.6 35.9 -4.3 31.7 -15.6 30.8 -18.0
SLK/RPT+SPT 37.0 32.1 -13.3 28.2 -23.7 33.1 -10.4
COVERT 28.2 27.9 -1.0 27.4 -2.9 29.0 2.6
ATC 27.7 28.1 1.1 27.2 -1.8 28.7 3.5
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Table 8. Performance measures under different paradigms and genetic algorithms in scenario 1

P1 P3
T% T Tmax T% T Tmax

Rule with the best T% 13.99 621.5 30.6 13.45 584.4 30.8
Rule with the best T 14.03 570.9 28.2 13.81 546.8 28.4
Rule with the best Tmax 14.03 582.7 25.3 13.45 568.9 28.3
GA-Sum 14.05 555.6 25.9 11.41* 396.3* 23.5*

GA-Product 14.05 563.2 25.7 11.40* 395.7* 24.3*

* means that the performance under P3 is significantly different from that under P1 at significant level 5%

Table 9. Performance measures under different paradigms and genetic algorithms in scenario 2

P1 P3
T% T Tmax T% T Tmax

Rule with the best T% 13.17 539.4 27.7 12.38 493.5 27.2
Rule with the best T 13.20 520.8 28.2 12.57 466.0 25.4
Rule with the best Tmax 13.29 534.8 27.3 12.57 466.0 25.4
GA-Sum 13.11 500.6 24.8 10.72* 369.7* 23.1*

GA-Product 13.09 504.7 26.3 10.64* 357.1* 23.2*

* means that the performance under P3 is significantly different from that under P1 at significant level 5%
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Figures

Figure 1. (a) The traditional dispatching paradigm (b) The proposed dispatching paradigm

Figure 2. (a) The condition using summation to calculate the matching preferences

(b) The condition using product to calculate the matching preferences

Figure 3. Genome encoding scheme

Figure 4. An example of the arithmetic crossover

Figure 5. Environmental selection mechanism

Figure 6. The architecture of the proposed approach
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(a) (b)

Figure 1. (a) The traditional dispatching paradigm (b) The proposed dispatching paradigm

(a) (b)

Figure 2. (a) The condition using summation to calculate the matching preferences

(b) The condition using product to calculate the matching preferences
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Figure 3. Genome encoding scheme

Figure 4. An example of the arithmetic crossover

Figure 5. Environmental selection mechanism
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Figure 6. The architecture of the proposed approach
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Figure 7. An example of the potential limitation of the proposed paradigm
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