
www.elsevier.com/locate/cor

Author’s Accepted Manuscript

A memetic algorithm for minimizing total
weighted tardiness on parallel batch machines
with incompatible job families and dynamic job
arrival

Tsung-Che Chiang, Hsueh-Chien Cheng, Li-Chen
Fu

PII: S0305-0548(10)00071-7
DOI: doi:10.1016/j.cor.2010.03.017
Reference: CAOR2559

To appear in: Computers & Operations
Research

Cite this article as: Tsung-Che Chiang, Hsueh-Chien Cheng and Li-Chen Fu, A memetic
algorithm for minimizing total weighted tardiness on parallel batch machines with in-
compatible job families and dynamic job arrival, Computers & Operations Research,
doi:10.1016/j.cor.2010.03.017

This is a PDF file of an unedited manuscript that has been accepted for publication. As
a service to our customers we are providing this early version of the manuscript. The
manuscript will undergo copyediting, typesetting, and review of the resulting galley proof
before it is published in its final citable form. Please note that during the production process
errorsmay be discoveredwhich could affect the content, and all legal disclaimers that apply
to the journal pertain.

http://www.elsevier.com/locate/cor
http://dx.doi.org/10.1016/j.cor.2010.03.017


Acc
ep

te
d m

an
usc

rip
t 

1 

A memetic algorithm for minimizing total weighted tardiness on 
parallel batch machines with incompatible job families and 

dynamic job arrival  
Tsung-Che Chianga, Hsueh-Chien Chengb, Li-Chen Fub,c* 

tcchiang@ieee.org, r96922066@ntu.edu.tw, lichen@ntu.edu.tw 

aDepartment of Computer Science and Information Engineering, National Taiwan Normal University, Taiwan, R.O.C. 
bDepartment of Computer Science and Information Engineering, National Taiwan University, Taiwan, R.O.C. 

cDepartment of Electrical Engineering, National Taiwan University, Taiwan, R.O.C. 

 
 

Abstract 

This paper addresses a scheduling problem motivated by scheduling of diffusion operations in 

the wafer fabrication facility. In the target problem, jobs arrive at the batch machines at different 

time instants, and only jobs belonging to the same family can be processed together. Parallel batch 

machine scheduling typically consists of three types of decisions – batch forming, machine 

assignment, and batch sequencing. We propose a memetic algorithm with a new genome encoding 

scheme to search for the optimal or near-optimal batch formation and batch sequence 

simultaneously. Machine assignment is resolved in the proposed decoding scheme. Crossover and 

mutation operators suitable for the proposed encoding scheme are also devised. Through the 

experiment with 4860 problem instances of various characteristics including the number of 

machines, the number of jobs, and so on, the proposed algorithm demonstrates its advantages over 

a recently proposed benchmark algorithm in terms of both solution quality and computational 

efficiency. 

 
Keywords: Scheduling; Batch processing machine; Memetic algorithm; Total weighted tardiness 
 

                                                 
* Corresponding author.  



Acc
ep

te
d m

an
usc

rip
t 

2 

1. Introduction 

Today microprocessors, memory chips, and other semiconductor devices are a 

part of our daily life, appearing from personal computers to cellular phones. 

Semiconductor manufacturers need to utilize their resources effectively to face the 

huge demand and severe competition in the market place. There is an increasing 

pressure on semiconductor manufacturers to improve their due date delivery 

performance, and effective scheduling is one of the execution-level potential solutions 

[1][2][3]. Wafer fabrication is the most technologically complex and capital-intensive 

among the four stages of semiconductor manufacturing. The wafer fab is a large-scale 

production system where thousands of jobs are processed by tens to hundreds of 

machines. It is not uncommon for one-third of fab operations to be processed on batch 

processing machines [1]. Batch machines are distinguished from serial ones by the 

multi-job capacity. In most cases, once a batch operation starts, it is non-preemptable 

during the long period of processing. Diffusion is a typical batch operation in the 

wafer fab. For the chemical nature of this operation, jobs with different recipes cannot 

be processed simultaneously. Jobs requiring the same recipe are regarded as a job 

family and have the same processing time. Since jobs of different job families cannot 

be batched together, scheduling of diffusion operations is a batch scheduling problem 

with incompatible job families. (Scheduling of burn-in operations in the wafer probe 

center is an example of batch scheduling problems with compatible job families.) 

In this paper, we address the problem of scheduling identical parallel batch 

machines with incompatible job families. Dynamic job arrival is also considered, 

which means that jobs are not always ready at the beginning of the scheduling horizon. 

The jobs may arrive at the machines at different time instants. This reflects the 

practical condition in most multi-stage production systems. Total weighted tardiness 



Acc
ep

te
d m

an
usc

rip
t 

3 

(TWT) is adopted to evaluate the due date delivery performance. The target problem 

is usually denoted by P | rij, dij, batch, incompatible family | ∑wijTij. The rest of this 

paper is organized as follows. Problem descriptions are given in Section 2. In Section 

3, we review existing works related to the problem. Design of the proposed approach 

is presented in Section 4. Experiments and results are summarized in Section 5. 

Conclusions and future work are provided in Section 6. 

 

2. Problem description 

In the focused problem, there are m identical batch machines and n jobs. These 

jobs are classified into f families. Each family j contains nj jobs, i.e., ∑
=

=
fj

j nn
...1

. For 

each job ij of family j, it is associated with a due date dij, a weight wij, and an arrival 

time rij. Processing time of job ij is denoted by pj, which depends only on its family. 

The maximum batch size is denoted by B, and the start time of processing of job ij is 

denoted by sij. A feasible solution must satisfy the following constraints:  

(1) Each job ij is assigned to exactly one machine mij, 1 ≤ mij ≤ m. 

(2) Each machine can process at most B jobs at a time. 

(3) Only the jobs belonging to the same family can be processed together. 

(4) Processing of a job ij can start only after it arrives. In other words, given a 

batch Bkj of jobs of family j, its processing cannot start earlier than max{rij | ij ∈ Bkj }. 

(5) Once a machine starts processing of a batch Bkj of jobs of family j at time t, 

no job can be added to or removed from Bkj until the processing is completed at t + pj. 

Our goal is to find among the feasible solutions the one with the minimum TWT, 

where TWT is defined as  

),0max(
,...2,1 ,...2,1

ijjij
fj ni

ij dpswTWT
jf

−+⋅= ∑ ∑
= =

.                          (1) 



Acc
ep

te
d m

an
usc

rip
t 

4 

In practice, scheduling of parallel batch machines is usually achieved by making 

three types of decisions – batch forming, machine assignment, and batch sequencing. 

Every time when a batch machine is available to process the next batch operation, 

there may be more than one possible combination of jobs to form the next batch. On 

one hand, we intend to form a batch with more jobs inside so that the manufacturing 

capacity is not wasted. On the other hand, waiting for the incoming jobs to form a 

larger batch will delay the jobs that already arrived. Hence, we need to make a 

compromise between increasing utilization of batch machines and decreasing delay 

time of waiting jobs. Machine assignment, to find mij for job ij, aims at distributing 

jobs/batches suitably to machines so that workload among machines is balanced. 

Finally, on each machine the formed batches must be processed in a proper sequence 

in order to finish jobs within their due dates and to optimize the due date-related 

performance index (TWT in this paper).  

<< Insert Fig. 1 about here >> 

We use Fig. 1 as an example to illustrate scheduling of parallel batch machines 

with incompatible job families and dynamic job arrival. In Fig. 1 there are two 

machines and two job families, each containing six jobs. The maximum batch size is 

two. Among jobs of family 1, we form three full batches. Machine M1 is assigned to 

process all of them. These three batches are sequenced by their earliest startable time. 

We can observe that batching job 11 and 12 together postpones processing of job 11 

until the arrival of job 12. Jobs of family 2 are put into four batches, and machine M2 

is assigned to process all of them. Job 23 is assumed to have a tight due date so that it 

is processed alone right after its arrival. Job 26 is another one with tight due date, and 

job 25 has a loose due date. Hence, machine M2 keeps idle until the arrival of job 26 

and processes the batch {24, 26} immediately. Job 25 is processed at last. 



Acc
ep

te
d m

an
usc

rip
t 

5 

3. Literature review 

Batch machine scheduling problems have been studied extensively in recent 

years [4][5]. At the beginning, researchers started from the simplest model – 

scheduling for a single batch machine. Based on greedy heuristics, Uzsoy [6] 

developed three efficient optimal algorithms to minimize makespan, maximum 

lateness, and total weighted completion time, respectively. To minimize total tardiness, 

Mehta and Uzsoy [7] presented a dynamic programming (DP) algorithm, which has 

polynomial time complexity when the number of job families and the batch machine 

capacity are fixed. To deal with large-scale problems, they proposed the BATC rule, 

extending from a well-known heuristic, apparent-tardiness-cost (ATC) rule [8]. In 

Azizoglu and Webster [9], a branch and bound method was applied to minimize total 

weighted completion time. Perez et al. [10] focused on minimizing TWT. They 

decomposed the batch scheduling problem into batch forming and batch sequencing 

subproblems, and then solved them by different combinations of dispatching rules, a 

DP algorithm, and a decomposition heuristic. Their experimental results showed that 

the combination of ATC and the decomposition heuristic provides good solution 

quality within reasonable computation time. To develop effective rules for minimizing 

total completion time and total tardiness automatically, a genetic programming-based 

learning approach was devised by Geiger and Uzsoy [11]. Their system could 

discover rules that are structurally similar to and competitive with the BATC rule 

proposed by Mehta and Uzsoy [7]. Researches were also conducted on scheduling of 

jobs with different sizes on a single batch machine. To minimize makespan, total 

completion time, and total weighted completion time, Koh et al. [12] proposed several 

rule-based heuristics like largest-job-first-fit for batch forming and weighted-shortest- 

processing-time (WSPT) for batch sequencing. They also proposed a random-key 

-based genetic algorithm (GA), which forms batches by considering jobs in increasing 



Acc
ep

te
d m

an
usc

rip
t 

6 

order of random keys and sequences batches by rules such as WSPT. Kashan and 

Karimi [13] addressed the same problem as that in Koh et al. [12] but focused on 

minimizing total weighted completion time. They developed an ant colony 

optimization (ACO) algorithm for batch forming and batch sequencing. A pair-wise 

swapping heuristic was also used to adjust the batch formation to improve the solution 

quality. 

Parallel machines are usually required in real-world production systems in order 

to prevent the system from being blocked by the unavailability (e.g. breakdown) of a 

single machine. Uzsoy [6] presented heuristics to minimize makespan and maximum 

lateness for identical parallel batch machines. These two heuristics were based on the 

longest-processing-time-first (LPT) and earliest-due-date-first (EDD) rules. Tight 

bounds on the solution quality of these two heuristics were also given. 

Balasubramanian et al. minimized TWT for identical parallel batch machines in [14]. 

They decomposed the original problem into three subproblems – batch forming, 

machine assignment, and batch sequencing. The GA was used to solve the machine 

assignment subproblem, and dispatching rules such as BATC were applied to solve 

the other two subproblems. They tested two versions of GA. The first version does 

machine assignment at first by taking the job as the unit of assignment and then 

applies dispatching rules to do batch forming and sequencing. The second version 

forms batches by rules at first, then does machine assignment by the GA, and finally 

does batch sequencing by rules. The experimental results showed that the second 

version provides better performance, which reveals that the early incorporation of 

domain knowledge (dispatching rules) can yield better solution quality and save 

computation time. The problem addressed in [14] was tackled by Raghavan and 

Venkataramana [15]. In their approach batches are formed by ATC-like rules, and 

machine assignment and batch sequencing are determined by the ACO algorithm. Koh 



Acc
ep

te
d m

an
usc

rip
t 

7 

et al. [16] adopted similar approaches as they proposed in [12] to do parallel batch 

machine scheduling with unequal job sizes. Mathirajan and Sivakumar [17] aimed at 

minimizing TWT for parallel batch machines with unequal machine capacity and 

unequal job sizes. Machine assignment, batch forming, and batch sequencing were 

resolved by rules like large-capacity-machine-first, first-come-first-serve, and 

weighted-earliest-due-date-first. 

To make the batch machine scheduling problem closer to the real-world situation, 

the dynamic job arrival should be considered. Glassey and Weng [18] and Fowler et al. 

[19] proposed rules for job dispatching on batch machines by considering the arrival 

of future lots. The basic idea is to evaluate the concerned performance measures (for 

example, total waiting time of jobs) at different time instants of starting the batch 

operations. They showed that the use of this information is able to reduce cycle times 

in the single batch machine environment. To deal with the dynamic arrival of jobs, 

Uzsoy [6] developed a release date update (RDU) algorithm to minimize maximum 

lateness for a single batch machine. The concept of RDU is to (temporarily) delay the 

release dates of jobs with later due dates so that the batch machine can wait for the 

arrival of jobs with earlier due dates. Tangudu and Kurz [20] proposed a branch and 

bound algorithm to minimize TWT on a single batch machine. They utilized several 

dominance properties to speed up their algorithm and showed that their algorithm 

could solve the problems with up to 32 jobs. The idea in the work by Gupta and 

Sivakumar [21] was similar to that in [18]. The difference is that in [21] the different 

starting time instants are evaluated with respect to earliness and tardiness by the 

compromise programming method. Kurz and Mason [22] presented a batch 

improvement algorithm (BIA) to minimize TWT on a single batch machine. The BIA 

improved the schedule iteratively by moving jobs from later batches to earlier batches 

without delaying the starting time of the earlier batches.  



Acc
ep

te
d m

an
usc

rip
t 

8 

Although batch machine scheduling has been widely studied, there are not many 

researches on parallel batch machine scheduling with dynamic job arrival. Malve and 

Uzsoy [23] proposed a GA to minimize maximum lateness on identical parallel batch 

machines. Their GA adopts the random-key encoding scheme to search for the 

optimal job priority values and decodes the chromosome through the list scheduling 

algorithm. The RDU algorithm in [6] serves as a local optimizer of the chromosomes 

in each generation of the GA. Mönch et al. [24] extended the approach in [14] by 

proposing three modified BATC rules to consider the dynamic arrival of jobs. Among 

their rules, the rule which adds the machine idle time for waiting future jobs into the 

slack term in the BATC [7] index has the best TWT performance. The approach in [24] 

was extended further to address the problem with more than one objective by Reichelt 

and Mönch [25]. 

Besides scheduling of jobs with incompatible families, there are also researches 

on scheduling of jobs with compatible families. These two types of problems have 

very different characteristics, and readers who are also interested in that topic may 

refer to [26]−[28]. 

 

4. Proposed memetic algorithm 

4.1 Overview 

GAs, which mimic the evolutionary process in the nature, have shown many 

successful applications to production scheduling problems [29]−[31]. Like creatures 

in the nature evolve to adapt to the environment, solutions in the GA evolve to adapt 

to the target problem. In the GA solutions are usually encoded into a compact form to 

facilitate the use of reproduction operators including crossover and mutation. The 

encoded solution is usually referred to as an individual, and a group of individuals is 

referred to as a population. Starting from an initial population, some individuals are 



Acc
ep

te
d m

an
usc

rip
t 

9 

selected as parents and then produce new individuals through crossover and mutation. 

Among the original and new individuals, some survive and the others die. The 

surviving individuals form a new population, and we call the transition from one 

population to another a generation. Individuals whose corresponding solutions have 

better objective values usually have higher probability to be selected as parents and 

survivors. It is expected that optimal or near-optimal individuals/solutions will be 

obtained by evolving the population after a number of generations. 

Memetic algorithms (MAs) inherit the population-based evolutionary process 

from GAs and integrate the individual-based learning process into its framework. 

Since the individual-based learning is usually achieved by local search-based 

algorithms like hill climbing, MAs are also known as genetic local search algorithms. 

By combining the extensive search of GAs and the intensive search of local search 

algorithms, MAs have shown good performance in various kinds of scheduling 

problems, including single machine scheduling [32], flow shop scheduling [33][36], 

job shop scheduling [34][35], multiobjective scheduling [36][37], and batch machine 

scheduling [23][38]. 

In this paper, we develop a MA to solve the parallel batch machine scheduling 

problem. We propose a chromosome encoding scheme, whose feature is to consider 

batch formation and batch sequence simultaneously. In addition, crossover and 

mutation operators suitable for the new encoding scheme are devised. In Section 2, 

we mentioned that solving the target problem is usually achieved by making three 

types of decisions – batch forming, machine assignment, and batch sequencing. The 

proposed MA will search for good batch formation and batch sequence, and machine 

assignment is done during decoding the chromosomes into corresponding schedules. 

An overview of the proposed MA is given before we go into the details. 



Acc
ep

te
d m

an
usc

rip
t 

10 

Step 0. Design the chromosome encoding and decoding schemes. 

Step 1. Generate the initial population Pop(1) with NPOP individuals. Evaluate 

them by the decoding scheme and the fitness function. Record the lowest 

TWT obtained by individuals in Pop(1) in TWT*. 

Step2.  Repeat mating selection, crossover, and mutation for NPOP/2 times. 

   Step 2.1. Pick up two parents through 2-tournament mating selection. 

   Step 2.2. Do crossover on the selected parents to produce two offspring. 

Apply the proposed batch formation crossover with probability 

PF,GA and the proposed batch sequence crossover with probability 

(1 – PF,GA).  

   Step 2.3. Do mutation on the produced offspring with probability Pm. If the 

mutation takes place, apply the proposed batch formation mutation 

with probability PF,GA and the proposed batch sequence mutation 

with probability (1 – PF,GA). 

   Step 2.4. Evaluate the two offspring. The best two individuals among the two 

parents and two offspring will replace the parents.  

Step 3. If the best individual in the current population has lower TWT than TWT*, 

apply local search to the best NLS individuals. Then, update TWT* with 

the lowest TWT obtained by the current population. 

Step 4. If any of the stopping criteria is reached, stop. Otherwise, go to Step 2. 

 

4.2 Chromosome encoding 

The three types of decisions in the target problem collaborate to result in a huge 

solution space. Although metaheuristics including MAs are known as promising 

optimization approaches, it is still a great challenge to search in such a large solution 

space effectively. To reduce the search space, Mönch et al. [24] proposed to encode 



Acc
ep

te
d m

an
usc

rip
t 

11 

only machine assignment in the chromosome, as shown in Fig. 2. They first applied 

their proposed BATC-based heuristics to form batches, and then used their GA to 

search for good machine assignment of these batches. Assuming that their proposed 

BATC-based heuristic forms seven batches, individual 1 in Fig. 2 represents the 

solution in which machine 1 is assigned to process the first three batches and machine 

2 is assigned to process the last four batches. Finally, batches on each machine were 

sequenced by the BATC-based heuristics again. Reduction of search space is useful 

for the fast convergence of the GA, but meanwhile good solutions could be excluded 

from the search space and unreachable by the GA. In our previous work [38], we did 

improvement by encoding the batch sequence in the chromosome to enlarge the 

search space, as shown in Fig. 3. For example, individual 1 in Fig. 3 represents the 

solution in which we schedule the batch B1 first, then B4, B2… and finally B7. When 

a batch is to be scheduled, the machine with the earliest available time is responsible 

for processing it. Under the framework of the MA, our previously proposed approach 

achieved about 6% improvement percentage over Mönch et al.’ approach [24].  

<< Insert Fig. 2 and Fig. 3 about here >> 

Although batch sequence was encoded in our recently proposed MA to extend 

the search space, batch formation was still left fixed in [38]. In this paper, we propose 

to encode batch formation and batch sequence simultaneously in the chromosome. A 

chromosome is a sequence of batches, each containing at least one job and at most B 

(maximum batch size) jobs. Given a schedule, we put the batches into the 

chromosome from left to right in increasing order of the completion time of their 

previous operation processed on the same machine. Batches whose previous 

operations have the same completion time are put in increasing order of the index of 

the machine on which they are processed. If a batch is the first operation on a machine, 

the completion time of the previous operation is zero. We use Fig. 4 to show how a 



Acc
ep

te
d m

an
usc

rip
t 

12 

schedule is encoded into a chromosome. In the schedule, the completion times of the 

previous operations of batches {11, 12}, {21, 22}, {23, 24}, {13, 14}, and {15, 16} 

are 0, 0, 4, 8, and 12, respectively. Accordingly, we encode the schedule into 

individual 1. The batch {11, 12} is put on the left of {21, 22} since machine M1 has a 

smaller index than machine M2 does. 

<< Insert Fig. 4 about here >> 

Different chromosomes represent different batch sequences and/or different 

batch formations. For example, in Fig. 4 individual 2 has the same batch formation as 

individual 1 does, but the batch sequences in these two individuals are different. The 

batch formation and batch sequences in individuals 1 and 3 are both different. By 

encoding both the batch formation and batch sequence in the chromosome, we can 

enlarge the search space and thus include more high-quality solutions. On the other 

hand, to reach these high-quality solutions in such a huge space, we need to carefully 

design the remaining components of the MA, which will be detailed in the following 

subsections. 

 

4.3 Chromosome decoding 

Given a chromosome, the decoding scheme is responsible for constructing its 

corresponding schedule in order to calculate the concerned objective function. Since 

batch formation and batch sequence are already encoded in the chromosome, the 

remaining decision is machine assignment. In our decoding scheme, machine 

assignment is done by assigning the batch to the machine with the earliest available 

time. Ties are broken by assigning the batch to the machine with the smallest index. 

The decoding scheme will construct the schedule that is encoded in the chromosome. 

Let us use Fig. 5 as an example to explain how a chromosome is decoded. 

<< Insert Fig. 5 about here >> 



Acc
ep

te
d m

an
usc

rip
t 

13 

With the chromosome in Fig. 5, the first batch to be scheduled is {11, 12}. Both 

machines M1 and M2 are available at time 0, and thus we assign the batch to machine 

M1. Since both jobs 11 and 12 arrive at time 0, processing of this batch starts at time 

0. The next batch is {21, 22}. It is assigned to machine M2 because now the available 

time of M1 is 4 (p1 = 4). Waiting until both jobs 21 and 22 arrive, processing of this 

batch starts at time 5 and ends at time 8 (p2 = 3). Now the available times of M1 and 

M2 are 4 and 8, respectively. Thus, the third batch {23, 24} is assigned to M1. 

Considering the arrival times of jobs inside, the third batch is processed from time 10 

to 13. Scheduling of the last two batches follows the similar way, and we decode the 

chromosome to its corresponding schedule in Fig. 5. 

The major advantage of the above decoding scheme is the simplicity. Scheduling 

the batches in the order of their positions in the chromosome and assigning them to 

the machine with the earliest available time has the time complexity O(xm), where x 

and m denote the number of batches and the number of machines, respectively. 

However, this basic decoding scheme may generate schedules with long idle periods 

on machines and consequently with poor quality. In the schedule in Fig. 5, for 

example, machine M2 is idle from time 0 to 5. Since jobs 13 and 14 arrive at time 0, 

we can schedule them in the idle period of M2 without delaying any of the first three 

scheduled batches, resulting in a better schedule. Thus, we improve the basic 

decoding scheme by considering the idle periods on machines when scheduling the 

batches. In the improved scheme, the set of idle periods on all machines is identified 

before each batch is scheduled. Among these idle periods, only the periods into which 

the batch can be scheduled without violating the arrival time and processing time are 

kept. If there is more than one feasible period, the batch is scheduled into the period 

with the shortest duration. If there is no such period, the batch is scheduled on the 

machine with the earliest available time, as what we do in the basic decoding scheme. 



Acc
ep

te
d m

an
usc

rip
t 

14 

Fig. 6 is provided as an example. 

<< Insert Fig. 6 about here >> 

The first three batches are scheduled as what we did in Fig. 5. When the batch 

{13, 14} is to be scheduled, there are two idle periods – {4, 10} on M1 and {0, 5} on 

M2. Both idle periods are feasible. According to our improved decoding scheme, we 

schedule the batch into the idle period {0, 5} since its duration is shorter. To schedule 

the last batch {15, 16}, there are also two idle periods – {4, 10} on M1 and {4, 5} on 

M2. Because job 16 arrives at time 7 and processing of this batch requires 4 units of 

time, both idle periods are infeasible. Therefore, we schedule the last batch on M2, 

whose available time 8 is earlier than that of M1, 13. Comparing the schedules in Fig. 

5 and Fig. 6, the improved decoding scheme generates a better schedule, where all 

jobs are completed at earlier or the same time instants.  

As we can see, the proposed decoding scheme is able to construct better 

schedules by changing the batch sequence originally recorded on the chromosome. To 

pass this result back to the MA, we adjust the batch sequence on the chromosome 

after applying the decoding scheme. For example, the chromosome in Fig. 6 will be 

modified to be {11, 12}{13, 14}{23, 24}{21, 22}{15, 16}. The only cost of the 

improved scheme is that its complexity is O(x(W+m)), where W denotes the number 

of idle periods. Although the value of W can be up to x, it is usually much smaller than 

x after we do the post-decoding adjustment to the batch sequence on the chromosome. 

 

4.4 Fitness function, mating selection, and environmental selection 

In our MA, the fitness of an individual is defined by the reciprocal of TWT 

obtained by the decoding scheme. Mating selection is achieved through 2-tournament, 

which selects two individuals randomly from the current population and picks up the 

one with higher fitness to be a parent. After selecting two parents, crossover will be 



Acc
ep

te
d m

an
usc

rip
t 

15 

applied to them to produce two offspring, and mutation will be applied 

probabilistically to the offspring. Among the parents and the offspring, two 

individuals with the highest fitness will replace the parents. This environmental 

selection mechanism showed better performance than three existing mechanisms in 

our previous work [35]. 

 

4.5 Crossover and mutation 

Given two parents, the task of crossover is to generate the offspring through 

inheriting features (gene structures) from the parents. Since different encoding 

schemes have different gene structures and constraints, each kind of encoding scheme 

has its own suitable crossover operators. For example, the machine assignment-based 

encoding scheme in Fig. 2 has no constraint between gene values. Thus, the simple 

2-point crossover is applicable, as shown in Fig. 7. For the batch sequence-based 

encoding scheme in Fig. 3, in an individual each batch index must appear exactly 

once. Linear order crossover is one of the crossover operators that are applicable to 

this encoding scheme. An example in given in Fig. 8. 

<< Insert Fig. 7 and 8 about here >> 

Although many crossover operators were proposed in the literature, we found 

that the existing ones are not applicable to the proposed encoding scheme, which 

encodes batch formation and batch sequence simultaneously. In the following we will 

propose two crossover operators, one focusing on exchanging the batch formation 

between parents and the other focusing on exchanging the batch sequence. 

<< Insert Fig. 9 about here >> 

Let us describe our batch formation crossover operator first. Fig. 9 provides a 

visual explanation. The first step is to choose a job family randomly and extract the 

sequences of jobs belonging to this family from two parents. In Fig. 9 we assume that 



Acc
ep

te
d m

an
usc

rip
t 

16 

job family 1 is chosen. Second, two cut points are chosen randomly in the job 

sequence. Third, we leave the parts outside the section enclosed by cut points 

unchanged and fill the enclosed section with the remaining jobs in the order of the 

other parent. Finally, the offspring is produced by copying one parent and re-filling 

the batches belonging to the selected job family according to the new job sequence 

and the original batch size. After doing the batch formation crossover, the offspring 

will inherit batch formation from both parents. For example, in Fig. 9 the first 

offspring inherits batch formation {11, 13} from the first parent and batch formation 

{15, 16} from the second parent. On the other hand, the sequence of job families of 

batches is passed directly. For example, in Fig. 9 the sequences of job families of 

batches are [f1 f2 f1 f2 f2 f1 f2] in both the first parent and first offspring.  

<< Insert Fig. 10 about here >> 

Next, we use Fig. 10 to illustrate how the other crossover operator, batch 

sequence crossover, works. First, we extract the sequences of job families of batches 

from the parents. Second, two cut points are selected randomly. Third, we leave the 

parts outside the section enclosed by cut points unchanged and fill the enclosed 

section with the remaining job families in the order of the other parent. To do this, we 

search in one parent from the beginning for job families that appear in the part before 

the first cut point in the other parent. For example, in Fig. 10 the part before the first 

cut point x in the first parent contains one f1 and one f2, and we find the first f1 at 

position 2 and first f2 at position 1 in the second parent. Since the part before the first 

cut point in each parent is unchanged, these job families found in the other parent are 

ignored during the later exchange of job families. Similarly, we also search in one 

parent from the end for job families that appear in the part after the second cut point 

in the other parent. In Fig. 10, for instance, the part after the second cut point y in the 

first parent contains two f2, and we find the last two f2 at position 5 and 6 in the 



Acc
ep

te
d m

an
usc

rip
t 

17 

second parent. In the fourth step, the remaining job families move into the section 

enclosed by the cut points. Finally, the offspring is produced by copying one parent 

and re-arranging the order of batches inside the enclosed section in the order of 

batches in the section of the other parent. For example, in Fig. 10 the first offspring 

copies the first parent and re-arranges the batches {24, 26}, {12, 15}, and {14, 16} in 

the order of [f1 f2 f1]. Thus, the new order of these three batches becomes {12, 15}, 

{24, 26}, and then {14, 16}. After doing the batch sequence crossover, the offspring 

will inherit batch sequences from both parents and keep the batch formation in one 

parent. 

<< Insert Fig. 11 and 12 about here >> 

Comparing with crossover, which combines features of parents into the offspring, 

mutation is simpler since it changes gene values based on a single individual. We 

propose two mutation operators for batch formation and batch sequence, respectively. 

In the batch formation mutation operator, we first choose a job family randomly. Then, 

we randomly select two batches belonging to this family. Finally, we select one job in 

each selected batches randomly and exchange them. An example is given in Fig. 11. 

In the batch sequence mutation operator, two batches (not necessarily belonging to the 

same family) are selected randomly and then are exchanged. An example is shown in 

Fig. 12. 

 

4.6 Local search procedure 

With the nature of population-based search, GAs usually have better exploration 

ability than local-search-based approaches do. On the other hand, in some 

applications GAs were also reported to lack sufficient exploitation ability to find the 

best solution after it locates a promising region in the search space. Hence, combining 

the GA and the local search into the framework of MA becomes a popular approach. 



Acc
ep

te
d m

an
usc

rip
t 

18 

In MA, the individuals join together in the evolutionary process simulated by the GA 

to improve themselves through selection, crossover, and so on; meanwhile, a single 

individual can improve himself/herself in the learning process represented by the local 

search. Technically speaking, the GA leads the population to one or multiple 

promising regions in the search space, and the local search leads each individual to be 

the best position in each of these regions. 

As mentioned in Section 4.1, we decide whether to start the local search 

procedure after a new population is formed by mating selection, crossover, and 

mutation. In order to save the computation time, the local search procedure starts only 

when the best individual in the newly-formed population is better than the best 

individual in the previous population. In addition, only the best NLS individuals in the 

population will do the local search. Taking each of these individuals as the starting 

solution, the local search procedure generates neighboring solutions and moves the 

current solution to the neighboring one when the neighboring one is accepted. 

Neighboring solutions are generated by applying the batch formation mutation 

operator and the batch sequence mutation operator with probability PF,LS and (1 – 

PF,LS), respectively. Since accepting only the neighboring solution with better quality 

than the current one makes the local search trap in the local optimum easily, the 

neighboring solution is accepted if the objective value (TWT) of its derived schedule 

is not worse than that of the best neighbor by DP%. The best neighbor is recorded 

during the local search. Once the neighboring solution is not acceptable, the search 

will go back to the best neighbor and then continue. The local search stops after 

NEVAL,LS neighbors are examined, and then the best neighbor will replace the 

individual initiating the local search in the population. The pseudo code of our local 

search procedure is given in Table 1.  

<< Insert Table 1 about here >> 



Acc
ep

te
d m

an
usc

rip
t 

19 

4.7 Generation of initial population and stopping criterion 

A good initial population can help MA to find the optimal or near-optimal 

solutions efficiently, especially when the search space is large. In our approach, we 

use a heuristic procedure proposed by Mönch et al. [24] to generate the initial 

population.  

In this procedure, each time when a machine becomes available at time t, it first 

collects the jobs ij that already arrived or will arrive within a time period Δt (i.e. rij ≤ t 

+ Δt). Next, these jobs will be assigned a priority index by a modified version of the 

ATC dispatching rule and are ranked in decreasing order of the ATC indices. 

( p denotes the average processing time of the remaining unscheduled jobs.) 

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛ −+−
−⎟

⎟
⎠

⎞
⎜
⎜
⎝

⎛
=

+

pk

trpd
p
w

tI ijjij

j

ij
ATCij

)(
exp)(,                           (2)         

In order to save the computational effort, only the jobs with ranks smaller than a 

predefined threshold thres are considered in later steps. All possible combinations 

(batches) of these jobs are then formed and are assigned priority indices by Mönch et 

al.’ proposed BATC-II rule. For each batch Bkj, the BATC-II index is calculated by: 

⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛
⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛ −+−−
−⎟

⎟
⎠

⎞
⎜
⎜
⎝

⎛
= ∑

∈

++

− 1,min
))((

exp)(
B

B

pk
trtpd

p
w

tI kj

Bij

kjij

j

ij
IIBATC

kj

        (3) 

Finally, the best batch (with the largest BATC-II index) is scheduled onto the 

machine. Repeating the above steps, a complete schedule sBATC-II will be constructed. 

Since the performance of the ATC-based rules is sensitive to the parameter k, we 

follow the method proposed in [24] to determine the value of k. We test ten different 

values of k from 0.5 to 5 in increments of 0.5 and pick the schedule that gives the 

minimum TWT. This best schedule is encoded to be the first individual in our initial 



Acc
ep

te
d m

an
usc

rip
t 

20 

population. The rest of the population is filled by duplicating the first individual and 

perturbing its batch formation and batch sequence using the proposed batch formation 

mutation and batch sequence mutation operators. 

 Our algorithm will stop if the best solution is not updated after NNONIMPRV 

continuous generations or when the predefined maximum number of generations 

(NGEN) is reached. 

 

5. Experiments and results 

5.1 Benchmark approach and its parameter setting 

In the experiment, we compared our approach with the approach proposed by 

Mönch et al. [24] since they have conducted a series of studies on batch machine 

scheduling [10][14] [24][25], and the approach in [24] was developed to solve exactly 

the same problem as ours. In [24], they proposed two frameworks of genetic 

algorithm, GA-1 and GA-2. Their difference is in the timing of batch formation. GA-1 

forms batches by the dispatching rule and then assigns batches to machines, whereas 

GA-2 assigns jobs to machines and then forms batches by the dispatching rule. In 

their experiments seven variants of GA-1 and GA-2 were tested, and the variant 

BATC-II_GA-1_BATC-II provided the second best solution quality. The variant 

GA-2_DTH slightly outperformed BATC-II_GA-1_BATC-II by 2% in terms of 

solution quality (91.82% vs. 89.89% in Table 5 in [24]), but its required computation 

time was about 70 times (4038.15s vs. 58.37s in Table 9 in [24]). Regarding both 

solution quality and computational efficiency, we decide to take  the variant 

BATC-II_GA-1_BATC-II as the benchmark approach in our experiment. 

The differences between Mönch et al.’ approach and our approach originate from 

the different encoding schemes. Mönch et al.’ GA encoded machine assignment, 

whereas our MA encodes batch formation and batch sequence. In their approach, 



Acc
ep

te
d m

an
usc

rip
t 

21 

batch formation is obtained from the schedule sBATC-II generated by the heuristic 

method as described in Section 4.7 and is fixed afterward. Their GA seeks for the 

optimal machine assignment of these batches. Batch sequencing is done during 

decoding of chromosomes, where batches are distributed to machines according to the 

assignment recorded on the chromosomes, and the processing sequence on each 

machine is determined by their proposed BATC-II dispatching rule. In the following 

experiment on performance comparison, the parameter setting of Mönch et al.’ 

approach was identical to what they reported in Table 2 and Table 8 in [24]. We use 

the same values for parameters Δt and thres (Δt = 8 and thres = 10) to generate the 

initial population in our MA. 

 

5.2 Test problem instances and test environment 

<< Insert Table 2 about here >> 

We generated the test problem instances in the same way as in [24]. Parameters 

and their values for instance generation are listed in Table 2. There are 3⋅3⋅3⋅2⋅3⋅3 = 

486 categories of instances with different combinations of parameter values. Ten 

instances were generated for each category. Thus, totally 486⋅10 = 4860 problem 

instances were used in our experiments. The proposed MA and the benchmark 

approach were implemented in C++ on Microsoft Visual Studio 2005. The testing 

environment was a personal computer running windows XP with Intel Core 2 Duo 3.0 

GHz CPU and 2 GB RAM. 

 

5.3 Parameter tuning of the proposed MA 

A MA typically has the following parameters: the population size (NPOP), the 

number of generations (NGEN), the mutation rate (Pm), the number of individuals 

applying local search (NLS), and the number of evaluations in local search (NEVAL, LS). 



Acc
ep

te
d m

an
usc

rip
t 

22 

In our MA, we introduce two additional parameters PF,GA and PF,LS to choose between 

two types of crossover and mutation operators in the GA and local search parts, 

respectively. Last, the maximum non-improving generations NNONIMPRV is related to 

the stopping criterion, and the maximum acceptable deviation percentage DP is related 

to the acceptance criterion in the local search procedure. From the pilot runs, we set 

the values of Pm, NNONIMPRV, and DP by 0.1, 50, and 5, respectively. As for the other 

parameters, an extensive experiment was conducted to determine their suitable values. 

In [24], Mönch et al. tuned the values of the parameters in their approach using 

problem instances with three job families (f = 3). In order to have a fair performance 

comparison, we also did parameter tuning of the proposed MA using problem 

instances with three job families. We randomly picked up one instance from each of 

the 162 (3⋅3⋅2⋅3⋅3) problem categories. Various versions of our MA with different 

combinations of parameter values were applied to solve each of the selected 162 

problem instances. Each version of our MA solved each instance for five times. For a 

problem instance j, let Tj(MA, i, k) denote the TWT value obtained by version i of our 

MA in run k and Tj(BATC-II) denote the TWT value obtained by the BATC-II-based 

heuristic [24] (mentioned in Section 4.7). Similar to the analysis in [24], we evaluated 

version i of our MA by the average-case improvement percentage (IP) over the 

BATC-II-based heuristic: 

)5162/()))(/),,(((1)(
162

1

5

1

⋅−−= ∑∑
= =j k

jj IIBATCTkiMATiIP .               (4) 

To avoid testing too many versions of MA, we tested the parameter values in a 

two-stage manner. In the first stage, we considered four typical MA parameters NPOP, 

NGEN, NLS, and NEVAL, LS and tested 21 versions of MA. The values of parameters PF,GA 

and PF,LS were both set by 0.5. The IPs of these 21 versions of MA are summarized in 

Table 3. Average computation time is also included.  



Acc
ep

te
d m

an
usc

rip
t 

23 

<< Insert Table 3 about here >> 

 As we can see, the solution quality gets better when the population size gets 

larger. The only exception is the case where local search was not applied (200×500 vs. 

400×250). It is consistent with our experience that a GA with too large population 

may wander over the search space but not able to find good solutions due to 

insufficient exploitation ability. The solution quality also becomes better when more 

computational effort is given to the local search procedure. With a fixed number of 

evaluations in local search, better solution quality is obtained when more individuals 

apply the local search procedure. Although better solution quality usually 

accompanies longer computation time, the incorporation of local search has the 

potential to improve solution quality and speed up convergence simultaneously. For 

example, adding the 5×100 local search procedure into the 100×1000 GA improves 

the solution quality by 1.5% and slightly reduces the average computation time by 

0.57 second. This observation shows the advantage of MAs over pure GAs. To keep 

the chance of finding a version of MA that runs fast and provides high solution quality, 

we picked up two versions of MA, the one with the shortest average computation time 

and the one with the highest solution quality (marked in bold in Table 3), to the 

second stage of parameter tuning. 

Parameters PF,GA and PF,LS were considered in the second stage. They determine 

the probability of using batch-formation crossover and mutation operators in the GA 

and local search part, respectively. Based on each of two versions of MA picked up in 

the first stage, we tested five values for both parameters, resulting in 25 versions. The 

experimental results for two groups of 25 versions are provided in Table 4 and Table 5, 

respectively. 

<< Insert Table 4 and 5 about here >> 

 



Acc
ep

te
d m

an
usc

rip
t 

24 

In Table 4, the first observation is that all versions of MA using both types of 

operators significantly outperform the two versions using only one type of the 

operators (PF,GA = PF,LS = 0 and PF,GA = PF,LS = 1). The extra improvement percentage 

is up to 10% (24.54% – 14.12%). This result is encouraging since it confirms that 

using MA to simultaneously search for the optimal batch formation and batch 

sequence is a good direction to enhance the solution quality. The version using only 

batch formation crossover/mutation operators has better performance than the version 

using only batch sequence crossover/mutation operators. This can be explained by the 

fact that batch sequence operators are not able to modify the batch formation. Thus, a 

wrong batch formation could delay several jobs for a long time until the arrival of the 

last job to start processing of the batch. On the contrary, batch formation operators are 

able to achieve “partial” functionality of batch sequence operators by modifying batch 

formation to re-arrange the processing sequence of jobs belonging to the same family. 

All nine versions of MA with 0 < PF,GA < 1 and 0 < PF,LS < 1 have close solution 

quality and computational requirement. It means that the performance of our MA is 

robust to the variation of values of PF,GA and PF,LS as long as both types of operators 

are adopted. Practitioners are relieved from comprehensive tests to determine values 

of these two parameters. The results in Table 5 are consistent with what we conclude 

from Table 4.  

<< Insert Table 6 about here >> 

Among all 50 (5×5×2) versions of MA in Table 4 and 5, we selected the version 

using PF,GA = 0.75 and PF,LS = 0.25 in Table 4 due to its high solution quality and short 

computation time. (It provides the best solution quality within four seconds.) We did 

the first-stage experiment again and summarize the results in Table 6. Comparing the 

results in Table 6 with those in Table 3, each version of MA provides slightly better 

solution quality and consumes slightly longer computation time than its counterpart. 



Acc
ep

te
d m

an
usc

rip
t 

25 

Since there is only little difference between the results in Table 3 and Table 6, the 

second-stage experiment was not done again and the parameter tuning process ended. 

By making a trade-off between the solution quality and the computational 

requirement, we chose the fastest version to compare with the benchmark approach. 

In summary, the values of parameters of our MA in the experiment on performance 

comparison are: NPOP = 100, NGEN = 1000, NLS = 1, NEVAL, LS = 500, PF,GA =0.75, PF,LS 

= 0.25, Pm = 0.1, NNONIMPRV = 50, and DP = 5. 

 

5.4 Performance comparison 

In the experiment on performance comparison, our MA and the benchmark 

approach [24] solved each of the 4860 problem instances for ten times. Besides the IP 

over all 4860 instances, we group instances with identical value of a certain problem 

parameter (such as the number of machines) and calculate IPs for various groups. To 

evaluate the robustness of both approaches, we calculate the IPs in the best, average, 

and worst cases, which are defined as follows: 

∑
=

=
−−=

X

j
jjk

best IIBATCTkapproachT
X

approachIP
1 10...1

))(/)},({min(11)(      (5) 

∑ ∑
= =

−−=
X

j
j

k

javg IIBATCT
kapproachT

X
approachIP

1

10

1
))(/

10
),(

(11)(        (6) 

∑
= =

−−=
X

j
jjk

worst IIBATCTkapproachT
X

approachIP
1 10...1

))(/)},({max(11)(     (7) 

where approach is either our MA or the benchmark approach, X denotes the group of 

instances being considered, j is the index of instance in X, and k is the index of the test 

run. The IPs and average computation time are summarized in Table 7. Take the third 

column of the third row as an example, the IP values of our MA in the best, average, 

and worst cases are 29.3%, 26.4%, and 23.3%, respectively, when we consider the 



Acc
ep

te
d m

an
usc

rip
t 

26 

1620 3-family problem instances. The average computation time is 3.9 seconds. 

Although the benchmark approach was re-implemented by us, we have carefully 

checked the correctness by carrying out unit tests, tracing of the program flows, and 

verifying the calculations through log files. Besides, the experimental results of the 

original and re-implemented versions are quite close. (Recall that the problem 

instances in our experiment were generated in the same way as in [24].) The average 

IP of the re-implemented version is 10.80% for 1620 3-family problem instances, and 

that of the original version was 11.12% (Table 8 in [24]). The close performance also 

helps to verify the correctness of our re-implementation. 

<< Insert Table 7 about here >> 

In Table 7, we first observe that performance variations of both tested approaches 

with respect to problem characteristics are similar. As the number of job families (f), 

the number of machines (m), and the maximum batch size (B) decreases, or as the 

number of jobs (n) increases, the number of batches assigned to each machine 

becomes larger generally. In this condition, there are more decisions to make and 

consequently a larger space for performance improvement. When solving problem 

instances whose maximum batch size is eight, for example, the IPs by our MA are 

between 14.6% and 19.6%. By cutting the batch size to the half, the IPs by our MA 

become much higher, with the range between 23.1% and 29.7%. As the value of the 

arrival time factor (α) increases, the contention for machines gets lighter; as the value 

of due date factor (β) increases, the allowance time of jobs gets larger. In both of the 

above conditions, there is more possibility to complete the jobs within their due dates 

and consequently a larger space for performance improvement. For example, the IPs 

(24.8% ~ 31.7%) by our MA for problem instances with the arrival time factor equal 

to 0.75 are more than twice the IPs (10.8% ~ 15.4%) for problem instances with the 

arrival time factor equal to 0.25. 



Acc
ep

te
d m

an
usc

rip
t 

27 

Comparing with IPs of the benchmark approach, IPs of our MA are generally 

higher by at least 10%. When solving the problem instances with a larger space for 

performance improvement, our MA shows greater advantage. For example, the IPs 

(14.6% ~ 19.6%) by our MA for problem instances with the batch size equal to eight 

are higher than those (5.5% ~ 8.6%) of the benchmark approach by around 10%. The 

difference (23.1% ~ 29.7% vs. 9.6% ~ 15.1%) increases to around 14% when the two 

approaches solved the problem instances with the batch size equal to four. The largest 

difference is observed when problem instances with loose due dates (β = 0.75) were 

solved. The IPs (24.2% ~ 31.5%) of our MA are higher than those (8.2% ~ 14.3%) of 

the benchmark approach by at least 16%. Averaging over all 4860 instances, the IP of 

our MA is higher than that of the benchmark approach by 12.9%, 11.9%, and 11.3% 

in the best, average, and worst cases, respectively. The difference between the 

best-case and worst-case IPs of our MA is 5.8% (24.7% − 18.9%), only slightly higher 

than that (11.8% − 7.6% = 4.2%) of the benchmark approach by 1.6%. It shows that 

our MA significantly outperforms the benchmark approach and keeps the robustness. 

In Table 7 the computation time required by the benchmark approach is much 

shorter than that reported in [24]. The difference arises mainly from two factors, 

namely, different ways of implementation and different computing platforms. The 

way of our implementation is specific to the algorithm flow of the benchmark 

approach, whereas the original implementation was based on GAlib [39], which is a 

general library of genetic algorithms and may include some actions that are not 

necessary for running the benchmark approach. In addition, the CPU in our 

computing platform runs about twice faster than that of theirs (3.0 GHz vs. 1.7 GHz) 

and the size of memory of our platform is also larger (2 GB RAM vs. 256 MB RAM). 

Considering the computational efficiency, the computation time required by our MA 

is shorter than that required by the benchmark approach. One possible source for the 



Acc
ep

te
d m

an
usc

rip
t 

28 

speedup is the difference between the decoding schemes. In the decoding scheme of 

the benchmark approach, the BATC-II dispatching rule must be applied iteratively to 

sequence batches on each machine. In our MA, the sequence of batches is already 

determined by the permutation of batches on the chromosome. Another source for the 

speedup could be the use of local search in our approach. It helps our MA to converge 

faster than the benchmark approach, which is a GA-alone algorithm.  

 

6. Conclusions 

In this paper, we addressed the identical parallel batch machine scheduling 

problem with incompatible job families and dynamic job arrival. This problem is 

motivated by scheduling of the diffusion operation in the wafer fabs and has a high 

practical value. We proposed a scheduling approach based on the framework of the 

MA. It uses a new genome encoding scheme that considers batch formation and batch 

sequence simultaneously. We also developed crossover and mutation operators 

suitable for the new encoding scheme. Based on the results of a comprehensive 

experiment, the performance improvement percentage of our approach is higher than 

that of the benchmark approach by at least 10% on average. Besides, the average 

computation time of our approach is shorter than that of the benchmark approach by 

more than 50%. Our approach also shows robust performance with respect to values 

of parameters. 

Our research will continue following three directions: (1) Although the current 

approach encodes batch formation in the chromosome, the number of batches of each 

job family is still fixed. In the next version, we want to relax this constraint by 

allowing batches to be combined and split during the search process of the MA. (2) 

The problem with non-identical parallel machines will be studied. In the extended 

problem, machine assignment must be done more intelligently. We may solve it by 



Acc
ep

te
d m

an
usc

rip
t 

29 

adding heuristics for machine assignment in our current MA, or we may also enhance 

our current genome encoding scheme by considering machine assignment. (3) An 

advanced local search procedure will be used in our approach. Currently, the 

neighborhood function uses no domain knowledge. In the future, we will utilize the 

information in the derived schedule (e.g. arrival times and due dates of jobs) to 

generate the neighboring solutions (e.g. move tardy jobs to earlier batches [22]). 

 

Acknowledgment 

This research was supported by National Taiwan Normal University under 

research grant No. 97091022 and by the National Science Council of Republic of 

China under research grant No. 97-3114-E-002-002. 

 



Acc
ep

te
d m

an
usc

rip
t 

30 

References 

[1] Gupta JND, Ruiz R, Fowler JW, Mason SJ. Operational planning and control of 
semiconductor wafer production. Production Planning & Control 2006;17(7): 
639–47. 

[2] Sourirajan K, Uzsoy R, Hybrid decomposition heuristics for solving larg-scale 
scheduling problems in semiconductor wafer fabrication. Journal of Scheduling 
2007;10:41–65. 

[3] Pfund ME, Balasubramanian H, Fowler JW, Mason SJ, Rose O. A multi-criteria 
approach for scheduling semiconductor wafer fabrication facilities. Journal of 
Scheduling 2008;11:29–47. 

[4] Potts CN, Kovalyov MY, Scheduling with batching: a review. European Journal 
of Operational Research 2000;120:228–49.  

[5] Mathirajan M, Sivakumar AI. A literature review, classification and simple 
meta-analysis on scheduling of batch processors in semiconductor. International 
Journal of Advanced Manufacturing Technology 2006;29:990–1001. 

[6] Uzsoy R. Scheduling batch processing machines with incompatible job families. 
International Journal of Production Research 1995;33(10):2685–2708. 

[7] Mehta SV, Uzsoy R. Minimizing total tardiness on a batch processing machine 
with incompatible job families. IIE Transactions 1998;30:165–178. 

[8] Vepsalainen APJ, Morton TE. Priority rules for job shops with weighted 
tardiness costs. Management Science 1987;33(8):1035–47. 

[9] Azizoglu M, Webster S. Scheduling a batch processing machine with 
incompatible job families. Computers & Industrial Engineering 2001;39:325–35. 

[10] Perez IC, Fowler JW, Carlyle WM. Minimizing total weighted tardiness on a 
single batch process machine with incompatible job families. Computers & 
Operations Research 2005;32:327–41. 

[11] Geiger CD, Uzsoy R. Learning effective dispatching rules for batch processor 
scheduling. International Journal of Production Research 2008; 46(6):1431–54. 

[12] Koh SG, Koo PH, Kim DC, Hur WS. Scheduling a single batch processing 
machine with arbitrary job sizes and incompatible job families. International 
Journal of Producion Economics 2005;98:81−96. 

[13] Kashan AH, Karimi B. Scheduling a single batch-processing machine with 
arbitrary job sizes and incompatible job families: An ant colony framework. 
Journal of the Operational Resarch Society 2008;59:1268−1280. 

[14] Balasubramanian H, Mönch L, Fowler JW, Pfund ME. Genetic algorithm based 
scheduling of parallel batch machines with incompatible families to minimize 



Acc
ep

te
d m

an
usc

rip
t 

31 

total weighted tardiness. International Journal of Production Research 
2004;42(8):1621–38. 

[15] Raghavan NRS, Venkataramana M. Scheduling parallel batch processors with 
incompatible job families using ant colony optimization. Proceedings of the 
IEEE International Conference on Automation Science and Engineering 
2006:507−512. 

[16] Koh SG, Koo PH, Ha JW, Lee WS. Scheduling parallel batch processing 
machines with arbitrary job sizes and incompatible job families. International 
Journal of Production Research 2004;42(19):4091−4107. 

[17] Mathirajan M, Sivakumar AI. Minimizing total weighted tardiness on 
heterogeneous batch processing machines with incompatible job families. 
International Journal of Advanced Manufacturing Technology 2006;28:1038–47. 

[18] Glassey CR, Weng WW. Dynamic batching heuristics for simultaneous 
processing. IEEE Transactions on Semiconductor Manufacturing 1991; 
4(2):77–82. 

[19] Fowler JW, Phillips DT, Hogg GL. Real-time control of multiproduct 
bulk-service semiconductor manufacturing processes. IEEE Transactions on 
Semiconductor Manufacturing 1992;5(2):158–63. 

[20] Tangudu SK, Kurz ME. A branch and bound algorithm to minimise total 
weighted tardiness on a single batch processing machine with ready times and 
incompatible job families. Production Planning & Control 2006;17(7):728–41. 

[21] Gupta AK, Sivakumar AI. Controlling delivery performance in semiconductor 
manufacturing using look ahead batching. International Journal of Production 
Research 2007;45(3);591–613. 

[22] Kurz ME, Mason SJ. Minimizing total weighted tardiness on a batch-processing 
machine with incompatible job families and job ready times. International 
Journal of Production Research 2008;46(1):131–51. 

[23] Malve S, Uzsoy R. A genetic algorithm for minimizing maximum lateness on 
parallel identical batch processing machines with dynamic job arrivals and 
incompatible job families. Computers & Operations Research 2007;34:3016–28. 

[24] Mönch L, Balasubramanian H, Fowler JW, Pfund ME. Heuristic scheduling of 
jobs on parallel batch machines with incompatible job families and unequal 
ready times. Computers & Operations Research 2005; 32:2731–50. 

[25] Reichelt D, Mönch L. Multiobjective scheduling of jobs with incompatible 
families on parallel batch machines. Lecture Notes in Computer Science 
2006;3906:202–21. 

[26] Wang CS, Uzsoy R. A genetic algorithm to minimize maximum lateness on a 
batch processing machine. Computers & Operations Research 2002;29:1621–40. 



Acc
ep

te
d m

an
usc

rip
t 

32 

[27] Van Der Zee DJ. Dynamic scheduling of batch-processing machines with 
non-identical product size. International Journal of Production Research 
2007;45(10): 2327–49. 

[28] Kashan AH, Karimi B, Jenabi M. A hybrid genetic heuristic for scheduling 
parallel batch processing machines with arbitrary job sizes. Computers & 
Operations Research 2008;35:1084−98. 

[29] Aytug H., Khouja M, Vergara FE. Use of genetic algorithms to solve production 
and operations management problems: a review. International Journal of 
Production Research 2003;41(17):3955–4009. 

[30] Chaudhry SS, Luo W. Application of genetic algorithms in production and 
oprations management: a review. International Journal of Production Research 
2005;43(19):4083–4101. 

[31] Hart E, Ross P, Corne D. Evolutionary scheduling: a review. Genetic 
Programming and Evolvable Machines 2005;6:191–220. 

[32] França PM, Mendes A, Moscato P. A memetic algorithm for the total tardiness 
single machine scheduling problem. European Journal of Operational Research 
2001;132:224–42. 

[33] Tseng LY, Lin YT. A hybrid genetic local search algorithm on the permutation 
flowshop scheduling problem. European Journal of Operational Research 
2009;198:84–92. 

[34] Essafi I, Mati Y, Dauzère-Pérès S. A genetic local search algorithm for 
minimizing total weighted tardines in the job-shop scheduling problem. 
Computers & Operations Research 2008;35(8):2599–2616. 

[35] Chiang TC, Fu LC. A rule-centric memetic algorithm to minimize the numbe rof 
tardy jobs in the job shop. International Journal of Production Research 
2008;46(24):6913–31. 

[36] Ishibuchi H, Yoshida T, Murata T. Balance between genetic search and local 
search in memetic algorithms for multiobjective permutation flowshop 
scheduling. IEEE Transactions on Evolutionary Computation 2003;7(2): 204–23. 

[37] Cheng HC, Chiang TC, Fu LC. Multiobjective job shop scheduling using 
memetic algorithm and shifting bottleneck procedures. Proceedings of IEEE 
Symposium on Computational Intelligence in Scheduling 2009; 15–21. 

[38] Cheng HC, Chiang TC, Fu LC. A memetic algorithm for parallel batch machine 
scheduling with incompatible job families and dynamic job arrivals. Proceedings 
of IEEE International Conference on Systems, Man, and Cybernetics 2008; 
541–46. 

[39] Wall, M. GAlib: A C++ library of genetic algorithms components. 
http://lancet.mit.edu/ga/, 1999. 



Acc
ep

te
d m

an
usc

rip
t 

33 

 

 

 

 

 

 

Fig. 1. An example of scheduling of parallel batch machines (m = 2, f = 2, n1 = n2 = 6) 

M1 

M2 

{11, 12} 

{21, 22} 

{13, 15} 

{23} 

time 

11   12 21   22   13 14  15  23   16  24     25  26 

{14,16} 

{24, 26} {25} 



Acc
ep

te
d m

an
usc

rip
t 

34 

 

 

 

 

 

 

 

 

Fig. 2. Chromosome encoding considering machine assignment [24] 

1 1 1 2 2 2 2 

2 2 1 2 1 1 2 

1 2 2 1 1 2 2 

Individual 1 

Individual 2 

Individual 3 

{11, 12}   {13, 15}  {14, 16}  {21, 22}    {23}   {24, 26}    {25} 



Acc
ep

te
d m

an
usc

rip
t 

35 

 

 

 

 

 

 

 

 

 
Fig. 3. Chromosome encoding considering batch sequence [38]  

 

B1 B4 B2 B5 B6 B3Individual 1 

Individual 2 

Individual 3 

B7

B5 B3 B1 B6 B2 B7 B4

B3 B2 B4 B7 B1 B5 B6

B1 = {11, 12} 
B2 = {13, 15} 
B3 = {14, 16} 
B4 = {21, 22} 
B5 = {23} 
B6 = {24, 26} 
B7 = {25} 



Acc
ep

te
d m

an
usc

rip
t 

36 

 

 

 

 

 

 

 

Fig. 4. Proposed chromosome encoding considering batch formation and sequence simultaneously 

time 

{11,12} {21,22} {23,24} {13,14} {15,16}

{11, 12} 

{21, 22} {15, 16}{13, 14}

{23 24}

Individual 1 

M1 

M2 
4 

8 12 16 

13 

{21,24} {11,13} {22,23} {12,14} {15,16}Individual 3 

{21,22} {11,12} {23,24} {15,16} {13,14}Individual 2 



Acc
ep

te
d m

an
usc

rip
t 

37 

 

 

 

 

 

 

 

 

 

Fig. 5. The basic decoding scheme – scheduling based on recorded batch formation and batch sequence 

 

Job rij Job rij 
11 0 21 2 
12 0 22 5 
13 0 23 9 
14 0 24 10 
15 3  
16 7  
p1 = 4 and p2 = 3 

{11,12} {21,22} {23,24} {13,14} {15,16}

{11, 12} 

{21, 22} {15, 16}{13, 14}

{23 24}

Chromosome 

M1 

M2 
4 

8 12 16 

13 



Acc
ep

te
d m

an
usc

rip
t 

38 

 

 

 

 

 

 

 

 

 

Fig. 6. The improved decoding scheme – considering idle periods on machines 

 

Job rij Job rij 
11 0 21 2 
12 0 22 5 
13 0 23 9 
14 0 24 10 
15 3   
16 7   

  p1 = 4 and p2 = 3 

{11,12} {21,22} {23,24} {13,14} {15,16}

{11, 12} 

{21, 22} {15, 16}{13 14} 

{23, 24}

Chromosome 

M1 

M2 

4 

4 13

8 12



Acc
ep

te
d m

an
usc

rip
t 

39 

 

 

 

 

 

 

 

Fig. 7. Two-point crossover for chromosomes encoded by the scheme in Fig. 2 

 

1 1 1 2 2 2 2

2 2 1 2 1 1 2

1 1 1 2 1 1 2 

2 2 1 2 2 2 2 



Acc
ep

te
d m

an
usc

rip
t 

40 

 

 

 

 

 

 

 
Fig. 8. Linear order crossover for chromosomes encoded by the scheme in Fig. 3 

 

B4 B5 B1 B6 B2 B7 B3

B1 B7 B2 B5 B6 B3 B4

B1 B4 B2 B5 B6 B3 B7

B5 B3 B1 B6 B2 B7 B4



Acc
ep

te
d m

an
usc

rip
t 

41 

 

 

{11,13} {21,22} {12,15} {23} {24,26} {14,16} {25}

{21} {11,12} {13,14} {23,24} {25,26} {15,16} {22}

11 13 12 15 14 16

11 12 13 14 15 16

11 13 12 14 15 16

11 12 13 15 14 16

{11,13} {21,22} {12,14} {23} {24,26} {15,16} {25}

{21} {23,24} {25,26} {22}

Assume family 1 is chosen. 
Extract the sequence of jobs belonging to family 1.  

 Select two cut points randomly. 

Put the jobs back to batches according to the 
job sequence and original batch size.  

Leave the parts outside the section enclosed by cut 
points unchanged. Fill the enclosed section with the 
remaining jobs in the order of the other parent.  

11 13 12 14 15 16

11 12 13 15 14 16

Parent 1 

Parent 2 

Offspring 1 

 {21,22} {23} {24,26} {25}

+

|| 

{21} {11,12} {13,15} {23,24} {25,26} {14,16} {22} Offspring 2 

+

|| 

Parent 1 with batches of 
family 1 unfilled 

Parent 2 with batches of 
family 1 unfilled 



Acc
ep

te
d m

an
usc

rip
t 

42 

Fig. 9. Proposed batch formation crossover 

 

 

 

 
Fig. 10 Proposed batch sequence crossover 

 

 

{11,13} {21,22} {24,26} {12,15} {14,16} {23} {25}

{21,22} {13,14} {11,12} {23} {25} {24,26} {15,16}

{11,13} {21,22} {12,15} {24,26} {14,16} {23} {25}

{21,22} {13,14} {23} {11,12} {25} {24,26} {15,16}

Extract the sequence of job families of batches.  

 Select two cut points x and y randomly. 

Re-arrange the batches in the enclosed section 
according to the sequence in the other parent.  

Eliminate job families before point x in one parent from 
the other parent, starting from left to right. For example, 
the first f1 and first f2 in the second parent is eliminated.  
Eliminate job families after point y in one parent from 
the other parent, starting from right to left. For example, 
the last two f2 in the second parent is eliminated. 

f1 f2 f2 f1 f1 f2 f2

f2 f1 f1 f2 f2 f2 f1

f1 f2 f2 f1 f1 f2 f2

f2 f1 f1 f2 f2 f2 f1

The part left represents the sequence of batches in the 
enclosed section of the other parent.  

f2 f1 f2

f1 f2 f1

x y 



Acc
ep

te
d m

an
usc

rip
t 

43 

 

 

 

 

 

 

 

 

 
Fig. 11 Proposed batch formation mutation 

 

{11,12} {21,22} {13,15} {23} {24,26} {14,16} {25}

Select a job family randomly. Select two 
batches belonging to this family.

{11,12} {21,22} {13,14} {23} {24,26} {15,16} {25}

Select one job in each of two batches and 
exchange them.



Acc
ep

te
d m

an
usc

rip
t 

44 

 

 

 

 

 

 

 

 

Fig. 12 Proposed batch sequence mutation 

{11,12} {21,22} {13,15} {23} {24,26} {14,16} {25} 

Select two batches randomly.

{11,12} {21,22} {25} {23} {24,26} {14,16} {13,15} 

Exchange them.



Acc
ep

te
d m

an
usc

rip
t 

45 

 

 
 
 
Table 1 
Local search procedure 
g: individual 
NEVAL,LS: the number of evaluations allocated for each invocation of local search 
PF,LS: the probability to apply the batch formation mutation operator 
DP: the maximum acceptable deviation percentage 
rand(): return a random real value between 0 and 1 
BFM(g): return a neighboring solution using the batch formation mutation operator 
BSM(g): return a neighboring solution using the batch sequence mutation operator 
TWT(g): return total weighted tardiness of the schedule obtained by decoding g 
 
LocalSearch(Chromosome g0) 
Begin 
     g = gbest = g0 
     For t = 1 to NEVAL,LS 
         If rand() < PF,LS Then 
            g = BFM(g) 
         Else 
            g = BSM(g) 
 
         If TWT(g) < TWT(gbest) 
               gbest = g 
         Else If TWT(g) > TWT(gbest)⋅(1+DP/100) 
             g = gbest 

         End if 
     End for 
     g0 = gbest 
End 

 



Acc
ep

te
d m

an
usc

rip
t 

46 

 
 
 
 
 
 
 
 
 
Table 2 
Parameters for generation of problem instances 
Problem parameter Values used Levels 
Number of families (f) 3, 6, 12 3 
Number of machines (m) 3, 4, 5 3 
Number of jobs (n) 180, 240, 300 3 
Maximum batch size (B) 4, 8 2 
Family processing time (pj) 2, 4, 10, 16, and 20 with probability 

0.2, 0.2, 0.3, 0.2, and 0.1, respectively 
1 

Weight per job (wij) Uniform (0, 1) 1 
Arrival time (rij) rij ~ Uniform (0, α⋅Σpj/(mB)) 

α = 0.25, 0.5, 0.75 
3 

Due date (dij) dij – rij ~ Uniform (0, β⋅Σpj/(mB)) 
β = 0.25, 0.5, 0.75 

3 

 



Acc
ep

te
d m

an
usc

rip
t 

47 

 

 

 

 

 

Table 3 
Tuning of parameter values (NPOP, NGEN, NLS, and NEVAL, LS): Average improvement 
percentage (%) and average computation time (s.) of proposed algorithm with 
different values of parameters. (PF,GA and PF,LS are both 0.5.) 

population size × maximum generation number  
100×1000 200×500 400×250 

No local search 23.14 / 4.60∗∗ 23.91 / 6.42 23.70 / 7.02 
1 × 500* 23.54 / 2.69 24.78 / 5.22 25.47 / 7.93 
5 × 100 24.64 / 4.03 25.40 / 6.58 25.88 / 8.74 
10 × 50 24.86 / 4.50 25.70 / 7.23 26.05 / 9.05 
1 × 1000 23.71 / 2.82 24.76 / 5.02 25.53 / 8.22 
5 × 200 24.90 / 4.88 25.67 / 7.46 26.19 / 10.10 
10 × 100 25.27 / 5.66 26.00 / 8.33 26.43 / 10.70 

*Number of individuals doing local search × number of evaluations in local search 
∗∗Average improvement percentage / average computation time 



Acc
ep

te
d m

an
usc

rip
t 

48 

 
 
 
 
 
 
 
 
 
 
 
 
 
Table 4 
Tuning of parameter values (PF,GA and PF,LS): Average improvement percentage (%) 
and average computation time (s.) of proposed algorithm with different values of 
parameters (NPOP, NGEN, NLS, and NEVAL, LS are 100, 1000, 1, and 500, respectively.) 

   PF,GA 
PF,LS 0 0.25 0.5 0.75 1 

0 14.12 / 1.06 20.01 / 4.19 23.04 / 6.14 24.14 / 6.69 24.54 / 6.81 
0.25 20.35 / 1.37 22.63 / 2.35 23.55 / 2.98 24.05 / 3.28 24.05 / 3.44 
0.5 21.51 / 1.52 23.07 / 2.25 23.54 / 2.68 23.87 / 2.89 23.82 / 2.92 
0.75 22.01 / 1.76 23.19 / 2.46 23.63 / 2.86 23.64 / 2.96 23.38 / 2.82 

1 22.18 / 2.18 23.41 / 3.03 23.51 / 3.63 22.70 / 3.92 18.23 / 2.90 
 



Acc
ep

te
d m

an
usc

rip
t 

49 

 
 
 
 
 
 
 
 
 
 
Table 5 
Tuning of parameter values (PF,GA and PF,LS): Average improvement percentage (%) 
and average computation time (s.) of proposed algorithm with different values of 
parameters (NPOP, NGEN, NLS, and NEVAL, LS are 400, 250, 10, and 100, respectively.) 

PF,GA  
PF,LS 0 0.25 0.5 0.75 1 

0 14.37 / 4.03 22.46 / 11.01 24.40 / 11.84 25.45 / 12.17 25.81 / 12.32 
0.25 21.86 / 6.45 25.59 / 10.67 26.31 / 11.15 26.34 / 11.17 26.35 / 11.09 
0.5 22.89 / 6.67 25.99 / 10.42 26.43 / 10.77 26.50 / 10.79 26.22 / 10.71 
0.75 23.40 / 7.01 25.95 / 10.34 26.30 / 10.66 26.28 / 10.66 25.72 / 10.53 

1 23.51 / 7.52 25.92 / 10.60 25.96 / 11.00 25.51 / 11.31 20.69 / 10.24 
 



Acc
ep

te
d m

an
usc

rip
t 

50 

 
 
 
 
 
 
 
 
 
 
 
 
Table 6 
Tuning of parameter values (NPOP, NGEN, NLS, and NEVAL, LS): Average improvement 
percentage (%) and average computation time (s.) of proposed algorithm with 
different values of parameters. (PF,GA and PF,LS are 0.75 and 0.25, respectively.) 

population size × generation number  
100×1000 200×500 400×250 

No local search 23.63 / 4.80 24.50 / 6.59 24.16 / 7.21 
1 × 500* 24.05 / 3.28 25.19 / 6.04 25.74 / 8.59 
5 × 100 24.66 / 4.50 25.59 / 7.35 26.09 / 9.19 
10 × 50 24.98 / 4.97 25.82 / 7.85 26.19 / 9.39 
1 × 1000 24.09 / 3.54 25.08 / 6.19 25.71 / 9.32 
5 × 200 25.12 / 5.41 25.82 / 8.14 26.30 / 10.71 
10 × 100 25.26 / 6.18 26.10 / 8.94 26.34 / 11.15 



Acc
ep

te
d m

an
usc

rip
t 

51 

 
 
Table 7 
Performance comparison: Best-case, average-case, and worst-case average 
improvement percentage (%) and average computation time (s.) of benchmark and 
proposed algorithms.  

 Benchmark [24] Proposed MA 

Number of families (f) 
3 12.8 / 10.8 /  8.1 (5.0) 29.3 / 26.4 / 23.3 (3.9) 
6 12.0 / 10.1 /  7.6 (5.3) 24.6 / 21.7 / 18.7 (2.3) 
12 10.7 /  9.2 /  7.1 (6.1) 20.0 / 17.5 / 14.6 (1.7) 

Number of machines (m) 
3 13.2 / 11.4 /  9.0 (5.6) 27.2 / 24.2 / 21.0 (2.3) 
4 11.9 / 10.1 /  7.6 (5.5) 24.5 / 21.7 / 18.7 (2.5) 
5 10.4 /  8.5 /  6.1 (5.3) 22.2 / 19.6 / 16.8 (2.6) 

Batch size (B) 
4 15.1 / 12.7 /  9.6 (9.0) 29.7 / 26.5 / 23.1 (3.1) 
8 8.6 /  7.4 /  5.5 (1.9) 19.6 / 17.2 / 14.6 (1.8) 

Number of jobs (n) 
180 8.7 /  7.1 /  5.0 (1.8) 19.7 / 17.0 / 14.2 (1.3) 
240 12.0 / 10.2 /  7.6 (4.4) 24.9 / 22.1 / 19.1 (2.3) 
300 14.8 / 12.7 / 10.0 (10.1) 29.3 / 26.4 / 23.2 (3.7) 

Arrival time factor (α) 
0.25 5.9 /  5.0 /  3.7 (5.2) 15.4 / 13.1 / 10.8 (2.7) 
0.50 12.7 / 10.8 /  8.4 (5.5) 26.8 / 24.0 / 21.0 (2.5) 
0.75 16.9 / 14.2 / 10.6 (5.6) 31.7 / 28.4 / 24.8 (2.1) 

Due date factor (β) 
0.25 10.0 /  9.0 /  7.5 (5.5) 18.2 / 16.2 / 14.0 (2.8) 
0.50 11.2 /  9.4 /  7.0 (5.5) 24.2 / 21.4 / 18.3 (2.5) 
0.75 14.3 / 11.7 /  8.2 (5.4) 31.5 / 28.0 / 24.2 (2.0) 

 
Average 11.8 / 10.0 /  7.6 (5.5) 24.7 / 21.9 / 18.9 (2.4) 

 




