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A knowledge-based evolutionary algorithm for the multiobjective 

vehicle routing problem with time windows 

Abstract 

This paper addresses the multiobjective vehicle routing problem with time windows (MOVRPTW). 

The objectives are to minimize the number of vehicles and the total distance simultaneously. Our 

approach is based on an evolutionary algorithm and aims to find the set of Pareto optimal solutions. 

We incorporate problem-specific knowledge into the genetic operators. The crossover operator 

exchanges one of the best routes, which has the shortest average distance, the relocation mutation 

operator relocates a large number of customers in non-decreasing order of the length of the time 

window, and the split mutation operator breaks the longest-distance link in the routes. Our 

algorithm is compared with 10 existing algorithms by standard 100-customer and 200-customer 

problem instances. It shows competitive performance and updates more than 1/3 of the net set of the 

non-dominated solutions. 

 

Keywords: Vehicle routing problem; Time windows; Multiobjective; Pareto optimal; Evolutionary 

algorithm 

 

1. Introduction 

The Vehicle Routing Problem (VRP) aims to find the optimal set of routes for a fleet of 

vehicles to serve customers under specific constraints. In its basic form, the VRP involves a single 

depot as the start and end points of the routes. Each customer is associated with a location and a 

demand quantity. Each vehicle serves the customers along the designated route, and the total 

demand cannot exceed the maximum capacity. The VRP is a combination of two classical NP-hard 

combinatorial optimization problems, the bin packing problem and the traveling salesman problem 

(TSP). Similar to bin packing, solving the VRP requires partitioning customers into vehicles to 

minimize the required number of vehicles without violating the capacity constraint. For each 

vehicle, the VRP asks to find the lowest-cost (usually the shortest-distance) driving path, which is 

the same as what the TSP needs. The Vehicle Routing Problem with Time Windows (VRPTW) is an 
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extension of the VRP. In the VRPTW, each customer has a predefined time window. A vehicle can 

start to serve a customer only within the time window. In this study, we take the time window as a 

hard constraint. If a vehicle arrives at the customer’s location earlier, it must wait until the 

beginning of the time window; if the vehicle arrives later than the end of the time window, the 

solution is not acceptable. The VRPTW has many real-world applications, such as postal delivery, 

waste collection, school bus routing, and so on. Due to the challenging problem complexity and 

high practical value, the VRPTW is a very important research topic in the fields of operations 

research, transportation science, and computer science. 

Several objectives have been considered in the VRPTW, and minimization of the number of 

vehicles and the total travel distance are the most common objectives in the literature. The classical 

way to address these two objectives is to minimize the number of vehicles first and then to 

minimize the total distance with the minimal number of vehicles. The number of vehicles is related 

to the investment of purchasing vehicles and the cost of hiring drivers; the travel distance, on the 

other hand, is related to the fuel cost. Optimizing the two objectives in the classical way implies that 

the vehicle-related cost is much higher than the distance-related cost. In many cases, however, fleet 

managers want to know the trade-off between these two objectives before determining the best 

routing plan. To accomplish this goal, another stream of research was started by searching for the 

set of Pareto optimal solutions rather than a single optimal solution. Hereafter, Pareto approaches 

refer to the approaches for which the goal is to find the Pareto set. The definition of Pareto optimal 

solutions and the Pareto set will be given in the next section. Simply speaking, solutions in the 

Pareto set are not worse than any other in both objectives simultaneously. By looking into the 

trade-off between these solutions, managers can get more information and make a better decision. 

This paper proposes a knowledge-based evolutionary algorithm (KBEA) to solve the VRPTW. 

The remainder of this paper is organized as follows. Section 2 defines the target problem and the 

objectives. Section 3 gives the literature review. The proposed approach is elaborated in Section 4, 

and the experiments and results are detailed in Section 5. Section 6 draws the conclusions and 

provides future research directions. 
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2. Multiobjective Vehicle Routing Problem with Time Windows (MOVRPTW) 

The VRPTW involves two types of objects: locations and vehicles. A special location 0 

represents the depot. The remaining N locations correspond to N customers. For each customer i (1 

 i  N), the demand qi, the service time si, and the time window [ei, li] are known in advance. The 

travel distance and travel time between two locations i and j are denoted by dij and tij. (In this study, 

we assume that dij equals tij.) The vehicles are homogeneous and have the same maximum capacity 

Q. A feasible solution to the VRPTW must satisfy the following constraints: 

(1) Each customer must be served by exactly one vehicle exactly one time. 

(2) The route of each vehicle must start from and end at the depot. 

(3) The total demand of the customers served by each vehicle cannot exceed the maximum 

capacity Q. 

(4) A vehicle must arrive at customer i no later than the end of the time window: ai  li, where 

ai denotes the arrival time at customer i. 

(5) The service cannot start before the beginning of the time window: bi = max{ai, ei}, where bi 

is the service start time at customer i. 

(6) Assume that customer j is served immediately after customer i; then, the arrival time at j is 

defined by aj = bi + si + tij. 

For each feasible solution, we calculate two objective values: the number of required vehicles 

and the total travel distance. We say that one solution x dominates another solution y if x is not 

worse than y in both objectives and is better in at least one objective. Taking Fig. 1 as an example, x 

dominates y, but x and z do not dominate each other. A solution is Pareto optimal if it is not 

dominated by any other solution. The set of Pareto optimal solutions is called the Pareto set, and the 

set of objective vectors of the Pareto optimal solutions is called the Pareto front. Take Fig. 1 as an 

example again. If we solve the VRPTW in the classical way (minimizing the number of vehicles 

and then the total distance), the fleet manager obtains a single optimal solution w; if we consider the 

total distance only, then the solution z is obtained. Compared with these two traditional approaches, 
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the Pareto approach will output the Pareto optimal set of solutions {w, x, z} to the manager. It offers 

the manager the opportunity of choosing solution x as the final plan based on the trade-off between 

two objectives that are of concern. 

<< Insert Fig. 1 about here >> 

3. Literature review 

The NP-hard problem complexity means that currently no algorithm can solve the VRPTW 

optimally in polynomial time. In the literature, Jepsen et al. (2006) could solve 45 out of 56 

100-customer instances in Solomon’s data set (1987) optimally in terms of the total distance within 

hours. However, the exponentially growing computation time would limit the use of exact 

algorithms when the problem scale becomes larger and larger. Metaheuristics such as genetic 

algorithms (GA) and tabu search (TS) are promising approximation algorithms that have addressed 

hard optimization problems in recent decades. They have already demonstrated good performance 

in solving the VRPTW (Bräysy and Gendreau 2005b, Potvin 2009). Here, we will focus on the 

literature that applies metaheuristics to solve the VRPTW. We classify the existing studies 

according to how they addressed the two objectives. Section 3.1 reviews the studies that minimized 

the objectives in the lexicographical way, and Section 3.2 reviews the studies that consider a 

minimization of the total distance only. Studies based on Pareto approaches are presented in Section 

3.3. 

3.1 Classical (lexicographical minimization) approaches 

In the literature on the VRPTW, the classical way to address the two most common objectives 

is to minimize the number of vehicles and then to minimize the total distance with the minimal 

number of vehicles. This subsection will review past studies that belong to this category and 

describe the featured design concepts and techniques. 

To cater to the lexicographical minimization of the two concerned objectives, many algorithms 

are composed of two (or more) phases. Examples include Gehring and Homberger (1999), Bräysy 

(2003), Bent and Hentenryck (2004), Bräysy et al. (2004), Homberger and Gehring (2005), and Lim 
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and Zhang (2007). The first phase attempted to minimize the number of vehicles, and then, the best 

solution entered the second phase to minimize the total distance. Many different combinations of 

metaheuristics have been proposed. Gehring and Homberger (1999) used an evolution strategy (ES) 

in the first phase and a TS in the second phase, while Bent and Hentenryck (2004) used simulated 

annealing (SA) and a large neighborhood search. Another idea to fit the lexicographical 

minimization is using two populations simultaneously. Gambardella et al. (1999) developed an ant 

colony system (MACS-VRPTW) that had two colonies. One colony aimed at minimizing the 

number of vehicles, and the other colony aimed at minimizing the total distance. Both colonies used 

independent pheromone trails but shared the global best solution. The first colony attempted to turn 

an infeasible solution that uses one less vehicle than the global best solution into a feasible solution. 

Once it found a feasible solution, it restarted after decreasing one more vehicle, and the newly 

found solution was sent to the other colony to minimize the total distance. A similar concept can be 

seen in Berger et al. (2003), where they proposed a GA that had two populations. 

Based on the lexicographical minimization order, the natural way to compare two solutions 

during the search process is to compare the number of vehicles first and then the total distance if the 

solutions use the same number of vehicles. However, Homberger and Gehring (1999) noted that the 

minimization of the total distance does not inevitably lead to a reduction in the number of vehicles. 

(In fact, this arrangement implies that there is a conflict between the two objectives and motivates 

the use of Pareto approaches in the MOVRPTW.) Thus, they introduced two auxiliary objectives in 

the environmental selection stage of their ES. One objective was the number of customers that were 

served in the smallest route (the route comprising the fewest customers) in the solution, CR; the 

other objective was a measure called the minimal delay, DR, which estimates the difficulty of 

moving the customers on the smallest route to other routes. The auxiliary objectives aim to identify 

potential solutions for further vehicle reduction when multiple solutions use the same number of 

vehicles. When two solutions use the same number of vehicles, the solution that has a smaller CR is 

regarded as the better solution. The idea is simple: it would be easier to remove a route that has 

fewer customers. In case of a tie in CR, the solution that has a smaller DR is better. The minimal 
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delay was also used in Bent and Hentenryck (2004) and Homberger and Gehring (2005). Bent and 

Hentenryck (2004) took the square of the number of customers in the smallest route as an auxiliary 

objective. Bouthillier and Crainic (2005) ranked the solutions first by the number of vehicles and 

then by the weighted sum of the travel time, total distance, waiting time, and residual time. 

Most studies either ensure that no infeasible solution is generated by the neighborhood 

functions or discard infeasible solutions. Only a few studies allowed the infeasible solutions to 

appear during the search process. Gambardella et al.’s ant colony system (1999) put infeasible 

solutions in one colony and attempted to maximize the number of served customers. These 

infeasible solutions obeyed the capacity and time window constraints but did not serve all of the 

customers. Cordeau et al. (2001) and Berger et al. (2003) intended to minimize the weighted sum of 

the original objective values and the amount of constraint violation for the infeasible solutions. 

Nagata et al. (2010) allowed the temporary occurrence of infeasible solutions in the local 

search-based repair procedure. If the local search could not decrease the constraint violation to zero, 

however, the infeasible solution was still discarded and did not participate in the evolution process. 

Vidal et al. (2013) proposed a GA, which evolved feasible and infeasible individuals in two separate 

sub-populations. The fitness of the infeasible individuals was calculated based on the rankings of 

the amount of constraint violation and the similarity to other individuals. Two parents were chosen 

from the union of the two sub-populations by 2-tournament selection. After an offspring was 

produced by crossover and local search, it was placed into the corresponding population according 

to its feasibility. Cordeau et al. (2001), Nagata et al. (2010), and Vidal et al. (2013) relaxed both the 

capacity and time window constraints, and Berger et al. (2003) relaxed only the time window 

constraints. 

Another research point in the VRPTW literature is to develop efficient neighborhood functions. 

The 2-opt operator removed two links in a route and connected the head (resp. tail) customer in one 

link to the head (resp. tail) customer in the other link. This procedure required reversing the 

directions of the links between the tail customer in one link and the head customer in the other. This 

process can easily cause a violation in the time windows. Potvin et al. (1996) developed the 2-opt* 
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operator. This operator selected two routes and removed one link in each route. Two new routes 

were formed by connecting the head customer of one link to the tail customer of the other link. This 

operator preserves the orientation of the links and is more suitable for the VRPTW. Potvin and 

Bengio (1996) proposed a sequence-based and a route-based crossover operator for GA. Bräysy and 

Gendreau (2005a) reviewed many operators from the simple relocate operator to the sophisticated 

GENI-Exchange operator. Nagata et al. (2010) developed an edge assembly crossover (EAX) for 

their memetic algorithm (MA). Let V denote the set of customers, and let EA (EB) denote the sets of 

edges in the routes of the parent pA (pB). The EAX first defined a graph GAB = (V, EAEB\EAEB). 

Then, it generated cycles by randomly selecting a starting node on GAB and tracing, in turn, the 

edges that belong to pA in the forward direction and pB in the reverse direction until a cycle is 

formed. Given a cycle C of links and a parent solution pA, an intermediate solution was generated 

by removing the edges EAC and adding the edges EBC. The edges of the cycle were taken from 

the parents alternately and were in the opposite orientation; a cycle looks like e12
A
  e32

B
  e34

A
  

e14
B
, where eij

A
 (eij

B
) means an edge from customer i to customer j in solution pA (pB). Customers in 

the cycle have either one outgoing edge from each parent (e.g., customers 1 and 3 in the mentioned 

example) or one incoming edge from each parent (e.g., customers 2 and 4). Thus, removing edges 

EAC and adding edges EBC keeps the customers on a single route. Finally, possible subtours are 

connected to existing routes one at a time in a random order by the 2-opt* operator. Reducing the 

number of vehicles is a difficult task in solving the VRPTW, and tailored operators are very helpful. 

Bräysy (2003) proposed a route-elimination procedure that is based on the ejection chains that were 

originally proposed for solving the TSP (Glover 1992). This approach involved an intelligent 

reordering, which inserted the target customer into the least-extra-cost position without violating the 

time window constraint and then reordered the customers ahead of the first time-window-violated 

customer. Bräysy et al. (2004) presented the injection tree procedure, whose advantage over the 

ejection chain is the allowance of multiple ejections. In the ejection pool of Lim and Zhang (2007), 

they carefully determined the customer to eject from the route and the position to insert the 

customer. Nagata and Bräysy (2009) proposed a route minimization procedure by combining the 
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ejection pool, a local search, and a customer ejection heuristic. 

3.2 Distance only 

Tan et al. (2001) tackled the VRPTW by three metaheuristics, SA, TS, and GA. The SA and TS 

adopted a 2-interchange neighborhood and had a diversification procedure. The SA used a 

re-heating action, and the TS used a random sequence of 2-interchange and a relinking operator. 

The GA used permutation encoding and three crossover operators. It also had an adaptive mutation 

probability scheme. These methods were tested by Solomon’s problem set, and the 18 best-known 

solutions were updated. Ting and Huang (2005) proposed a GA and developed an elitism strategy, 

which collected the best individuals from the current population and the offspring to perform a 

2-opt improvement. Watanabe and Sakakibara (2007) intended to minimize the total distance, and 

they took the multiobjectivization approach to add two more objectives. They measured the density 

and connectivity of the partitions of customers to vehicles. This problem was formulated as a 

multiobjective problem and was solved by NSGA-II (Deb et al. 2002). Experimental results showed 

that the multiobjectivization approach performed more effectively and stably. Alvarenga et al. (2007) 

proposed a two-phase algorithm. One phase was responsible for diversification. A GA was used to 

solve the original VRPTW over multiple times, and the routes in the best solutions that were 

obtained by multiple runs were collected. Through a formulation of a set partitioning problem and a 

mixed integer programming (MIP) solver, an improved solution was obtained. Based on this 

solution, several reduced VRPTW instances were generated and solved by the GA again. This 

process served as the intensification phase. The diversification and intensification phases alternated 

until the computation time limit was reached. Last, the set partitioning problem was solved again to 

obtain further improvement. This algorithm updated approximately the 30 best known solutions in 

Solomon’s problem set. Labadi et al. (2008) developed an MA that took the weighted sum of the 

number of vehicles and the total distance as the objective. Their MA had two versions. One version 

used a large weight on the number of vehicles and solved the problem by lexicographical 

minimization, and the other version used zero for the weight of the number of vehicles and 
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attempted to minimize the total distance only. This approach used permutation encoding and 

adapted the route split procedure in Prins (2004) for the VRP to the VRPTW. Population diversity 

was maintained by a cost-spacing rule and a partial renewal procedure. The former allowed an 

offspring to join the population only if there was no old individual that had close fitness, while the 

latter replaced all but several best individuals in the population by randomly generated individuals 

at specific points in timing. Their algorithm performed better than Alvarenga et al.’s algorithm for 

the R2 and RC2 categories of instances in Solomon’s problem set. Yu et al. (2011) hybridized the 

ant colony optimization (ACO) and TS. The ACO and TS were executed alternately. When the ACO 

could not update the best solution for three iterations, the current best solution underwent the TS. 

3.3 Pareto approaches 

Jozefowiez et al.’s review (2008) indicated that the domain of multiobjective routing problems 

is still young. Compared with the classical (lexicographical optimization) VRPTW literature, the 

number of studies for solving MOVRPTW by Pareto approaches is much smaller. This lack 

motivates us to contribute an approach to MOVRPTW and conduct a comprehensive comparison 

between existing approaches, which will be detailed in Sections 4 and 5. Geiger’s study (2001) is 

among the earliest Pareto approaches to the MOVRPTW. He resorted to GA and calculated the 

fitness based on the number of dominating individuals. Four objectives, including the number of 

vehicles, the total distance, the time window violation, and the number of violated time windows, 

were considered. He also developed a program to visualize the obtained solutions on the objective 

space. Testing his GA by a 21-customer instance, the experimental results showed that his GA could 

reduce all four objective values effectively. Tan et al. (2003)(2006) proposed a hybrid 

multiobjective evolutionary algorithm (HMOEA) to minimize the number of vehicles and the total 

distance. The individual fitness was also calculated based on the number of dominating individuals. 

A route-exchange crossover was proposed, and a multi-mode mutation (2-opt*, route splitting, and 

route merging) was used. One of three local search algorithms was randomly chosen to apply to all 

of the individuals every 50 generations. They tested their algorithm on Solomon’s benchmark 



Manuscript 10/40 

instances and examined whether the two concerned objectives conflicted. The results showed that 

instances in the categories of C1 and C2 have no conflict but that many instances in other categories 

do. Barán and Schaerer (2003) proposed a multiobjective ant colony system to minimize the 

number of routes, the total distance, and the total travel time simultaneously. The amount of 

deposited pheromone depended on the product of the three average objective values of the solutions 

in the current Pareto set. They used four multiobjective performance metrics to compare their 

algorithm with the MACS-VRPTW (Gambardella et al. 1999), but only one problem instance 

(C101 in Solomon’s problem set) was tested. Ombuki et al. (2006) devised a multiobjective GA to 

minimize the number of vehicles and the total distance. The weighted sum method and the Pareto 

ranking method were taken as the fitness assignment mechanisms. Their GA used permutation 

encoding and built a solution by appending customers at the ends of the routes in the same order 

that the customers appear in the chromosomes. A route crossover and a reversal mutation were 

applied to generate new individuals. By testing their algorithm on Solomon’s problem set, they 

showed that all of the instances in the R2 and RC2 categories have conflicts between the two 

objectives. Ghoseiri and Ghannadpour (2010) proposed a GA by combining algorithm components 

from several past studies. They followed the encoding scheme in Tan et al. (2006), took the Pareto 

ranking scheme from Ombuki et al. (2006) and used operators from Tan et al. (2006), Ombuki et al. 

(2006), and Potvin and Bengio (1996). Garcia-Najera and Bullinaria (2011) also proposed a 

multiobjective evolutionary algorithm (MOEA) whose main feature is the consideration of 

similarity between individuals during mating selection and environmental selection. Similarity 

between individuals was calculated by Jaccard’s similarity coefficient. In 2-tournament mating 

selection, one parent was chosen by the Pareto rank while the other was chosen by similarity. The 

individual that had less similarity to the first parent or to the whole population was selected with a 

higher probability. The environmental selection mechanism is almost the same as that in NSGA-II. 

The difference is that the crowding distance was replaced by the similarity measure. 

In addition to the number of vehicles and the total distance, research studies have also been 

conducted to solve the MOVRPTW regarding other objectives. Hong and Park (1999) considered 
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the total travel time and the total customer waiting time. They solved the problem in two phases. In 

the first phase, customers were inserted into the routes for minimizing the weighted sum of the extra 

travel time and the waiting time. In the second phase, the two objectives were treated in a 

lexicographical way depending on the weights of the objectives. Muňoz-Zavala et al. (2009) also 

took the waiting time as one objective in solving the MOVRPTW. The numerical results showed 

that there was a large amount of conflict between the waiting time and the total distance in some of 

the instances in Solomon’s problem set. Several researchers regarded the time window as a soft 

constraint and took the minimization of a constraint violation as an objective. Xu et al. (2008) 

proposed an Or-opt NSGA-II to minimize the number of vehicles, the total distance, and the 

constraint violation; Castro et al. (2009) considered the two common objectives, which were the 

time window violation and the capacity violation; Müller (2010) used the -constraint method to 

address the two objectives, which were the cost (a weighted sum of the number of vehicles and the 

total distance) and the constraint violation.  

4. Knowledge-based evolutionary algorithm (KBEA) 

In this section, we will detail the proposed algorithm, KBEA. It follows the typical flow of an 

EA. Chromosome representation will be presented in Section 4.1, and the algorithm parameter 

settings will be given in Section 5.2. 

Step 1. Generate the initial population of NP individuals (Section 4.2). Set the generation 

number to t = 1. 

Step 2. Generate NP offspring. Set i = 0. 

   Step 2.1  Select two parents by 2-tournament mating selection (Section 4.3). 

   Step 2.2 Generate two offspring by crossover (Section 4.4) and relocation mutation (Section 

4.5). 

   Step 2.3  If the offspring are dominated by both parents, then perform split mutation 

(Section 4.5). 

   Step 2.4  Set i = i + 2. If i = NP, then go to Step 3; otherwise, go back to Step 2.1. 
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Step 3. Select the best NP individuals from the original population and offspring (Section 4.3). 

If there are duplicate individuals, then perform split mutation. 

Step 4. Set t = t + 1. If t = NG, then stop; otherwise, go back to Step 2. 

4.1 Chromosome representation 

To run a metaheuristic, the first and perhaps most important step is to determine the solution 

encoding scheme. In EA, this step is also known as the chromosome representation. In the literature 

on VRPTW, chromosome representations include the permutation representation (Ombuki et al. 

2006, Labadi et al. 2008), sector representation (Muňoz-Zavala et al. 2009), and direct 

representation (Garcia-Najera and Bullinaria 2011, Hsu and Chiang 2012). The permutation 

representation encodes a sequence of customers on a chromosome. Ombuki et al. (2006) decoded a 

chromosome to a VRPTW solution by appending the customers one by one at the end of the 

currently constructed route in the order that the customers appear in the sequence. Labadi et al. 

(2008) extended the Split procedure in Prins (2004) to consider time windows. The Split procedure 

can partition the sequence of customers into multiple routes and find the solution that has the 

shortest total distance under this sequence. The sector representation mainly records a set of pairs of 

polar angles. Taking the depot as the center point, a pair of polar angles corresponds to two partition 

lines that start from the depot. Muňoz-Zavala et al. (2009) assigned customer locations within a pair 

of partition lines to a vehicle and allow vehicles to serve customers in the non-decreasing order of 

the end time of their service time windows. 

In this study, we adopt a direct representation for two reasons. First, it encodes all of the 

information of the solution directly onto the chromosome and requires no extra decoding action and 

computational effort. Second, the complete information helps to design guided genetic operators. 

We can count the number of served customers for each route and calculate the average distance by 

the ratio of the total distance to the number of served customers. Then, we can exchange the 

shortest average-distance routes between parents or remove the route that has the smallest number 

of customers. In our implementation, we use a list of sub-lists to represent the solution. One sub-list 

corresponds to one route. The depot is omitted because it always serves as the start and end points. 
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Fig. 2 provides an illustration. 

<< Insert Fig. 2 about here >> 

4.2 Initialization 

The initial population determines where we start to search at the beginning of an EA. Starting 

from totally random locations could require a long computation time to find the promising regions 

and solutions, but concentrating on only a few regions could also get the search process stuck at a 

local optimum. A popular and effective way to initialize the population is to combine several 

heuristically constructed solutions and simple random solutions. In our approach, we include two 

heuristic solutions in the initial population.  

The first heuristic solution is constructed by the time-oriented nearest-neighbor heuristic 

(Solomon 1987). Starting with an empty route, a cost is calculated for each unrouted customer 

assuming that he/she is appended at the end of the route. The cost to append a customer j after a 

customer i is defined by  

cij = 1dij + 2(bj – (bi + si)) + 3(lj – (bi + si + tij)).                                   (1) 

When the route is empty, the cost of adding a customer j into the route is calculated by c0j. Simply 

speaking, the cost is a weighted sum of distances, the time difference between the beginning of the 

service at customer j and the completion of the service at customer i, and the urgency of the service. 

The unrouted customer that has the smallest cost is appended at the end of the route. In other words, 

the customers that are closer to the current ending customer i in the distance (1dij) and time (2(bj – 

(bi + si))) and that are urgent (3(lj – (bi + si + tij))) are prioritized. Only feasible insertions are 

considered. When no unrouted customer can be appended without violating any constraint, a new 

route is created. We keep the sum of the three weights at 1 (1 + 2 + 3 = 1) and adjust the values by 

a unit of 0.1 (i = 0, 0.1, 0.2, …, 1.0,  i = 1, 2, 3.). Thus, we construct 66
12

2

10

3
 CH  

solutions and take the best one as the initial solution. 

The second heuristic solution is generated by Solomon’s I1 heuristic (Solomon 1987). That 

heuristic starts by selecting from the unrouted customers the one that is farthest from the depot. 
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Then, the cost is calculated for each unrouted customer at each possible insertion position in the 

current route. The cost to insert a customer u between customers i and j is defined by 

c(i, u, j) = 1(diu + duj – dij) + 2(bj  bj)  d0u.                                   (2) 

The symbol bj denotes the service start time at customer j after the insertion of customer u. 

Similarly, the cost is a weighted sum of the distance and time delay. The customer that has the 

smallest cost is inserted into the corresponding best position. The distance d0u is introduced to prefer 

inserting customers that are located at a distance from the depot earlier. This approach could avoid 

creating direct routes from the depot to reach those customers. We keep the sum of two weights (1 

and 2) as 1 and adjust the values by a unit of 0.1. We test two values, 1 and 2, for . Thus, we 

construct 2222
11

1

10

2
 CH solutions and take the best solution as another initial solution. 

The remaining individuals are generated randomly. We order the customers randomly and 

append them one by one at the end of the route. When no unrouted customer can be appended 

without violating any constraint, a new route is created. 

4.3 Selection 

There are two selection steps in an EA. The mating selection chooses parents to perform 

crossover and mutation to generate the offspring, and the environmental selection decides which 

individuals will survive to the next generation. We use the two selection steps in NSGA-II in our 

algorithm. A difference is that we allow the offspring that are produced by crossover and mutation 

to enter the population temporarily and to be candidates of parents. This procedure is motivated by 

the idea of immediate replacement in a multiobjective differential evolution algorithm (DEMO, 

Robič and Filipič 2005). High-quality offspring can produce offspring immediately and improve the 

performance. Individuals are assigned Pareto ranks and crowding distances. The individuals that are 

not dominated by any other in the population are assigned rank 1. Disregarding individuals with 

rank r or smaller ranks, the individuals that are not dominated by any other in the remaining 

population are assigned rank (r+1). Individuals of the same rank are further evaluated by the 

crowding distance, which measures the density of neighboring solutions in the objective space. For 
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the detailed calculation, please refer to the original paper. An individual i is better than an individual 

j if (1) i has a smaller rank than j or (2) i and j have the same rank and i has a larger crowding 

distance. 

We use a 2-tournament for the mating selection. Two individuals are selected randomly, and the 

better one serves as a parent. We use the ( + ) strategy for the environmental selection ( =  = 

NP) . Through NP/2 times of mating selection, crossover, and mutation, NP offspring are generated. 

Among the 2NP individuals, we choose the better NP individuals to continue the evolution process 

again, according to their ranks and crowding distances. 

4.4 Crossover 

Crossover is responsible for exchanging genetic features between selected parents. Given 

VRPTW solutions, it is intuitive to exchange (partial) routes between the parents. Our crossover 

operator is an enhanced version of the operator in Tan et al. (2006). In the original version, the first 

step is to copy the parents to be the offspring. Then, the single best route is chosen from each 

offspring. Here, the best route refers to the route that has the shortest average distance, i.e., the 

smallest ratio of total distance to the number of customers. Next, the best route of one offspring is 

added into the other offspring. Customers in the newly added route will appear twice in the solution, 

and we remove them from the old routes. Because the newly added route is from a feasible solution, 

it is certainly feasible. For the modified routes, removing customers cannot cause a violation in the 

vehicle capacity and time window constraints. Thus, the offspring is also feasible. The crossover 

operator is simple, efficient, and effective. 

One weakness of the original crossover is that the produced offspring often have one more route 

than the parents. (There will be one more route when the customers in the new route are located in 

different old routes.) To reduce the number of vehicles, we remove the worst route (the route that 

has the longest average distance) and very short routes (the routes that have one or two customers). 

The customers in these routes are re-inserted into the least-extra-distance position among all of the 

feasible positions. The extra distance for inserting a customer k between customers i and j is 
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calculated by (dik + dkj – dij). 

The idea behind exchanging the best route (rather than a random route) is to allow the offspring 

to inherit good features from the parents explicitly. Through exchanging the best route, however, 

some individuals in the population could have the identical best route, especially toward the end of 

evolution. In this condition, the crossover has no effect and the offspring are identical to the parents. 

Thus, we add small randomness in the selection. One of the best NC routes is selected to be 

exchanged. The effect of the value of NC on the performance will be examined in Section 5.2. 

4.5 Mutation 

Many mutation operators have been proposed in the literature on VRPTW. Common operators 

include relocating one or multiple customers, swapping one or a sequence of customers, reversing a 

sequence of customers, reordering a sequence of customers, and route splitting/merging. Two 

mutation operators are used in our KBEA. The first operator, relocation mutation, is based on 

customer relocation because it is the most basic form of all of the operators. As the evolution 

proceeds, individuals become better and better, which means that the number of vehicles and the 

total distance are getting smaller. This approach also implies that the routes become more and more 

compact and that it is harder to find feasible positions to relocate the customers. Thus, we aim to 

remove a substantial number of customers simultaneously to create more space. Then, these 

removed customers are reinserted one by one. Considering the order of reinserting these customers, 

Ropke and Pisinger (2006) proposed the regret-k heuristic. It calculated for each customer the 

insertion cost of the best feasible position in each route. When k is one, the heuristic chose the 

customer whose insertion cost in the best route is the smallest. When k is greater than one, the 

heuristic chose the customer whose sum of cost difference between inserting him/her into the best 

route and the next (k – 1) best routes is the largest. Simply speaking, it chooses the customer that we 

will regret most if he/she is not inserted now. In our algorithm, we propose a rather simple method. 

We think that it would be more difficult to find a feasible insertion position for the customer that 

has a smaller time window. Hence, we reinsert these removed customers one by one in 
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non-decreasing order of the length of the time window. In our algorithm, both of the offspring that 

are generated by crossover undergo mutation. The number of customers to be removed and 

reinserted is denoted by NM, and the customers are selected randomly. The effect of its value on the 

performance will be investigated in Section 5.2. We will also examine different insertion orders in 

Section 5.3. 

To create opportunities for customer relocation, our second mutation operator, split mutation, 

selects one route randomly and splits that route into two routes. Although it increases the number of 

vehicles, it also creates space for customer relocation. From the perspective of a search process, 

applying the split mutation helps to escape from the local optimum by moving to a worse solution 

temporarily. To avoid abuse of the split mutation and a careless increase in the number of vehicles, 

we use the split mutation with two guidelines. First, it is applied to an offspring only when the 

offspring is dominated by both parents. Second, we do not split the routes at a random point. We 

check the link distance along the route and break the link with the longest distance. 

 

5. Experiments and results 

5.1 Benchmark instances and algorithms 

In the literature on VRPTW, Solomon’s (1987) 100-customer problem set has been taken as a 

standard benchmark. The problem set consists of 56 instances, which are categorized into six 

groups based on the distribution of customer locations and the lengths of the time windows. 

Customers’ locations are distributed randomly in the R category, and they are clustered in the C 

category. The RC category is a mix of the above two distributions. In each of the R, C, and RC 

categories, sub-category 1 consists of instances that have short time windows while sub-category 2 

consists of instances that have long time windows. Because the 17 instances of the C category are 

easy to solve and almost all of the algorithms can solve them well, we consider only the remaining 

39 instances in our experiment. 

The research on solving VRPTW by searching for the Pareto set is still young, and there are 

few existing approaches. We take Ombuki et al. (2006), Ghoseiri et al. (2010), and Garcia-Najera 
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and Bullinaria (2011) as benchmark algorithms. All of them and our algorithm are based on MOEA. 

In addition, we take three algorithms that are dedicated to the lexicographical minimization (the 

number of vehicles first, the total distance second) and three algorithms that are dedicated to 

distance minimization as benchmarks to verify the quality of the best solutions with respect to each 

objective. 

5.2 Parameter analysis 

In addition to the two standard parameters of an EA, the population size (NP) and generation 

number (NG), our algorithm has two more parameters, the number of candidate routes (NC) to be 

exchanged in the crossover operator and the number of customers (NM) to be reinserted in the 

mutation operator. Note that one of the NC routes is chosen randomly and then exchanged. The 

product of NP and NG determines roughly the number of solutions that are generated during the 

search process. In general, the more solutions that are generated, the higher the chance that 

high-quality solutions can be found. The setting (NPNG) in the three benchmark MOEAs are 

350300 (Ombuki et al. 2006), 100700 (Ghoseiri and Ghannadpour 2010), and 100500 

(Garcia-Najera and Bullinaria 2011). We followed the setting in Garcia-Najera and Bullinaria 

(2011), which generates the smallest number of solutions among the tested algorithms. 

To examine the effect of the two parameters in our proposed crossover and mutation operators, 

we tested six values for each parameter. The tested values of NC were 1, 2, …, and 6, and the tested 

values of NM were 10, 20, …, and 60. Thus, thirty-six variants of KBEA were tested. Each variant 

solved each problem instance 10 times. Let V denote the set of compared algorithm variants, and let 

Aij denote the net set of non-dominated solutions that is obtained by variant i over 10 runs for 

problem instance j. We evaluated the performances of these variants by the average coverage ratio. 

The coverage C(i, j) of the algorithm variant i for problem instance j is defined by 


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In (3), then ss   means that the solution s found by the algorithm variant i can dominate the 

solution s found by another algorithm variant. Fig. 3 illustrates how to calculate the coverage of the 

three algorithm variants. The solutions of algorithm variant 1 can dominate 3 of 4 solutions that are 

obtained by variants 2 and 3. Therefore, the coverage of variant 1 is 3/4. Similarly, we can calculate 

the coverage of variants 2 and 3 by 1/(2+3) and 0/(2+3), respectively. Table 1 summarizes the 

average coverage of each of 36 KBEA variants with respect to four problem categories. The last 

column presents the average value over the four categories. A higher value means a better solution 

quality. 

<< Insert Fig. 3 about here >> 

<< Insert Table 1 about here >> 

We first check the proper value of NM for each value of NC. The best result for each problem 

category is marked by a gray color. With NC equal to 1, for example, the best coverage among six 

values of NM for problem category R1 is 66.2%. We can see that, in general, the proper range of the 

values of NM is between 30 and 50. The findings indicate that the relocation of a small number of 

customers is not sufficient to find good solutions. When all four categories are considered (the last 

column), setting NM to 30 achieves the best average performance for all six values of NC. Next, we 

mark the best result among all of the pairs of NC and NM in bold. The best combination of (NC, NM) 

is (5, 30), (6, 50), (3, 30), and (5, 50) for problem categories R1, R2, RC1, and RC2, respectively. 

On average, the setting (3, 30) provides the best performance. We took this setting in the following 

experiments. One more observation is that setting NC by 1 obtains the worst average quality. This 

finding justifies our idea of considering more routes to exchange in the crossover operator. 

<< Insert Table 2 about here >> 

To understand the effect of the NM values on the evolutionary process, we calculated two 

measures: (1) the average number of common arcs between the selected parents and (2) the average 

number of individuals who have the same objective values. These two measures were used to 
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observe the population diversity in the genotypic and phenotypic spaces. We collected the above 

information by running six KBEA variants (NC = 3; NM = 10, 20, …, 60) to solve one problem 

instance from each category once. Table 2 summarizes the results. First, we can see that both 

measures decrease as the value of NM increases, which implies that the relocation of more 

customers in the mutation operator can lead to a higher population diversity. Second, we noticed 

that when we set NM to 30, which was the best value that was found in the previous parameter 

tuning experiment, the average number of individuals that have the same objective value decreases 

to below one. This finding might give us a clue for designing an adaptive parameter control 

mechanism in the future. We also performed the same experiment on six KBEA variants with NM as 

30 and NC from 1 to 6. Unfortunately, there was no significant difference between the two observed 

measures among the variants. Other measures should be examined to understand the effects of the 

values of NC, and we leave this task to our future work. 

5.3 Effects of the initial solutions, customer insertion order, and split mutation 

After examining the parameter values, we want to know the effects of the proposed strategies in 

KBEA. In our relocation mutation operator, we reinsert customers in non-decreasing order of the 

length of the time window; in other words, the customer that has a shorter time window is inserted 

earlier. We ran another six KBEA variants with different insertion orders. We let HL, HU, and 

HD denote the variants that insert customers in the order of considering the length (L) of the time 

window, the upper bound (U) of the time window, and the distance (D) from the depot. The symbol 

+ () means that the insertion is in non-decreasing (non-increasing) order of the mentioned values. 

For example, H+L stands for our proposed strategy. The variant H+R represents the variant with a 

random customer insertion order. In addition, we tested two other variants, one with all of the initial 

solutions generated randomly (R+L) and one without using the split mutation. The values of NC and 

NM are 3 and 30, respectively. Table 3 summarizes the performance of the proposed strategy (H+L) 

and the other eight variants.  

<< Insert Table 3 about here >> 
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Table 3 shows that our proposed strategy performs the best among all of the variants in the 

three problem categories. The variant that has random initial solutions (R+L) is in the second place, 

and the variant that does not use split mutation is in the third. Inserting customers in the reverse 

order of the length of the time window (HL) causes a large performance degradation and ranks 8
th

 

among the nine variants. Using the upper bound of the time window (HU) or the distance from the 

depot (HD) to determine the insertion order does not lead to good performance. Those alternatives 

are even worse than using a random order (H+R). 

5.4 Comparison with multiobjective approaches 

Next, we compare KBEA with three benchmark MOEAs that are dedicated to MOVRPTW in 

the literature. Garcia-Najera and Bullinaria (2011) reported solutions for only 29 problem instances, 

and thus, we calculated the average coverage by two sets of instances, including 39 and 29 instances, 

respectively. In the upper part of Table 4, we list the average coverage of three algorithms using 39 

instances, and in the lower part, we list the average coverage of four algorithms using 29 instances. 

<< Insert Table 4 about here >> 

The results show that KBEA outperforms three benchmark algorithms for all four categories 

except for in one case, where Garcia-Najera and Bullinaria (2011) performs slightly better than our 

algorithm (72% vs. 70.3%). On average, KBEA can cover 81.7% of the solutions that are found by 

the other three algorithms. The second best algorithm can cover only 56.3% of the solutions. 

Looking into the design of these algorithms, Ombuki et al. (2006) used the permutation 

representation of the solutions while the other three encoded the solutions directly on the 

chromosome. Given a chromosome, Ombuki et al. generated a solution by appending the customers 

at the ends of the routes in the order that the customers appear in the encoded permutation. This 

decoding procedure might not be good enough to generate high-quality solutions. Moreover, the 

crossover and mutation operators in KBEA are different from those in the benchmark algorithms. 

For the crossover operator, Ombuki et al. and Ghoseiri and Ghannadpour (2010) selected one route 

in one parent and then reinserted the customers in this route into the other parent. This operation 
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appears to not follow the concept of crossover, and the offspring do not inherit features from the 

parents. Garcia-Najera and Bullinaria (2011) combined the routes from the parents to produce the 

offspring. However, the routes were selected randomly. We should focus on inheriting good routes 

from the parents and not only on taking routes randomly. For the mutation operator, Ombuki et al. 

proposed a route reversal mutation, which reversed no more than 3 customers. Ghoseiri and 

Ghannadpour took the sequence-based crossover in Potvin and Bengio (1996) as the mutation 

operator. Basically, two partial routes in two parents were connected. Garcia-Najera and Bullinaria 

relocated and exchanged customers in a partial sequence of one or two routes and then reinserted a 

single customer. The experimental results in Section 5.2 showed that small values ( 20) of NM do 

not maintain sufficient population diversity and cannot provide good performance. The mutation 

operators in the benchmark algorithms involved only one or two partial sequences of customers on 

the routes. The insufficient mutation intensity could be the cause of the worse performance. 

5.5 Average quality of extreme solutions 

In the literature on solving the VRPTW, a common practice to report the algorithm 

performance is to provide the average number of vehicles and the average total distance of the best 

solutions for each problem category. Here, we compare our algorithm with nine existing algorithms 

in this standard way. Table 5 summarizes the results. The first three algorithms focus on 

lexicographical optimization, the next four focus on the total distance, and the last four are Pareto 

approaches. The Pareto approaches provided a set of non-dominated solutions for each problem 

instance, and we took the two extreme solutions, i.e., the solution with the minimal number of 

vehicles and the solution with the minimal total distance. Labadi et al. (2008) solved the VRPTW 

instances in two ways, and thus, we put it in both the first and second groups of algorithms. 

<< Insert Table 5 about here >> 

 While Table 5 gives detailed results, Fig. 4 helps to visualize the algorithm performance easily. 

The square symbols represent the average number of vehicles and the average total distance of the 

two extreme solutions found by our KBEA. The asterisk symbols represent the results that were 
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obtained by the other nine algorithms. Fig. 4 shows that in all of the problem categories, our results 

are not dominated by any other algorithm. Considering lexicographical optimization of the number 

of vehicles and total distance, Nagata et al. (2010) is always the best, and both Lim and Zhang 

(2007) and Nagata et al. (2010) are better than KBEA. We are the second best in terms of the 

number of vehicles and the total distance (the best in terms of the total distance in the R1 category), 

which shows the ability to achieve good performance in both objectives simultaneously. In 

categories R1 and RC1, our results dominate 9 of 13 points; in categories R2 and RC2, the 

advantage is smaller, but we still dominate 6 points. 

<< Insert Fig. 4 about here >> 

From Table 5, we see that KBEA dominates the three distance-only algorithms for three 

problem categories and dominates Labadi et al. (2008) for two categories. Although these 

algorithms were dedicated to minimizing the total distance, KBEA improves their results by having 

not only a shorter distance but also fewer vehicles. Compared with the three MOEA benchmarks, 

KBEA’s results dominate all of the results from Ghoseiri et al. (2010) and 7 of 8 results from 

Ombuki et al. (2006). We also dominate Garcia-Najera and Bullinaria’s results (2011) for the R1 

and RC1 categories regarding the minimal number of vehicles and for the RC1 and RC2 categories 

regarding the minimal total distance.  

Table 6 summarizes the average computation time, the number of runs to obtain the best results, 

and the computing environment for the compared algorithms for reference. Because the CPU speed 

and implementation language are different, we cannot compare the computational efficiency 

directly. However, KBEA shows the ability to produce high-quality solutions efficiently (within a 

half minute). 

<< Insert Table 6 about here >> 
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5.6 Net set of non-dominated solutions 

To facilitate the performance comparison between the Pareto algorithms for the MOVRPTW, 

we compile the net set of the non-dominated solutions for the 39 tested problem instances based on 

the results from the nine past algorithms and KBEA. In Table 7, we list the non-dominated solutions 

for each problem instance and the algorithms that found them. Among the 109 solutions, KBEA 

found 36 solutions, which is much more than Ombuki et al.’s (2006) 4 solutions, Ghoseiri et al.’s 

(2010) 3 solutions, and Garcia-Najera and Bullinaria’s (2011) 7 solutions. We also update the 

minimal total distance for the 10 problem instances. The results show that almost all of the tested 

problem instances (except for RC103 and RC104) have conflicts between the number of vehicles 

and the total distance.  

<< Insert Table 7 about here >> 

5.7 Tests on larger-scale problem instances 

In the literature on the VRPTW, Solomon’s problem set has been intensively studied. Another 

standard problem set used in the VRPTW studies was proposed by Gehring and Homberger (1999). 

Hereafter, their instances of x customers will be called GH-x instances. They followed Solomon’s 

method of generating five sets of problem instances with the number of customers extended to 200, 

400, 600, 800, and 1000, respectively. Each set consists of six categories (similar to Solomon’s set), 

and each category consists of ten problem instances. In this subsection, we will examine the 

performance of KBEA in solving GH-200 instances. To the authors’ best knowledge, this paper is 

the first attempt to solve GH instances by a Pareto approach. 

The parameter setting of KBEA was determined by a simple procedure. We kept the population 

size at 100 and changed the values of NM and NC one at a time. We tested three values (30, 50, and 

70) for NM and three values (3, 6, and 9) for NC on the first two instances in the R1 category. Then, 

we determined to set NM at 30 and NC at 6. The generation number was set to be 4000. We solved 

each instance 10 times. Because there is no other Pareto approach that solves these instances, we 

compare KBEA with two recent algorithms (Nagata et al. 2010 and Vidal et al. 2013) that provided 
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very promising results. Both benchmark algorithms are based on MA and solve the VRPTW by 

lexicographical optimization. Table 8 presents the average number of vehicles and the average total 

distance in each of the six problem categories for the three tested algorithms. Again, because KBEA 

provides multiple solutions for each instance, we list the average value for the two extreme 

solutions. The data in bold are not dominated by other algorithms. 

<< Insert Table 8 about here >> 

In Table 8, we find that KBEA is not sufficiently good at solving instances in the R1 and RC1 

categories. The average solution quality is dominated by the two benchmark algorithms. In category 

C2, KBEA is slightly worse by 0.17% extra total distance. For the other three categories, however, 

KBEA can find many non-dominated solutions. The net set of non-dominated solutions is given in 

Table 9. Among the 115 non-dominated solutions, KBEA finds 64 solutions, and 55 solutions are 

newly found. An interesting finding is that Solomon’s C1 and C2 instances were shown to have no 

conflict between the number of vehicles and the total distance (Tan et al. 2006, Garcia-Najera and 

Bullinaria 2011), but GH-200 instances in the C1 and C2 categories are shown to have conflicting 

objective values in our experiments. The average computation times and computing environments 

are given in Table 10 for reference. 

<< Insert Table 9, 10 about here >> 

We also applied KBEA to solve GH-400 instances by using the same parameter settings, but we 

extended the generation number to 6000. However, the results are not satisfactory. Only a few 

non-dominated solutions were found. This finding reveals that there is a large amount of room for 

enhancing KBEA’s ability to solve large-scale instances. We will continue this research direction in 

our future studies. 
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6. Conclusions 

The VRPTW has been intensively studied in recent decades due to its challenging problem 

complexity and high practical value. In addition to focusing on one (primary) objective, such as the 

minimization of the number of vehicles, recent research has started to address multiple objectives 

simultaneously. Pareto approaches aim at finding the set of optimal solutions, to provide managers 

more choices and to better understand the trade-off between the objectives that are of interest. In 

this study, we proposed a simple, effective, and efficient MOEA to minimize the number of vehicles 

and the total distance. This approach has only four parameters, and genetic operators are easy to 

implement. Incorporation of problem-specific knowledge into these simple operators helps the 

algorithm to find high-quality solutions. 

 Our future work aims to make our algorithm simpler and more effective. First, we plan to 

develop an adaptive parameter control mechanism to simplify the parameter tuning process. Second, 

we want to follow Nagata et al. (2010) and Vidal et al. (2013) to incorporate local search procedures 

and to allow the participation of infeasible solutions in the evolution process to improve the solution 

quality for larger-scale problem instances. Many research opportunities exist that involve methods 

for adding these techniques without making the algorithm too complicated to use and for setting the 

parameters. In addition to the algorithmic improvement, combining our optimization algorithm and 

Google Maps-based interface into a web service will be of practical use. 
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Figures  

 

 

 

Fig. 1. Solutions to the MOVRPTW on the objective space (solution x dominates all of the 

solutions in the grey region) 

 

 

 

 

 

Fig. 2. Chromosome representation 
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Fig. 3 Illustration of the coverage metric 

 

  

  

Fig. 4 Average performance of 10 algorithms for four problem categories (Solomon 100-customer 

instances) 
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Tables 

 

Table 1 Average coverage ( 100) for KBEA variants with different NC values in crossover and 

NM values in relocation mutation for each problem category  

NC NM  R1 R2 RC1 RC2 Avg 

1 10  36.8 18.6 51.7 8.5 28.9 

 20  57.8 22.1 67.4 23.1 42.6 

 30  66.2 37.2 74.3 51.4 57.3 

 40  61.8 45.7 56.5 51.0 53.7 

 50  31.9 59.4 33.0 45.8 42.5 

 60  5.3 40.1 11.5 37.4 23.5 

2 10  36.8 11.8 50.9 7.9 26.8 

 20  58.6 34.9 70.5 34.5 49.6 

 30  68.7 54.8 74.8 53.3 62.9 

 40  64.2 59.5 55.0 60.1 59.7 

 50  33.7 65.8 38.4 52.3 47.6 

 60  9.0 41.1 16.8 39.3 26.5 

3 10  44.2 18.7 49.5 14.1 31.6 

 20  64.5 38.9 76.5 30.7 52.6 

 30  74.4 60.2 78.1 56.4 67.3 

 40  61.1 61.0 52.2 58.7 58.3 

 50  31.4 62.6 32.2 52.5 44.7 

 60  7.7 37.4 9.7 41.0 23.9 

4 10  44.9 19.0 61.3 15.9 35.3 

 20  57.5 39.8 70.2 34.4 50.5 

 30  74.2 61.5 76.1 56.4 67.0 

 40  63.2 59.9 56.5 57.3 59.2 

 50  32.6 61.3 37.2 49.0 45.0 

 60  9.2 42.7 12.4 47.6 28.0 

5 10  36.4 18.4 49.6 22.3 31.7 

 20  65.5 39.8 69.1 32.7 51.8 

 30  74.7 56.3 76.4 55.1 65.6 

 40  69.4 65.2 58.7 61.2 63.6 

 50  33.7 59.0 35.9 62.5 47.8 

 60  7.6 49.1 14.3 46.5 29.4 

6 10  44.9 21.5 50.8 12.5 32.4 

 20  59.4 30.1 76.0 27.1 48.1 

 30  73.2 52.3 77.8 57.7 65.3 

 40  61.2 65.8 54.5 61.0 60.6 

 50  30.6 67.7 35.1 55.9 47.3 

 60  8.9 45.6 14.5 42.4 27.8 
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Table 2 Average number of common arcs and average number of individuals with the same 

objective values for KBEA variants with different NM values in relocation mutation for four 

problem instances 

NM 

Average number of common arcs 
Average number of individuals with the 

same objectives 

R101 R201 RC101 RC201 R101 R201 RC101 RC201 

10 107.72 71.53 104.10 79.00 14.63 5.95 27.35 7.07 

20 99.55 72.86 96.84 67.37 3.93 3.19 5.62 2.36 

30 93.18 66.44 86.21 72.48 0.54 0.54 0.70 0.95 

40 75.90 63.36 68.63 64.62 0.01 0.13 0.00 0.19 

50 67.08 49.62 52.82 55.44 0.00 0.01 0.00 0.00 

60 61.61 43.03 45.32 42.63 0.00 0.00 0.00 0.00 

 

 

Table 3 Average coverage ( 100) for KBEA variants with different insertion orders in 

relocation mutation, with random initial solutions, and without split mutation. 

Version R1 R2 RC1 RC2 Avg 

H+R 46.5 48.5 54.3 46.3 48.9 

H+U 57.3 43.4 57.5 36.7 48.7 

HU 18.2 44.0 33.6 42.8 34.6 

H+D 5.5 34.6 4.1 34.4 19.6 

HD 63.5 36.8 62.4 36.6 49.8 

H+L 68.1 50.6 71.7 45.1 58.8 

HL 28.5 41.0 29.4 36.3 33.8 

R+L 57.4 46.2 60.9 51.3 53.9 

H+L (without split mutation) 54.2 43.2 59.4 42.3 49.8 

First symbol: H: heuristic initial solutions, R: all random initial solutions 

Second symbol: R: random order, U: time window upper bound, D: distance from the depot, L: time window length  

(+: the smaller the earlier; : the larger the earlier) 
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Table 4 Average coverage ( 100) for KBEA and three benchmark MOEAs (Solomon 100-customer 

instances) 

Approach R1 R2 RC1 RC2 Avg 

Ombuki et al. (2006) 34.7 44.7 39.6 20.6 34.9 

Ghoseiri and Ghannadpour (2010) 12.5 3.6 15.6 1.8 8.4 

KBEA 95.1 87.6 89.6 91.7 91.0 

Ombuki et al. (2006) 20.4 35.5 23.3 21.6 25.2 

Ghoseiri and Ghannadpour (2010) 16.7 5.4 20.0 1.0 10.8 

Garcia-Najera and Bullinaria (2011) 71.7 39.2 72.0 42.4 56.3 

KBEA 85.0 82.3 70.3 89.2 81.7 

When Garcia-Najera and Bullinaria (2011) is included in the set of compared algorithms, only 29 instances are 

considered because they provide their solutions for only these 29 instances. 
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Table 5 Average number of routes and average total distance of KBEA and 9 benchmark algorithms 

(Solomon 100-customer instances) 

Approach R1 R2 RC1 RC2 

Lim and Zhang (2007) 
11.92 2.73 11.50 3.25 

1210.76 953.94 1384.17 1120.40 

Nagata et al. (2010) 
11.92 2.73 11.50 3.25 

1210.34 951.03 1384.17 1119.24 

Labadi et al. (2008)  

(minimal number of vehicles) 

12.75 3.09 12.37 3.62 

1188.01 920.86 1351.27 1087.18 

Ting and Huang (2005) 
13.58 4.91 13.50 5.38 

1222.65 928.32 1415.16 1089.78 

Alvarenga et al. (2007) 
13.25 5.55 12.88 6.50 

1183.38 899.90 1341.67 1015.90 

Labadi et al. (2008)  

(minimal total distance) 

13.42 5.36 13.13 6.75 

1184.16 879.51 1352.02 1009.37 

Yu et al. (2011) 
13.00 4.18 12.25 4.75 

1196.96 951.36 1380.55 1095.84 

Ombuki et al. (2006) 

(minimal number of vehicles) 

12.50 3.18 12.13 3.38 

1220.91 933.14 1386.35 1125.44 

Ombuki et al. (2006) 

(minimal total distance) 

13.17 4.45 12.75 5.63 

1203.22 892.89 1370.84 1025.31 

Ghoseiri et al. (2010) 

(minimal number of vehicles) 

12.92 3.27 12.75 3.75 

1228.60 1082.93 1392.09 1162.4 

Ghoseiri et al. (2010) 

(minimal total distance) 

13.50 4.00 13.25 4.00 

1217.03 1000.22 1384.3 1157.41 

Garcia-Najera and Bullinaria 

(2011)  

(minimal number of vehicles) 

12.64 3.09 12.36 3.54 

1205.04 926.17 1372.96 1076.72 

Garcia-Najera and Bullinaria 

(2011)  

(minimal total distance) 

13.08 4.00 12.63 5.38 

1187.32 897.95 1348.22 1036.65 

KBEA 

(minimal number of vehicles) 

12.33 2.91 12.13 3.38 

1196.89 940.61 1357.47 1106.99 

KBEA 

(minimal total distance) 

13.17 4.36 12.63 5.38 

1181.57 888.36 1345.38 1014.81 

Data in bold are not dominated by the other algorithms. (Fig. 4 visualizes the data points in the objective space.) 
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Table 6 Average computation time, number of runs, and computing environments (Solomon 

100-customer instances) 

Approach 

Average computation time (s.) 

#runs 

CPU  

(Language) R1 R2 RC1 RC2 

Lim and Zhang 

(2007) 
1576.8 1 

Pentium IV 2.8 GHz 

(Java) 

Nagata et al. 

(2010) 
300 5 

Opteron 2.4 GHz 

(C++) 

Labadi et al. 

(2008) 
151.8 210.91 152.32 199.63 1 

3 GHz      

(Delphi) 

Alvarenga et al. 

(2007) 
3600 3  

Yu et al. (2011) 698 655 317 407 10 
Pentium 1 GHz 

(C++) 

Ombuki et al. 

(2006) 
 10 

Pentium IV 1.6 GHz 

(Java) 

Ghoseiri et al. 

(2010) 
> 500 > 900 > 500 > 1300 10 

1.6 GHz     

(Matlab) 

Garcia-Najera 

and Bullinaria 

(2011) 

 30 2218 2.6 GHz nodes 

KBEA 11.7 22.7 10.4 19.1 10 
Intel i7-3770 3.4 

GHz (C++) 

--- means that we do not find data in the original paper. 
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Table 7 Net set of non-dominated solutions for Solomon 100-customer instances 

Problem 

instance 

Number of 

routes 

Total 

distance 

Algorithms that 

found the solution 

Problem 

instance 

Number of 

routes 

Total 

distance 

Algorithms that 

found the solution 

R101 19 1650.8 [L][N][G] R210 3 938.58 [H] 

 
20 1642.87 [A] 

 
4 924.785 [K] 

R102 17 1486.12 [L][N] 
 

5 922.297 [K] 

 
18 1472.62 [A] 

 
6 912.533 [B] 

R103 13 1292.68 [L][N] R211 2 885.71 [N] 

 
14 1213.62 [B][A] 

 
3 778.041 [K] 

R104 9 1007.31 [L][N] 
 

4 755.949 [B] 

 
10 974.24 [H] RC101 14 1650.14 [Y] 

R105 14 1377.11 [L][N][G] 
 

15 1624.97 [K] 

 
15 1360.78 [B][A][K] RC102 12 1554.75 [L][N] 

R106 12 1252.03 [L][N] 
 

13 1477.54 [K] 

 
13 1239.98 [K] 

 
14 1461.33 [K] 

R107 10 1104.66 [L][N] RC103 11 1261.67 [L][N] 

 
11 1074.24 [B] RC104 10 1135.48 [L][N][K] 

R108 9 958.66 [Y] RC105 13 1629.44 [L][N] 

 
10 942.895 [K] 

 
14 1540.18 [G] 

R109 11 1194.73 [L][N] 
 

15 1519.29 [K] 

 
12 1101.99 [Y] 

 
16 1518.6 [A] 

R110 10 1118.84 [L][N] RC106 11 1424.73 [L][N] 

 
11 1086.82 [K] 

 
12 1394.43 [G] 

 
12 1072.42 [B] 

 
13 1377.35 [A] 

R111 10 1096.73 [L][N] RC107 11 1222.1 [H] 

 
11 1054.23 [K] 

 
12 1212.83 [B][A] 

 
12 1053.5 [A][K] RC108 10 1139.82 [L][N] 

R112 9 982.14 [N] 
 

11 1117.53 [A] 

 
10 960.675 [A] RC201 4 1406.94 [L][N] 

R201 4 1252.37 [L][N] 
 

5 1279.65 [Y] 

 
5 1193.29 [K] 

 
7 1273.51 [K] 

 
6 1171.2 [K] 

 
8 1272.28 [K] 

 
8 1150.92 [B] RC202 3 1365.65 [L][N] 

 
9 1148.48 [A] 

 
4 1162.54 [G] 

R202 3 1191.7 [L][N] 
 

5 1118.66 [K] 

 
4 1079.39 [K] 

 
8 1099.54 [B] 

 
5 1041.1 [K] RC203 3 1049.62 [N] 

 
7 1037.5 [B] 

 
4 945.083 [K] 

R203 3 939.5 [L][N] 
 

5 926.819 [K] 

 
4 901.201 [K] RC204 3 798.46 [L][N] 

 
5 890.5 [O] 

 
4 788.663 [K] 

 
6 874.869 [B] RC205 4 1297.65 [L][N] 

R204 2 825.52 [N] 
 

5 1236.78 [K] 

 
3 749.417 [K] 

 
6 1187.98 [K] 

 
4 743.233 [K] 

 
7 1161.81 [A] 

 
5 735.861 [B] RC206 3 1146.32 [L][N] 

R205 3 994.43 [L][N] 
 

4 1081.83 [K] 

 
4 959.74 [G][K] 

 
5 1068.77 [K] 

 
5 954.16 [O] 

 
7 1054.61 [B] 

R206 3 906.14 [L][N][K] RC207 3 1061.14 [L][N] 

 
4 889.39 [O] 

 
4 1001.85 [G] 

 
5 879.893 [B] 

 
5 982.58 [O] 

R207 2 890.61 [N] 
 

6 966.372 [B] 

 
3 812.755 [K] RC208 3 828.14 [N] 

 
4 800.786 [B] 

 
4 783.035 [K] 

R208 2 726.82 [L][N] 
[L]: Lim and Zhang (2007): Table 3   [N]: Nagata et al. (2010): Table 7 

[A]: Alvarenga et al. (2007): Table 5  [O]: Ombuki et al. (2006): Table 1, 2 
[B]: Labadi et al. (2008) Table 3, 4   [Y]: Yu et al. (2011): Table 3 

[G]: Garcia-Najera and Bullinaria (2011): Table 7 

[H]: Ghoseiri and Ghannadpour (2010): Table 1 [K]: KBEA 
 

 
3 706.855 [B] 

R209 3 909.16 [L][N] 

 
4 864.149 [K] 

 
5 859.39 [B] 
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Table 8 Average number of routes and average total distance of compared algorithms (Gehring 

and Homberger 200-customer instances) 

Approach R1 R2 C1 C2 RC1 RC2 

Nagata et al. (2010) 
18.2 4.0 18.9 6.0 18.0 4.3 

3612.31 2929.41 2718.41 1831.64 3178.68 2536.22 

Vidal et al. (2013) 18.2 4.0 18.9 6.0 18.0 4.3 

3613.16 2929.41 2718.41 1831.59 3180.48 2536.20 

KBEA 

(minimal number of vehicles) 

18.2 4.2 19.2 6.0 18.4 4.5 

3724.18 2920.34 2703.44 1834.74 3263.26 2557.26 

KBEA 

(minimal total distance) 

19.0 5.9 19.7 6.3 19.0 6.5 

3670.07 2770.72 2679.95 1834.12 3225.19 2355.89 

Data in bold are not dominated by other algorithms. 
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Table 9 Net set of non-dominated solutions for Gehring and Homberger 200-customer instances 
Problem 

instance 

Number of 

routes 

Total 

distance 

Algorithms that 

found the solution 

Problem 

instance 

Number of 

routes 

Total 

distance 

Algorithms that 

found the solution 

R1_2_1 20 4784.11 [N][V]  7 2543.62 [K] 

 21 4765.27 [K] RC2_2_3 4 2601.87 [N] 

 22 4755.63 [K]  5 2448.11 [K] 

R1_2_2 18 4040.60 [V]  6 2397.26 [K] 

. 19 4017.08 [K]  7 2366.26 [K] 

R1_2_3 18 3381.96 [N][V] RC2_2_4 4 2038.56 [N][V] 

R1_2_4 18 3057.81 [N][V]  5 1961.38 [K] 

R1_2_5 18 4107.86 [N][V]  6 1899.99 [K] 

R1_2_6 18 3583.14 [V] RC2_2_5 4 2911.46 [N][V] 

R1_2_7 18 3150.11 [N][V]  5 2713.78 [K] 

R1_2_8 18 2951.99 [N][V]  6 2584.70 [K] 

R1_2_9 18 3760.58 [V]  7 2538.72 [K] 

R1_2_10 18 3301.18 [N][V] RC2_2_6 4 2873.12 [N][V] 

R2_2_1 4 4483.16 [N][V]  5 2703.64 [K] 

 5 4085.11 [K]  6 2586.54 [K] 

 6 3850.93 [K]  7 2577.23 [K] 

 7 3765.72 [K] RC2_2_7 4 2525.83 [N][V] 

 8 3713.20 [K]  5 2397.95 [K] 

 9 3681.37 [K]  6 2355.60 [K] 

R2_2_2 4 3621.20 [N][V] RC2_2_8 4 2292.53 [V] 

 5 3439.6 [K]  5 2237.01 [K] 

 6 3328.95 [K]  6 2225.06 [K] 

 7 3250.73 [K]  7 2220.88 [K] 

R2_2_3 4 2880.62 [N][V] RC2_2_9 4 2175.04 [N][V] 

 5 2812.79 [K]  5 2167.63 [K] 

 6 2720.70 [K] RC2_2_10 4 2015.61 [N][V] 

R2_2_4 4 1981.30 [N][V] C1_2_1 20 2704.57 [N][V][K] 

 5 1980.08 [K] C1_2_2 18 2917.89 [N][V] 

R2_2_5 4 3366.79 [N][V]  19 2796.73 [K] 

 5 3311.86 [K]  20 2700.65 [K] 

 6 3260.93 [K] C1_2_3 18 2707.35 [N][V] 

R2_2_6 4 2913.03 [N][V]  19 2700.82 [K] 

 5 2843.82 [K]  20 2682.18 [K] 

R2_2_7 4 2451.14 [N][V] C1_2_4 18 2643.31 [N][V] 

 5 2437.8 [K]  19 2631.77 [K] 

 6 2411.22 [K] C1_2_5 20 2702.05 [N][V][K] 

R2_2_8 4 1849.87 [N][V] C1_2_6 20 2701.04 [N][V][K] 

R2_2_9 4 3092.04 [N][V] C1_2_7 20 2701.04 [N][V][K] 

 5 3026.73 [K] C1_2_8 19 2775.48 [N][V] 

 6 2958.67 [K]  20 2690.27 [K] 

R2_2_10 4 2654.97 [N][V] C1_2_9 18 2687.83 [N][V] 

RC1_2_1 18 3602.8 [V]  19 2645.47 [K] 

 19 3574.79 [K] C1_2_10 18 2643.55 [N][V] 

 20 3571.03 [K]  19 2640.45 [K] 

RC1_2_2 18 3249.05 [V] C2_2_1 6 1931.44 [N][V][K] 

RC1_2_3 18 3008.33 [N][V]  7 1931.30 [K] 

RC1_2_4 18 2851.68 [N][V] C2_2_2 6 1863.16 [N][V][K] 

RC1_2_5 18 3371.00 [V] C2_2_3 6 1775.08 [N][V][K] 

RC1_2_6 18 3324.80 [V] C2_2_4 6 1703.43 [N][V] 

RC1_2_7 18 3189.32 [N][V] C2_2_5 6 1878.85 [V] 

RC1_2_8 18 3083.93 [N][V] C2_2_6 6 1857.35 [N][V][K] 

RC1_2_9 18 3081.13 [N][V] C2_2_7 6 1849.46 [N][V][K] 

RC1_2_10 18 3000.30 [V] C2_2_8 6 1820.53 [N][V] 

RC2_2_1 6 3099.53 [N][V] C2_2_9 6 1830.05 [N][V] 

 7 2950.99 [K] C2_2_10 6 1806.58 [N][V] 

 8 2877.59 [K]  7 1803.04 [K] 

 9 2861.54 [K] 
[N]: Nagata et al. (2010): Table 8       [K]: KBEA 

[V]: Vidal et al. (2013): Table C2   
 

 

RC2_2_2 5 2825.24 [N][V] 

 6 2641.21 [K] 
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Table 10 Average computation time, number of runs, and computing environments (Gehring and 

Homberger 200-customer instances) 

Approach Avg. computation time (minutes) #runs CPU (language) 

Nagata et al. (2010) 4.1 5 Opteron 2.4 GHz (C++) 

Vidal et al. (2013) 8.7 5 Xeon 2.93 GHz (C++) 

KBEA 4.0 10 i7-3770 3.4 GHz (C++) 

 

 

 


