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Abstract

Wafer fabrication is a capital-intensive and highly complex manufacturing process. In the wafer
fabrication facility (fab), wafers are grouped as a lot to go through repeated sequences of operations to
build circuitry. Lot scheduling is an important task for manufacturers to improve production efficiency
and meet customers’ requirements of on-time delivery. In this research we propose a dispatching rule for
lot scheduling in wafer fabs, focusing on three due date-based objectives: on-time delivery rate, mean
tardiness, and maximum tardiness. Although many dispatching rules have been proposed in the literature,
they usually perform well in some objectives and bad in others. Our rule implements good principles in
existing rules by means of (1) an urgency function for a single lot, (2) a priority index function considering
total urgency of multiple waiting lots, (3) a due date extension procedure for dealing with tardy lots, and (4)
a lot filtering procedure for selecting urgent lots. Simulation experiments are conducted using nine data
sets of fabs. Six scenarios formed by two levels of load and three levels of due date tightness are tested for
each fab. Performance verification of the proposed rule is achieved by comparing with nine benchmark
rules. The experimental results show that the proposed rule outperforms the benchmark rules in terms of

all concerned objective functions.
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Nomenclature

A; time at which lot i is released into the fab

d; due date of lot i

e; number of due date extension of lot i

Di processing time of the imminent operation of lot i

P; sum of processing time of all operations of lot i

0 queue of the station that becomes available

R; sum of processing time of the unfinished operations of lot i

r; time at which lot i arrives at the current station

Sjj sequence dependent setup time required for processing lot j right after lot i
t system time, the time at which the dispatching decision is to be made
Z; index value of lot i

1 Introduction

In recent years, the number of applications and demand for integrated circuits has increased
dramatically. Microprocessors, memory chips, and other semiconductor devices are now a part of our
daily lives, appearing everywhere in computer, communication, and consumer products. The
semiconductor manufacturing process consists of four phases: wafer fabrication, wafer probe, packaging,
and final testing. Among them, wafer fabrication is the most complex and costly one. In a wafer
fabrication facility (fab), wafers are grouped and put into a container, usually called a /oz. Each lot goes
through repeated sequences of operations including diffusion, photolithography, etching, ion implanting,
etc. to build up layers of circuitry on wafers. These operations are complicated and need high technology,
and thus the equipment is usually very expensive. Gupta ef al. [1] and Pfund et al. [2] mentioned that a

large portion of capital cost in the wafer fab is due to the cost of manufacturing equipment. The high cost



of equipment prohibits manufacturers from buying equipment and increasing manufacturing capacity
unlimitedly, and it also forces production managers to utilize the equipment effectively in order to achieve
high production efficiency (e.g. short mean cycle time) and meet customers’ requirements (e.g. high
on-time delivery rate). Hence, scheduling, which refers to the allocation of equipment over time to lots to
optimize the concerned performance measures, becomes an important task in wafer fabs.

A wafer fab is usually viewed as a job shop with the following extensions:

(1) reentrant process flow: lots may visit the same station more than once;

(2) dynamic job arrival: customer orders may arrive at different times;

(3) parallel machines: more than one station is able to process one operation;

(4) batch processes: in some stages (e.g. diffusion) more than one lot can be processed simultaneously;
(5) sequence dependent setup: in some stages (e.g. ion implanting) a setup time is required between two
operations with different recipes;

(6) machine failure: a station might not be available for an uncertain duration.

Since scheduling in a classical job shop is already known to be NP-hard for many performance
measures like mean tardiness [3], scheduling in a wafer fab is much more difficult. The challenging
complexity and practical value of fab scheduling attracted researchers in the academia and practitioners in
the industry, and several kinds of scheduling approaches have been developed in the last decades [4].
Dispatching rules are one of the most popular approaches in the industry due to its ease of implementation,
computational efficiency, convenience to deal with dynamic environments, and flexibility to incorporate
domain knowledge and expertise. It has been applied for fab scheduling successfully by many real-world
companies, including Siemens [5], Motorola [6], Samsung [7], IBM [8], and Agere Systems (now in LSI

corporation) [9].

With Application Specific Integrated Circuit (ASIC) and specialty processors gaining more and more

market share, the capability of meeting due dates is becoming a critical factor in the low-volume,



high-variety, and make-to-order wafer fabs. Several studies indicated that today’s wafer fabs have been
forced to become increasingly conscious of their due date delivery performance [1][2]. In this study, we
aim at developing a dispatching rule for the scheduling of wafer fabs with respect to due date-based
measures. The proposed rule is distinguished from the existing ones in the use of group information of
competing lots and a due date extension procedure. Its performance is verified by simulation experiments
using nine fab models and nine benchmark rules in the literature. The concerned performance measures

include on-time delivery (OTD) rate, mean tardiness, and maximum tardiness. They are defined by

0, if C.>d.
OTD rate = LZU(:’), U(i) = ’f o, (1)
IN| = 1, ifC <d,
. 1
mean tardiness = W Z max{C, —d,,0}, 2)
ieN
maximum tardiness = max max {C,-d,, 0}, 3)

where N denotes the set of finished lots, and C; and d; denote the completion time and due date of a job i,
respectively. The rest of this paper is organized as follows. Section 2 gives a review of related work, and
Section 3 details the proposed rule. The simulation model and experimental setting are presented in
Section 4. Experimental results and discussion are provided in Section 5. Finally, Section 6 gives the

conclusion and future research directions.

2 Literature review

A dispatching rule is usually a simple mathematical equation or a short algorithm for calculating
priority indices for jobs. It is often invoked when a station finishes a job and becomes available to process
the next job. The rule assigns priority indices for waiting jobs, and the job with the highest priority
(sometimes the highest index value and sometimes the lowest index value, depending on the rule) is taken
as the next processing target. Some reviews of dispatching rules can be found in Panwalker and Iskander

[10], Blackstone et al. [11], Rajendran and Holthaus [12], Jayamohan and Rajendran [13], and Sarin et al.



[14]. The key points in designing a dispatching rule is what attributes are included and how they are
combined if there are more than one attribute.

Early research studies on fab scheduling were usually concerned about cycle time-based performance
measures. The first way to design rules for fab scheduling is to borrow ideas from rules for classic flow
shop or job shop scheduling. Inspired by the classic least slack (SLACK) rule, Lu ef al. [15] proposed the
FSVCT and FSMCT rules. The FSVCT rule is like the SLACK rule but replaces the term of due date with
the lot arrival time. In this way, the cycle time is equal to the lateness, and hence the FSVCT rule can
reduce the variation of cycle time just like the SLACK rule can reduce the variation of lateness. The
FSMCT rule is a little more complex. It aims at reducing the burstiness of arrivals of lots to each buffer
and consequently reducing the mean cycle time. Based on the idea of the operation due date (ODD) rule,
Yoon and Lee [16] developed a rule by allocating the desired cycle time to operations according to the
utilization rate of the corresponding stations and then assigning due dates to operations. The lot with the
earliest due date of the imminent operation is the next one to be processed. Their rule outperformed the
rule proposed by Lu ef al. in terms of standard deviation of cycle times. Bahaji and Kuhl [17] proposed
four rules based on two rules proposed by Rajendran and Holthaus [12]. They introduced the X factor, the
ratio of the accumulated flow time to the sum of the processing time of completed operations, in the new
rules. Considering mean cycle time and OTD rate, their recommended rule is the one which combines
shortest-processing-time rule (SPT), lowest-work-in-next-queue rule (WINQ), and the X factor.

With Little’s Law in queueing theory [18], several researchers noticed the relationship between cycle
time and inventory (or work-in-process, WIP) and devised rules based on WIP information. Li ez al. [19]
proposed the MIVS rule by introducing correlation between inter-arrivals and services to reduce
variability. The rule separates lots into four classes according to the deviation of current inventory from
the average inventory. The basic principle is to expedite the lots with excessive inventory at the current
stage and to postpone those with excessive inventory at the downstream stage. Lee ef al. [20] addressed lot

release and lot scheduling by two push-type and two pull-type rules. The push-type rules calculate the



deviation of current WIP level from the planned WIP level for each layer of each device and process the
lots of layers with more excess WIP level at higher priority. The pull-type rules calculate a due date for
each layer of each device by averaging the sum of due dates of lots at the layer over the current WIP level.
Then, this layer due date is used in the SLACK rule and ATC rule [21]. By comparing the two pull-type
rules with two push-type rules, the pull-type rules showed better performance on several performance
criteria including cycle time and machine utilization. Duwayri et al. [9] proposed a rule for balancing
workload levels of lots at different layers. It calculates the workload index of a layer / by the ratio of
current workload of the bottleneck stage of / to total processing time of operations in /. Then, the lots of the
layer with the maximum workload index have the highest priority to be processed. This rule outperformed
the first-come-first-serve (FCFS) rule and the earliest-due-date (EDD) rule with respect to mean cycle
time and WIP level.

In addition to adapting classic rules to be used in fabs, another way to improve the performance of
rules is to do estimation of time attributes in rules more accurately. The remaining processing time is a
common and critical attribute in many rules and has been investigated by several researchers. Hung and
Chen [22] devised a dynamic look-ahead rule, which predicts the remaining flow time of each lot by
simulation. The lot with the smallest ratio of the predicted remaining flow time to the number of remaining
operations is taken as the next processing target. Kim ef al. [23] estimated the waiting times of lots at the
photolithography stations by assuming that lots are processed in the EDD order. Kim et al. [24] computed
the estimated waiting time of a lot i at a bottleneck station by the product of the average WIP level on the
station, the average processing time on the station, and the number of times the lot i needs to visit the
station. Chen [25] improved the FSVCT and FSMCT rules by Lu ef al. [15] through making them
nonlinear versions. He estimated remaining processing time of lots by fuzzy c-means method and the
fuzzy back propagation network. The improved rules showed much better performance than five existing
rules in terms of mean cycle time and standard deviation of cycle times.

As the importance of on-time delivery performance was realized by semiconductor manufacturers,



researchers also started to study dispatching rules for due date-based measures like OTD rate and mean
tardiness. Kim ef al. [23] proposed several dispatching rules in order to minimize mean tardiness. These
rules use much lot information including the number of remaining layers, estimated waiting time, and total
processing time of unfinished photolithography operations. Later, they extended their research by
considering batch scheduling [24]. Rose [26] showed that determining appropriate due date is critical to
the critical ratio (CR) rule when OTD rate is concerned. He also compared several due date-based
dispatching rules and found that the ODD and CR rules perform well with respect to OTD rate when the
target flow factor is close to the average flow factor under the FCFS rule [27]. Li ez al. [28] proposed a rule
for improving OTD rate. In default, the rule works as the ODD rule does. The rule adjusts the priorities of
lots when there is low WIP on bottleneck stations or high WIP on non-bottleneck stations. Wu ef al. [29]
developed a modified ODD rule. They combined the ODD rule with the SPT rule, where the flow time of
the imminent operation is estimated by the processing time plus a multiple of the standard deviation of the
flow time of this operation. The proposed rule showed better performance than several classic rules
including CR and EDD in terms of OTD rate and total tardiness.

Setup is an important issue in wafer fabs. Chern and Liu [30] examined the “family-based” concept to
deal with setup time on steppers (stations in the photolithography stage). This concept intends to save the
long setup time caused by changing masks and keeps processing the lots belonging to the same product
family until there is not such lot in the queue. They tested five family-based dispatching rules and found
that the family-based concept was beneficial to reduce cycle time and increase throughput. Lee and Pinedo
[31] improved the ATC rule [21] to be the ATCS rule by incorporating setup information. Kang et al. [32]
modified the ATCS rule to be the RATCS rule by considering the incoming lots from upstream stations.
The RATCS rule showed lower total weighted tardiness than the SLACK and EDD rules did. Pfund ez al.
[33] proposed the ATCSR rule, which was also based on the ATCS rule. The difference between the
RATCS and ATCSR rules is in the way they penalize the machine idle time for waiting the incoming lots.

Some researchers studied the combination of existing rules. One way to combine rules is to select



different rules for different states and/or stations. Chen et al. [34] developed a state-dependent rule, which
selects among three existing rules according to machine utilization and queue length. The dynamic
selection of rules achieved better performance than each individual rule regarding cycle time and WIP.
Miragliotta and Perona [35] divided the stations into six groups based on machine utilization, operation
type (serial or batch), and requirement of setup. Each group was assigned an appropriate rule. Wu et al.
[36] classified stations into dedicated steppers, non-dedicated steppers, and others. Rules for steppers
adopt the family-based concept in Chern and Liu [30]. For dedicated steppers, their rule selects the lot
family based on the line-balancing principle; for other stations, their rule selects the lot family based on
the starvation-avoidance principle. After a lot family is selected, a lot is then selected by the CR rule.
Zhang et al. [37] classified lots into four groups based on whether they are hot lots, whether their next
visiting station is a bottleneck, and how long the length of queue in the next visiting machine is. A distinct
combination of rules is designated to each group of lots. Another way to combine rules is through
weighted summation of priority indices calculated by multiple rules. The main difference between the
relevant studies is in the approach to set the weights of rules. For example, Dabbas et al. [6] used the
response surface method; Min and Yih [38] used the neural network; Sivakumar and Gupta [39] set
weights by human experts.

When more computational budget is available, performance of dispatching rules can be further
improved by sophisticated approaches. Metaheuristics such as genetic algorithms (GAs) are a popular
approach to production scheduling. Due to the large scale of wafer fabs, it is difficult to build the detailed
scheduling by only metaheuristics. One promising way is to optimize the use of dispatching rules by
metaheuristics. For example, Sha and Liu [40] relied on the simulated annealing algorithm to search for
the optimal combination of order release, dispatching, and rework rules. Liu and Wu [41] sought for the
proper combination of rules in different time intervals by the GA. Authors of this study adopted the GA
[42] to optimize weights of dispatching rules for calculating the aggregated priority indices of lots.

Shifting bottleneck (SB) procedure [43] is another sophisticated approach to classical job shop scheduling.



It decomposes the multi-stage scheduling problem into multiple single-stage single/parallel machine
scheduling sub-problems and solves the sub-problems one by one. Upasani ef al. [44] used the SB to
minimize maximum lateness in the wafer fab. Heavily-loaded stations were scheduled by a
branch-and-bound algorithm, and lightly-loaded stations were scheduled by a dispatching rule. This work
was extended by Sourirajan and Uzsoy [45], where parallel machines and batch machines were included.
Pfund et al. [46] also investigated how the SB can schedule the wafer fab. They used their own dispatching
rule, ATCSR [33], as the sub-problem solution procedure. Monch et al. [47] presented an approach
combining the dispatching rule, GA, and SB. The main flow of their approach was based on the SB. The
dispatching rule and the GA [48] were used to schedule the non-critical and critical stations, respectively.

As we can see from the literature review, dispatching rule is a popular tool for fab scheduling and
developing rules is an important research topic. Although some studies have shown the potential of
automatic combination [40]—[42] and construction of rules [49][50], there are still some limitations. For
example, the computational requirement of GA and genetic programming (GP) is large, and the
interpretation of the rules evolved by GP is not straightforward. Thus, we think that researches on these
different directions should be conducted in parallel and complement one another. In our previous study
[51] we found that the performance of the original rules has a large impact on the performance of the
combined rule. If we can design better rules based on domain knowledge, the performance of the
automatic rule combination approach will also get improved. Besides, the (sub-)expression in the rule
developed by domain knowledge can serve as effective components in the GP-based approaches to
construct new rules. In the literature, dispatching rules usually prioritize lots based on individual
information such as processing time and due date, and tardy lots are often prioritized simply by the SPT
rule. These two traditional thoughts could decrease the rule performance. In this study, we propose a rule
that considers the impact of processing of a lot on other lots and deals with tardy lots with better logic. The

rationale and details of the proposed rule is given in the following section.



3 The proposed ECR3 dispatching rule

In this paper, we propose a rule named Enhanced Critical Ratio 3 (ECR3), whose name indicates that
it experiences two times of refinement. Its first version was proposed in [52], in which this rule focused
only on maximizing OTD rate and showed its superiority over five benchmark rules. Then, the second
version ECRII was presented with several improvements in [53], where it demonstrated better
performance for OTD rate and mean tardiness than eighteen existing rules in the classical job shop
environment. In this study the ECRII rule is further enhanced to be ECR3, whose goal is to provide better
performance than existing rules for OTD rate, mean tardiness, and maximum tardiness in complex job

shops such as wafer fabs.

3.1 Basic form

To deal with due date-based objectives, dispatching rules in the literature usually assign index values
to the waiting jobs based on their degrees of urgency estimated by the remaining processing time (R;), the
allowance time (d; — f), the slack time (d; — R; — t), or some combinations of them. The main idea through
ECR to ECR3 is to select the next processing target so that the sum of degrees of urgency of all waiting
jobs is kept minimal after the selected job is processed. Different from most existing rules, which assign
the index value to a lot based only on its individual information, all versions of ECR assign the index value
to a lot considering both its own information and its influence on other competing lots. This is the most
important feature that distinguishes the ECR rules from others.

In our opinion, the degree of urgency should gradually decrease as operations of a lot are finished and
should gradually increase as its allowance time is consumed. In addition, the increasing rate should
become higher and higher as the due date is approaching. Accordingly, we use the square of ratio of the
remaining processing time to the allowance time as the measure of degree of urgency. The basic equation
of ECR3 is given as follows. Among all waiting lots, the lot with the smallest Z value defined below will

be selected first, where the lot & denotes the last lot being processed on the station:
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Z,=urg(R,—p,,d,—s,, —p, -0+ Zurg(Rjadj_ski —Ss; —p;—1) “4)

jeQ.i%j
with

0 ,R=0Aa=20
urg(R,a)={(R/a)>, a>R>0 . (5)
1, R>a

There are two terms in (4). The first term evaluates the degree of urgency of the selected lot, whereas
the second term evaluates the sum of degrees of urgency of competing lots, both after the selected lot is
processed. In the urgency function urg(R, a), R refers to the remaining processing time and a means the
allowance time. By choosing the lot with the smallest Z value, the ECR3 rule picks the lot with higher
degree of urgency earlier so that its urgency will not keep increasing; meanwhile, the lot with shorter
processing time is also favored since its processing will not cause much increment on the degrees of
urgency of other lots. Since the sequence dependent setup (SDS) time is not uncommon in the wafer
fabrication processes, the ECR3 rule also takes the SDS time into account and reflects this factor in
calculating the allowance time. In this way, the ECR3 rule will prefer the lot that needs short setup time.
Here, an example is given to show how the ECR3 rule works. Assume there are three lots in the queue.
The relevant information is summarized in Table 1. The ECR3 rule assigns the index values to these lots

as follows. The system time (¢) is assumed to be 1.

<< Insert Table 1 about here >>
Z1=urg(10-5,30-0-5-1)+urg(20,30-0-2—-5-1) + urg(40,50-0-2-5-1)=1.7769
Z,=urg(20-4,30-2—-4-1)+urg(10,30-2-2-4—-1)+ urg(40,50 -2 -2 -4 - 1) = 1.6625
Z3=urg(40-2,50-4-2—-1)+urg(10,30-4-4-2—-1) + urg(20,30 -4 -4-2—-1) = 2.0580
The original degrees of urgency of lots 1, 2, and 3 are (10/(30-1))?, (20/(30-1))?, and (40/(50—1))%,

respectively. Lots 2 and 3 have higher degrees of urgency than lot 1 does. Although lot 2 has longer

11



processing time than lot 3 (p, =4 > p3 = 2), the shorter setup time (sy; = 523 = 2 < s31 = 532 = 4) makes lot 2
a better choice. (The total degree of urgency of all three lots after processing lot 3 is 2.058, but that of all

three lots after processing lot 2 is only 1.6625.) Therefore, the ECR3 rule selects lot 2 in this example.

3.2 Due date extension

According to the urgency defined in (5), the degrees of urgency of tardy lots, including those that are
expected to be tardy (¢ + R; > d;) and those that are already tardy (¢ > d}), are fixed as one. That makes it
difficult to evaluate the variation of degrees of urgency of these lots and thus makes them
indistinguishable under the ECR rule. In ECRII, a due date extension procedure was proposed so that the
variation of degree of urgency of the tardy lot can be evaluated. The idea is to internally extend the due

date of a tardy lot before calculating its index value. In this procedure, two attributes e; and d, are
introduced for each lot i. The attribute e; refers to the times of due date extension, and d; refers to the
extended due date by the ¢, extension. Note that d 1s only used inside the dispatching rule. The original

due date d| is retained and used when performance measures such as OTD rate are calculated. For each lot

i, the initial value of e; is set to zero and dio is set to d;. After introducing the due date extension procedure,

the formula of ECR3 rule is modified to involve e; and d;" as follows:

Z, =urg(R,—p,,d" —s, —p,—te)+ Zurg(Rj,d;’—Skl.—sl.j—pl.—t,ej) (6)
je0.i% j
with
0 ,R=0Aa2=20
urg(R,a,e)=1(e+1)-(R/a)*, a>R>0 . (7)
(e+1) , R>a

Comparing the urgency functions in (5) and (7), the difference is that the degree of urgency in (5) is
amplified by (e+1) times in (7) so as to raise the degrees of urgency of the lots experiencing due date
extension.

One remaining issue in the due date extension procedure is how long the due date is to be extended. In

12



ECRII, the due date was extended by a multiplier of the remaining processing time of the lot, namely

d=d" "'+ aR; (8)

1 1

This method makes it easy to use « to control the degree of urgency right after due date extension.
However, a problem rises when we focus on minimizing maximum tardiness — the times of due date
extension (e;) is not directly related to the amount of tardiness (¢ + R; — d;). In ECRII, the due date of a tardy
lot with little remaining workload is extended by a little amount in each extension. It implies that this kind
of lot may experience another due date extension in a short period, and its degree of urgency could
increase quickly due to the fast increasing of e;. On the contrary, a tardy lot with large remaining workload
receives due date extension infrequently, and its degree of urgency increases relatively slower. Therefore,
the ECRII rule could select a tardy lot with little remaining workload (and large e;) instead of a tardy lot
with large remaining workload (and small e;) even though the latter lot has experienced much longer
tardiness than the former one has.
To deal with this problem in ECRII, the equation for due date extension is modified to be

d=min{d’" + Y, 1+ (1+Y,)-R} )
in ECR3. The first term indicates that the amount of due date extension is fixed as a constant Y;. In this
way, the times of due date extension e; of a lot i can closely reflect its amount of tardiness (since the
tardiness is about Y] -¢;). Consequently, preferring the lots with larger e; becomes a reasonable strategy in
ECR3 when maximum tardiness is to be minimized. Sometimes, the remaining processing time of a tardy
lot could be much smaller than Y. In this condition, the degree of urgency could become small after due
date extension, making a tardy lot look less urgent. Hence, a lower bound is given to fix this potential
problem. This is the purpose of introducing the second term in (9). When the due date is extended by the
second term, the degree of urgency (the square of the ratio of the remaining processing time to the
allowance time, defined in Section 3.1) becomes (R/((1+Y>)-R;))* = 1/(1+Y>)>. We can control the lower

bound of the degree of urgency by the value of parameter Y,. Values of parameters Y and Y, are given in

13



Section 4.

In addition to the equation for due date extension, we make another modification in the urgency
function to improve the performance on minimizing maximum tardiness. To calculate the Z; value of a lot
i with only one unfinished operation by ECRII, the degree of urgency of lot i itself is defined by e; if lot i
can be finished within the current (extended) due date and is defined by (e;+1) if lot i cannot be finished in
time. In ECR3, we change the degree of urgency of lot i in the first case from e; to zero. Setting the degree
of urgency as zero makes completion of the whole fabrication process of a tardy lot an attractive option for
ECR3. This strategy aims to stop the rising of tardiness caused by the tardy lot, particularly useful when

the lot is the one that causes maximum tardiness in the fab.

3.3 Two viewpoints for calculation of total degree of urgency

As mentioned, the main idea through ECR to ECR3 is to select the next processing target so that the
total degree of urgency is kept minimal after the selected lot is processed. When evaluating the “total
degree of urgency”, there are two viewpoints — to consider or not to consider the degree of urgency of the
selected lot. The former viewpoint intends to select a lot such that processing of its imminent operation
can effectively reduce its own degree of urgency and does not raise the degrees of urgency of other
competing lots too much. This viewpoint was followed by ECRIIL. On the other hand, the latter viewpoint
focuses on reducing the sum of degrees of urgency accumulated on the station. Following this thought, the
degree of urgency of the selected lot after its imminent operation is finished is considered as zero in the
priority index function. In preliminary tests we found that both viewpoints result in good performance in
some cases. Therefore, we introduce a parameter Y3 to make both points of view realizable in the ECR3

rule. The value of Y3 can be zero or one. The following is the final form of ECR3.

Z, =Y, urg(R,— p,,d/ —s, —p,—t,e)+ Zurg(Rj,djf -8y =S, — P, —1e;) (10)

JjeQ,i#j

with
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0 ,R=0Aa2=20
urg(R,a,e)=1(e+1)-(R/a)>, a>R>0 . (11)
(e+1) , R>a

3.4 Lot filtering

When there are several lots waiting in the queue, the ECR3 rule may select a relatively less urgent lot
instead of a very urgent one if the processing time of imminent operation of the former one is much shorter
than that of the latter one. (In that condition, processing of the former lot increases the degrees of urgency
of other competing lots by a much smaller amount than the latter one does.) To solve this problem, when
we detect the condition in which there is a large difference of degrees of urgency among the waiting lots,
a lot filtering procedure is activated. Only the lots passed the filtering procedure are assigned the index
values by (10), and the one with the lowest index value is the next processing target. The algorithm of the
filtering procedure is shown in Algorithm 1. The main idea is to filter out the lots that are not tardy and
whose degrees of urgency are lower than the average degree of urgency over all waiting lots. The variable

Y4 in this procedure is also a parameter of ECR3.

<< Insert Algorithm 1 about here >>

4 Simulation model, experimental setting, and benchmark rules
4.1 Fab model

There are Np products, and each product is associated with one of Np processing routes. Each
processing route is defined as a sequence of operations, and each operation is designated to be processed
on a certain group of stations. There are Ny groups of stations, each consisting of at least one station.

In general, there are three types of operations, by-wafer, by-lot, and by-batch operations. Each
operation has a step ID, and the by-batch operation could also have a batch ID. Only lots whose imminent
operations have the same step ID or batch ID can be batched together. For each by-batch operation, the

minimum and maximum batch sizes, B,, and By, are predefined. The by-batch operation can start only if
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the number of wafers of waiting lots in at least one batch is not less than B,,, and at most B, wafers can be
processed at a time. Processing time of a by-wafer operation is proportional to the lot size, and processing
time of a by-batch operation depends not only on the lot size but also the maximum batch size.

In addition to the step ID, an operation may also have a setup group ID. When a station starts to
process a new operation whose step ID or group ID is different from that of the previous operation, a
specification setup or group setup is required. In our current model, the processing time and setup time are
deterministic, which was indicated as a reasonable assumption by Sourirajan and Uzsoy [45].

Lots are released into the fab with a constant time interval. Each product has a distinct inter-arrival
interval and a lot size (number of wafers). The time between machine breakdown and time to repair are
assumed to follow the exponential distribution. Each group of stations has its own mean time between
failure (MTBF) and mean time to repair (MTTR).

The dispatching rule is invoked each time when a serial-type station finishes an operation. As for
scheduling on batch-processing stations, which is not the focus in this study, the batch containing the
largest number of wafers is selected as the next processing target. Ties are broken by the EDD rule.
Transportation, human operators, and rework are not considered.

4.2  Experimental setting

Nine data sets of fabs were taken in the simulation experiments, including seven MIMAC data sets
from Fowler and Robinson [54], one SEMATECH data set from Campbell and Ammenheuser [55], and
one data set from Sourirajan and Uzsoy [45]. Their scales are summarized in Table 2.

The lot release rate was controlled to make the utilization of bottleneck stations around 90%. We
defined these scenarios as “heavy” load scenarios. In order to examine the performance of rules under
different load levels, a duplicate set of experiments was conducted with the release rates set to those in
heavy load scenarios times 90%. These scenarios are defined as “moderate” load scenarios. To set due
dates, we first calculated the flow factor, which is defined as the ratio of average cycle time to the raw total

processing time, of each product in the tested fab under the FCFS dispatching rule. Then, the average flow
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factor (FF) over all products was calculated. Finally, the TWK (Total WorK content) method was used to

29 ¢

set due dates. Here we created three types of scenarios, standing for “tight,” “moderate,” and “loose” due
dates, respectively. The due date of each lot i is set to P;-U[1, 2-FF-1] in tight due date scenarios, P;
-U[(1+FF)/2, (3-FF-1)/2] in moderate due date scenarios, and P; -U[FF, 2-FF-1] in loose due date
scenarios. Ula, b] is a function which generates a real number uniformly distributed in the interval [a, b].
Figure 1 shows the ranges of due dates in the three types of scenarios, and the values of FF for all nine fabs
are given in Table 2.

The warm-up period was set to 180 days based on the observation of the curves of average cycle time
and WIP level. We used the batch means method [56] to collect the simulation output data. Twenty

batches were collected, with each contained data of 180 days. The Common Random Numbers (CRN)

technique was used as a variance reduction technique.

<< Insert Figure 1 and Table 2 about here >>

4.3  Benchmark rules

Many dispatching rules have been proposed in the literature. In the experiments we selected nine rules
to be compared with our proposed rule. When doing dispatching, the COVERT, ATCSR, and RACTS
rules select the lot with the largest Z value as the next processing target while the other rules select the lot
with the smallest Z value. In case of a tie, the FCFS rule is used to determine the next target.

FCFS: The FCFS rule is a common reference rule when evaluating the performance of dispatching
rules [30][35][57]. It assigns the priority index value by

YA ; = r i
( 1 2 )

EDD: The EDD rule is one of the earliest rules focused on due date-based objectives. In the literature,
its major advantage is shown on minimizing maximum tardiness [13][58][59][60]. It assigns the priority

index value by
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Z:=d. (13)

SLACK: The SLACK rule prefers the lots with earlier due dates and longer remaining processing
time. This rule was reported as a good one for minimizing maximum tardiness in our previous studies
[53][60]. It assigns the priority index value by

Z = d; — t - R;.
(14)

CR: The CR rule is a simple ratio-based dispatching rule. It favors the lots with shorter allowance
time and longer remaining processing time when the allowance time is positive. After the allowance time
becomes negative, it prefers the lots with shorter remaining processing time. It is commonly used in the
semiconductor manufacturing industry [2][6][38]. By this rule, the priority index value is given by

Z:=(d:— /R (15)

COVERT: The Cost OVER Time (COVERT) rule [62] is one of the most widely used dispatching
rule focused on due date-based objective functions. It favors the lots with earlier due dates, longer
remaining processing time, and shorter processing time of the imminent operations. By combining these
principles, it was often reported to perform well for due date-based objectives, especially for mean
tardiness [24][58][59][60][61]. It assigns the priority index value by

Zi=(1/p)[1 —(di—t=R)lk-R)] (16)
where £ is its parameter and (v)" means max{v, 0}.

OPDD: Wu et al. [29] proposed to use an operation due date-based dispatching rule for scheduling
make-to-order (MTO) lots in the hybrid make-to-stock (MTS)/MTO fab. It assigns a due date for each

operation e of lot i by

OPDD,; . A4 + (d — 4 ;) - (Zpi,k/Pi)’
s

( 1 7 )

where p; denotes the processing time of operation k of lot i. Then, the priority index of a lot i whose
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imminent operation is e is calculated by

Z;=0PDD;. - pi— fGCic, (18)
where o; . denotes the standard deviation of the flow time of operation e of lot i and fis a parameter of this
rule. In our experiments, o;, was collected and updated every 180 days.

ATCSR: Based on the ATC [21] and ATCS [31] rules, Pfund et al. [33] proposed the ATCSR rule.
Like the COVERT rule, it favors lots with earlier due dates, longer remaining processing time, and shorter
processing time of the imminent operations. Besides, it considers setup time and incoming lots. Its priority

index function is

_ 1 (d. — R, —max(r,,1))" (r,—1)"
= eX( oy )exp(— ks Y1) exp(~ 7

) (19)

where r; is the time at which the lot arrives at the station (7; is greater than ¢ for incoming lots from
upstream stations), / is the last lot processed on the station, and p and sare average processing time and

average setup time, respectively. ATCSR uses three parameters ki, k2, and k3 to adjust the relative
importance between lot urgency, setup overhead, and incoming lots.

RATCS: Kang et al. [32] developed the RATCS rule, which is also based on the ATCS rule and is
similar to the ATCSR rule. The difference between ATCSR and RATCS is in that RATCS includes the

time waiting for incoming lots in the setup time. Its priority index function is

Zi: Lexp(_ (dz _Ri__ t) )eXp(— Sii +(l’;-_— t)
Pi k,p kys

) (20)
WPWX: Bahaji and Kuhl [17] proposed four rules and recommended the Wt(PT+WINQ)/XF rule,
hereafter abbreviated as the WPWX rule. It favors the lots with shorter processing time, shorter queue at
downstream stations, and larger flow factor (X factor, XF'). The XF; of a lot i is calculated by
X F = (¢t - A4 ;) /I (P - R i)
( 2 1 )

The priority index function is defined by
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Z;=exp(-XF))-((p; + w)/XF;) + exp(XF))-(1/XF;) (22)
where w; denotes the sum of processing time of lots at the downstream stations of lot i.

4.4  Parameter setting

Among the ten tested rules, we have to determine values of parameters for the COVERT, OPDD,
ATCSR, RATCS, and ECR3 rules. For COVERT, we tested ten variants with the parameter £ setting to
values from 1 to 5.5 in increment of 0.5, based on the values used in the literature (e.g. 0.25~2 in [58], 0.5
and 1 in [62], 1 in [24], and 4 in [59]) . In the original paper of OPDD, the authors set the parameter £ to
0.5. In our experiments, we tested ten variants with the parameter £ setting to {0, 0.125,0.25, 0.5, 1, 2, 3,
4, 5, 10}, covering a wide range of values. In the original paper of ATCSR, the authors tested 3146
combinations of parameter values. Here we did not test such a large number of combinations since it could
take too much computation time and may not be practical. We tested 64 (4-4-4 = 64) variants of ATCSR
with k; setting to {0.01, 0.1, 1, 10} and 4, and 43 to {0.00001, 0.0001, 0.001, 0.01}, trying to include a
wide range of possible values. Since RACTS is similar to ATCSR and the roles of k| and k; are the same in
both rules, we tested the same number of combinations by selecting candidate parameter values from
roughly the same range. We also tested 64 (8-8 = 64) variants of RACTS with k; set to {0.005, 0.01, 0.05,
0.1,0.5, 1,5, 10} and k, to {0.000005, 0.00001, 0.00005, 0.0001, 0.0005, 0.001, 0.005, 0.01}. For ECR3,
we tested 32 (4-2-2-2 = 32) variants by setting Y to {5, 10, 20, 40}, Y> to {0.3, 0.4}, Y3 to {0, 1}, and Y4 to
{0.3, 0.4}. More discussion on the selection and effect of parameter values of ECR3 will be given in
Section 5.5.

The advantage of the group setup policy was discussed by Benjaafar and Sheikhzadeh [63] and by
Chern and Liu [30]. The group setup policy allows setup actions only when there is no waiting lot
requiring the current setup setting. Although much setup time can be saved by following the group setup
policy, it is not always beneficial for the due date-based objectives [64]. Hence, we tested two variants
(with and without the group setup policy) of each rule with each distinct parameter setting. In other words,
we have 20 (10 parameter settings x 2 setup policies) variants for OPDD and COVERT, 128 variants for
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ATCSR and RACTS, 64 variants of ECR3, and 2 variants for remaining five rules. We have 370 rule

variants in total.

5 Experimental results

In the experiments, three due date-based objective functions including OTD rate, mean tardiness, and
maximum tardiness were considered. They are defined in equations (1)—(3). Given two levels of load and
three levels of due date tightness, we have six scenarios for each fab. In each scenario, we identified the
best group of rules. The results in terms of the three objective functions are presented in the following
three subsections, respectively. The last two subsections will give discussions on the design principles and
parameter values of ECR3.

To identify the best group of rules, first we calculated for each rule variant the average objective
values over twenty batches. (We used batch means method for data collection, as mentioned in Section
4.2). Regarding each objective function, the variant with the best performance among 370 rule variants
(generated from ten main rules) was identified. Then, the paired #-test [56] was conducted to see if each of
the other 369 rule variants is statistically different from the best one, with 95% confidence level. If any
rule variant is not statistically different from the best rule variant, we put its corresponding main rule in the
best group of rules. We counted the number of fabs in which a main rule is recognized in the best group for
each scenario. The results are summarized in Table 3 and Figure 2-4. For each objective function, the best
three main rules are marked by gray color in Table 3. We also provide the average objective values of the
best variant of each main rule in terms of OTD rate, mean tardiness, and maximum tardiness in Table 4—6
for reference. The cell of a main rule is marked by gray color if the rule is in the best group of rule.

<< Insert Table 3 and Figure 2-4 about here >>

5.1 OTD rate

Given nine fabs and six scenarios, the maximum number of times of being recognized in the best

group is 54. In Table 3, the proposed ECR3 rule is recognized in the best group for 32 times and
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outperforms all nine benchmark rules. The second and third best rules are OPDD and COVERT, which are
recognized for 29 and 18 times, respectively. In the literature, rules realizing the
“shortest-processing-time-first” principle usually perform well on maximizing OTD rate [13]. The ECR3,
OPDD, and COVERT rules all implement this principle.

The performance difference among the tested rules is more significant when due dates are tighter.
When due dates are loose, eight rules belong in the best group at least once; when due dates are tight, only
four rules are in the best group. The effect of load level is relatively smaller than that of due date tightness.
In some scenarios (e.g. moderate due dates and moderate load level in fab 3 and fab 4) the OPDD or
WPWX rule is the only rule in the best group and outperforms the second best rule greatly. However, this
good performance of OTD rate is usually obtained at the cost of bad performance of mean tardiness and
maximum tardiness, as can be seen in Table 5 and 6 in the following subsections.

<< Insert Table 4 about here >>

5.2  Mean tardiness

Concerning mean tardiness, the proposed ECR3 rule is again the best one. It is in the best group in 47
of 54 scenarios. The next two rules are COVERT and CR rules, which are recognized in the best group for
35 and 30 times, respectively. These three rules have a similar term in their priority index functions. The
term is a ratio based on the allowance time (or slack time) and remaining processing time. This
observation could be a hint on designing rules for minimizing mean tardiness.

The OPDD rule, which is the second best rule for the OTD rate, is recognized in the best group of
rules with respect to mean tardiness only in loose due date scenarios. The reason is that OTD rate is close
to 100% in loose due date scenarios, and increasing OTD rate simultaneously decreases mean tardiness. In
moderate and tight due date scenarios, however, expediting some lots to meet due dates may delay other
lots and increase mean tardiness. The OPDD rule focuses on the operation due date but does not consider
the remaining processing time. It may keep processing lots with short remaining processing time but leave

lots with long remaining processing time waiting. This behavior could finish a certain group of lots early
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and increase OTD rate, but meanwhile it could delay another group of lots and increase mean tardiness.

<< Insert Table 5 about here >>

5.3 Maximum tardiness

The best three rules to reduce maximum tardiness are ECR3 (54 times in the best group), CR (39
times), and SLACK (26 times). Another three rules, COVERT, ATCSR, and RATCS, have close
performance (21, 21, and 17 times, respectively). Among three objective functions, performance
difference between rules with respect to maximum tardiness is the smallest.

When the load level is heavy and due dates are tight, performance of ATCSR, COVERT, and RATCS
is much worse than ECR3. One reason could be that these rules behave like the SPT rule when dealing
with tardy lots. As the load level gets heavy and due dates get tight, there are more tardy lots. Preferring
tardy lots with shorter processing time regardless of their actual tardiness is not a suitable strategy to
reduce maximum tardiness. For example, imagine the situation where the lot responsible for maximum
tardiness is lying in the queue and keeps increasing maximum tardiness just because the rule does not like
its long processing time. By contrast, we use the due date extension procedure and record the number of
times of extension in ECR3. Expediting lots with more times of extension (implying larger tardiness) in
ECR3 is helpful for reducing maximum tardiness.

<< Insert Table 6 about here >>

5.4 Design principles

According to the experimental results, we observed that realizing the shortest-processing-time-first
(SPT) principle is good at raising OTD rate. Rules which do not incorporate this principle, such as CR and
SLACK, are seldom recognized in the best group of rules with respect to OTD rate. Note that OTD rate
only counts the number of lots finished within due dates. In the extreme case, OTD rate can be maximized
by expediting some certain lots to meet their due dates and disregarding the remaining lots, even though

these lots are delayed for a long time (since the tardiness causes no decrement on OTD rate). This explains
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why the OPDD rule, which does not consider tardiness of lots, and the WPWX rule, which does not even
consider due dates of lots, can provide high OTD rates in some fabs, especially in scenarios of moderate
and tight due dates and heavy load. As we mentioned, however, ignorance of due dates and tardiness
causes weak performance of OPDD and WPWX in terms of mean tardiness and maximum tardiness. They
are usually in the worst two or three rules regarding these two objective functions.

To raise OTD rate and reduce mean tardiness simultaneously, the dispatching rule should not only
follow the SPT principle but also consider due date-based urgency carefully. The proposed ECR3 rule and
the existing COVERT rule have a good balance between favoring lots with short processing time and lots
with high urgency. Thus, they achieve good performance for OTD rate and mean tardiness at the same
time. The CR rule gives good performance for mean tardiness but not OTD rate because it does not realize
the SPT principle. The COVERT rule measures due date urgency based on the ratio of the slack time to the
remaining processing time. Then, the SPT principle is implemented by dividing due date urgency by the
processing time of the imminent operation. The calculation is simple but not easy to explain the
interaction between short processing time and high urgency. In ECR3, this interaction is measured by total
degree of urgency of all competing lots after the selected lot is processed. Selecting a lot with short
processing time prevents total degree of urgency from increasing, and selecting a lot with high urgency
decreases more total degree of urgency. The design is easier to understand and achieves better
performance than the COVERT rule does.

Another problem in the COVERT rule is that the rule degenerates to be the SPT rule when dealing
with tardy lots. (The problem also occurs in the ATCSR and RATCS rules.) The COVERT rule prioritizes
tardy lots over non-tardy lots (assuming equal processing time). This is able to reduce maximum tardiness
in a certain degree, but processing tardy lots in the SPT order is not good enough. The CR and SLACK
rule consider the actual amount of tardiness (d; — 7) and achieve lower maximum tardiness than the
COVERT rule does. In the proposed ECR3 rule, the due date extension procedure makes the balance

between short processing time and high urgency still feasible for tardy lots. In addition, the urgency
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function reflects the amount of tardiness (see equation (7) and (9)), and therefore ECR3 can expedite lots

with longer tardiness. These designs make the ECR3 rule the best one in terms of maximum tardiness.

5.5 Parameter values of ECR3

The ECR3 rule has four parameters. Parameter Y, is the extra duration in the due date extension; Y,
controls the lower bound of degree of urgency after due date extension; Y3 determines whether the degree
of urgency of the processed lot is considered; Y4 is the threshold of difference in degree of urgency in the
lot filtering procedure. In the experiments, we do not intend to tune the parameter values deliberately. We
want to keep the number of variants acceptable and set the parameter values with simple reasoning.
Normally, the degree of urgency is between 0 and 1 (urg(R, a) in equation (5)). We tested two values, 0.3
and 0.4, for Y» to make the lower bound of degree of urgency (1/(1+¥5))?) of the lot around 0.5~0.6, which
is not too high and not too low. We tested two values, 0 and 1, for Y5 since they are the only two possible
values. For the threshold of difference in degree of urgency, Y4, it should not be too small, which may filter
out too many lots; it should not be too large, which reduces the effect of filtering. Since the degree of
urgency is between 0 and 1 in the normal case, we thought that 0.3 and 0.4 might be two reasonable
choices for Y4. By observing that the maximum tardiness may range from 5 to 200 in the preliminary
simulation results, we tested a little bit more values (four values: 5, 10, 20, and 40) for parameter Y;. In
total, the number of combinations of different parameter values is 32 (4x2x2x2), which is not too large.

To examine the effect of parameters on the three objective functions in different scenarios, we did a
similar analysis to what we did in Table 3. Regarding each objective function, we identified the ECR3
variant with the best average performance. Then, we conducted paired #-test to find the best group of
ECR3 variants, i.e. the variants whose average performance is not statistically different from the best
variant. For each parameter value, we counted the number of fabs where at least one rule variant in the best
group used that value. Table 7 summarizes the results.

<< Insert Table 7 about here >>

In Table 7, the first observation is that the setting of Y4 is proper and applicable to all tested cases. In
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the best group of ECR3 variants, there is always at least one variant using either 0.3 or 0.4 as the value of
Y4. There is a little difference between performance of the two tested values of Y>, and setting Y5 to 0.4 is
applicable to almost all cases. The effect of values of Y} is higher than that of ¥, and Y4, particularly when
OTD rate is concerned and due dates are tight. A general observation is that larger Y; is beneficial to
increase OTD rate but smaller Y; is good at reducing mean tardiness and maximum tardiness. The result is
understandable. Smaller ¥, gives shorter extra duration in due date extension and results in higher degree
of urgency and more times of due date extension for tardy lots, both expediting tardy lots in the logic of
ECR3 and helping to reduce mean tardiness and maximum tardiness. On the other hand, larger Y, assigns
lower degree of urgency to tardy lots and invokes fewer due date extension. It makes ECR3 focus on the
non-tardy lots since processing of tardy lots has no benefit in increasing OTD rate. The last observation is
that consideration of the degree of urgency of the processed lot, i.e. setting Y3 to 1, provides better
performance. By looking at the detailed experimental results, we found that setting Y3 to 0 is beneficial
only in fab 1 and 5, especially when OTD rate is concerned. We leave further investigation on this
phenomenon in our future work.

Based on the analysis, we suggest setting values of parameters Y>, Y3, and Y4 to 0.4, 1, and 0.4,
respectively. This setting showed robust performance for three due date-based objective functions in nine
fabs under six scenarios with different load levels and due date tightness. As for Y), larger values are

preferred for OTD rate and smaller values are preferred for mean tardiness and maximum tardiness.

6 Conclusions

Wafer fabrication is a complex manufacturing process, and scheduling is a critical function to make
fabs run efficiently to satisfy the concerned performance objectives. The increasing importance of on-time
delivery in wafer fabrication highlights the requirement of scheduling methods for due date-based
objectives. In this research we developed a dispatching rule that improves the design of existing rules by

the index function based on total degree of urgency and the due date extension procedure. Total degree of
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urgency considers the impact of processing of a lot on the competing lots and extends the scope of utilized
information. The due date extension procedure helps to dispatching the tardy lots with better logic instead
of merely SPT in many existing rules. We tested the rules by 54 scenarios of fabs, made by nine data sets
of fabs, two levels of fab load, and three levels of lot due dates. The results showed that our rule is superior
to nine benchmark rules in terms of OTD rate, mean tardiness, and maximum tardiness. In addition to
numerical experiments, we had discussions about pros and cons of the tested rules. In the future, we plan
to improve the proposed rule by incorporating more ideas from existing rules, for example, “prediction of
waiting times” in [25], “consideration of incoming lots” in [33], and “workload balancing” in [36].

Another research direction is to extend the proposed rule for batch scheduling.
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Table 1 An example for the ECR3 rule

Sequence dependent setup time

d; Vi Di Sk Sil Si2 Si3
Lotl 30 10 5 0 0 2 2
Lot2 30 20 4 2 2 0 2
Lot3 50 40 2 4 4 4 0

Algorithm 1 Lot filtering procedure in the ECR3 rule

Q: the set of all waiting lots; S: the set of lots to be considered as the next processing target; u;: degree of urgency of lot i
LotFilteringProcedure(Q)
Begin
S=0
W™ = max {u;}, u™ = min{u;}, u=>, u/|S|,VieS
While &™ — 4™ > Y, Do
AtLeastOnelLotlsFiltered = FALSE

Forallie S
Ife;=0and u; < 4 Then
S=S8/{i}
AtLeastOneLotlsFiltered = TRUE
End if
End for
If AtLeastOneLotlsFiltered = FALSE
Break
End if
U™ = max {u;}, 1™ = min{u;}, =2, u/|S,ViecS
End while
Return S

End
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Table 2 Brief description of nine tested fabs

Total number of operations

Fab Np / Ng Ng in Ny routes FF

1 2/2 83 455 1.76 /2.03"
2 7/17 97 1606 1.10/1.11
3 11/11 73 4139 1.19/1.26
4 7/2 35 111 1.54/1.62
5 21/14 85 2581 1.44/1.58
6 9/9 104 2541 1.71/1.99
7 1/1 24 172 1.35/1.41
8 4/4 27 170 1.32/1.38
9 1/1 43 316 1.10/1.13

*: FF in the moderate load level scenario / FF in the heavy load level scenario

Table 3 Summary of performance of ten tested rules in six scenarios with respect to three objective functions

OTD% Tean T
Moderate load Heavy load Moderate load Heavy load Moderate load Heavy load
level level level level level level

L M T L M T L M T L M T L M T L M T
ATCSR 1 0 0 2 0 0 3 0 4 2 0 2 4 3 5 4 2 3
COVERT 5 2 1 6 2 2 6 7 5 6 7 4 5 3 3 6 3 1
CR 3 0 0 2 0 0 7 5 5 7 2 4 6 8 9 6 6 4
ECR3 8 4 4 9 4 3 9 7 9 8 7 7 9 9 9 9 9 9
EDD 0 0 0 1 0 0 0 0 0 1 0 0 1 0 2 0 0 0
FCFS 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
OPDD 4 6 5 6 4 4 5 0 0 4 0 0 6 0 0 5 1 0
RATCS 0 0 0 2 0 0 2 0 3 1 0 1 5 3 4 2 2 1
SLACK 0 0 0 1 0 0 2 0 2 1 0 1 3 5 6 3 3 6
WPWX 0 3 1 0 2 1 0 0 0 0 0 0 0 0 0 0 0 0

L, M, and T denote the loose, moderate, and tight due date scenarios, respectively.
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Table 7 Summary of performance of different parameter values of ECR3 in six scenarios with respect to three objective

functions

OTD% Tnean Tnax
Parameter  Value Moderate load Heavy load Moderate load Heavy load Moderate load Heavy load
level level level level level level
L M T L M T L ™M T L ™M T L ™M T L M T
5 8 5 2 8 6 5 9 9 9 9 9 8 9 9 9 9 9 9
¥, 10 9 5 3 9 6 5 9 9 9 8 9 9 9 9 9 9 9 9
20 9 7 6 9 7 7 8 9 8 9 7 8 8 9 8 9 7 7
40 9 9 8 9 9 9 8 6 6 7 6 7 6 6 8 8 6 8
0.3 9 5 8 9 8 6 9 9 9 9 9 9 9 9 9 9 9 9
& 0.4 9 9 9 9 9 9 9 9 9 8 9 9 9 9 9 9 8 9
Y, 0 5 5 6 5 5 5 5 3 4 3 3 4 5 4 7 3 3 6
8 7 7 8 7 7 8 8 8 8 8 8 8 9 9 8 9 9
0.3 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9
Y 04 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9

L, M, and T denote the loose, moderate, and tight due date scenarios, respectively.
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Research highlights

» We propose a dispatching rule for lot scheduling in wafer fabs regarding due date-based

objectives.
» The rule prioritizes lots by the impact on the total urgency of competing lots.
» The rule deals with tardy lots by a due date extension mechanism.

» We conduct extensive experiments using nine fab models, six scenarios, and nine

benchmark rules.

» Our rule performs well in terms of on-time delivery rate, mean tardiness, and maximum

tardiness.
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