
XXX-X-XXXX-XXXX-X/XX/$XX.00 © 20XX IEEE

An Adaptive Multiobjective Evolutionary Algorithm

for Economic Emission Dispatch

Tsung-Che Chiang

Dept. of Computer Science and

Information Engineering,

National Taiwan Normal

University

Taipei, Taiwan, R.O.C.

tcchiang@ieee.org

Thammarsat Visutarrom

Dept. of Computer Science and

Information Engineering,

National Taiwan Normal

University

Taipei, Taiwan, R.O.C.

thammarsat@gmail.com

Sadan Kulturel-Konak

Management Information

Systems

Penn State Berks

Reading, PA 19610, USA

sadan@psu.edu

Abdullah Konak

Information Sciences and

Technology

Penn State Berks

Reading, PA 19610 USA
auk3@psu.edu

<< This paper is included in the Proceedings of IEEE Congress on Evolutionary Computation (CEC), Padua, Italy, Jul. 1823, 2022. >>

Abstract—This paper addresses the economic emission dispatch (EED) problem where the goal is to allocate the power

output of power generation units to satisfy power demand and minimize the cost and emissions simultaneously. We propose

a multiobjective differential evolution algorithm and a reinforcement learning technique to adaptively control the

parameters of differential evolution. Moreover, the proposed approach utilizes mating restriction and preferences in mating

selection to improve search effectiveness and a dynamically controlled mutation to increase the exploration ability. The

proposed ideas and algorithm were examined using four EED test cases. Experimental results showed positive effects of our

proposed methods and the competitive performance of our algorithm.

Keywords—economic dispatch, emission, multiobjective, evolutionary algorithm, adaptive control, reinforcement learning,

parameter control

I. INTRODUCTION

Energy consumption and environmental protection are two important contemporary issues. The Economic Emission Dispatch
(EED) problem aims to allocate the output of power generation units in a power system to minimize the cost and pollutant emissions

simultaneously. In the EED problem, we are given N power generation units, and the output of each unit i (1 i N) is denoted by
Pi. The two objectives are to minimize the generation cost and emissions, which are formulated by (1) and (2), respectively.

𝑓1: 𝑓𝑐𝑜𝑠𝑡 = ∑[𝑎𝑖 + 𝑏𝑖𝑃𝑖 + 𝑐𝑖𝑃𝑖
2 + |𝑑𝑖(sin (𝑒𝑖(𝑃𝑖

𝑚𝑖𝑛 − 𝑃𝑖)))|]

𝑁

𝑖=1

 (1)

𝑓2: 𝑓𝑒𝑚𝑖𝑠𝑠𝑖𝑜𝑛 = ∑[𝛼𝑖 + 𝛽𝑖𝑃𝑖 + 𝛾𝑖𝑃𝑖
2 + 𝜂𝑖exp (𝛿𝑖𝑃𝑖)]

𝑁

𝑖=1

 (2)

In (1) and (2), the values of model coefficients, including ai, bi, and so on, are fixed and known in advance. In some models, the
coefficients di and ei are assumed to be zero, which means that those models do not consider the so-called valve-point effect. In the
EED, there are two main types of constraints. First, the power limit constraints define the feasible range of Pi, as (3) shows. Second,
the power demand constraint requires that the total power satisfy the power demand PD and the power loss PL as given in (4). Some
models do not consider loss and set PL by zero. There are two types of loss models in the literature. This paper adopts Kron’s B-
coefficients formula to calculate the power loss as a quadratic power generation function, as given in (5).

𝑃𝑖
𝑚𝑖𝑛 ≤ 𝑃𝑖 ≤ 𝑃𝑖

𝑚𝑎𝑥 𝑖 = 1, . . . , 𝑁 (3)

∑ 𝑃𝑖 − 𝑃𝐷 − 𝑃𝐿 = 0

𝑁

𝑖=1

 (4)

𝑃𝐿 = ∑ ∑ 𝑃𝑖𝐵𝑖𝑗𝑃𝑗

𝑁

𝑗=1

𝑁

𝑖=1
+ ∑ 𝐵0𝑖

𝑁

𝑖=1
𝑃𝑖 + 𝐵00 (5)

The EED problem aims to minimize the two objective functions simultaneously. When there is some conflict between the cost
and emissions objectives, decision-makers are interested in discovering tradeoffs between the two objectives. A set of solutions
representing such tradeoffs can be found based on the concept of Pareto dominance. A solution x is said to dominate another solution
y if and only if x is better than y in terms of at least one objective and is not worse than y in terms of all objectives. A solution is Pareto
optimal if it is not dominated by any other solution. The projection of all Pareto optimal solutions onto the objective space is called
the Pareto front. Our goal in solving the EED problem is to find or approximate the set of Pareto optimal solutions.

Most approaches to the EED problem in the literature are based on metaheuristics, which are a group of stochastic search
algorithms and are usually inspired by biological or physical phenomena. In this paper, we use an evolutionary algorithm (EA) to
solve the EED problem. The EA is a population-based search algorithm and is thus suitable for simultaneously searching for the set
of Pareto optimal solutions. The EED problem is a continuous, constrained, and multiobjective optimization problem. A simple way
of understanding our algorithm is through how we deal with continuous optimization, constrained optimization, and multiobjective
optimization. The proposed EA is based on differential evolution (DE) [1]. DE has many successful applications, especially in
continuous optimization, but its performance could be sensitive to the parameter setting. Thus, in our algorithm, we apply
reinforcement learning (RL) to adjust DE’s parameters adaptively. As for constraint handling, we adopt a repair mechanism that is
commonly used in the EED literature. Only feasible solutions are allowed to participate in the evolutionary process. Lastly, we apply
the selection mechanism of NSGA-III [2] to identify and keep promising solutions when the two objectives are considered
simultaneously. NSGA-III is the third version of the well-known NSGA algorithm family [3][4]. Using NSGA-III, solutions are
ranked by dominance relationship and evaluated by their distribution in the objective space when they have the same rank.
Dominance-based selection enables an EA to search for the set of Pareto optimal solutions in a single run without requiring to define
objective weights.

The rest of this paper is organized as follows. Section II reviews the related literature, and Section III describes the proposed
adaptive multiobjective DE (called MO-RLDE). Experiments and results are presented in Section IV, and conclusions and future
work are given in Section V.

II. LITERATURE REVIEW

This section reviews the related literature through how the existing studies address continuous, constrained, and multiobjective
optimization problems, which are three aspects of the EED problem.

A. Continuous Optimization

The EED problem includes N real-valued decision variables representing the output of N power generation units to satisfy demand
and minimize the cost and emissions. In the literature, almost all metaheuristic algorithms for the EED problem with N power
generation units encoded solutions as real vectors and searched in an N-dimensional continuous decision space.

One of the common metaheuristics for continuous optimization is Particle Swarm Optimization (PSO). The PSO treats solutions
in a metaphor of flocking birds. Each bird has its own velocity and position. Each bird adjusts its velocity based on its best position
in the search history (pbest) and the best of all pbest (i.e., gbest). Then, it changes its position by its velocity. Wang and Singh [5]
proposed FMOPSO to solve the EED problem. In addition to the classic PSO process, they added a turbulence operator, which was
a kind of mutation operator. They compared their FMOPSO with two other algorithms in solving a 14-unit problem instance, and
their algorithm showed the best result. Liu et al. [6] proposed a cultural quantum-behaved PSO (CMOQPSO). They incorporated the
belief space of the cultural algorithm and the multi-measurement of quantum computing into PSO. Zou et al. [7] proposed NGPSO,
which is featured by random re-initialization for exploration and ignoring the effect of personal best for exploitation.

Another popular metaheuristic algorithm in the field of continuous optimization is differential evolution (DE). DE searches the
decision space by moving solutions according to the difference between solutions directly (without the idea of velocity in PSO).
Besides, DE does selection by comparing the current solutions and new solutions. Wu et al. [8] and Basu [9] proposed two MODEs,
and both adopted classic rand/1/bin operators of DE. Niknam et al. [10] proposed Tribe-MDE, in which they divided the population
into sub-populations (tribes) and evolved them separately, cooperatively, and wholly in three sequential stages. Two important
parameters of DE, F and CR, were encoded into solutions and evolved together during the process. Gong et al. [11] combined PSO
and DE. They took DE as a local optimizer of a small number of solutions located in the least crowded area of the objective space.

Since 2000, many metaheuristic algorithms have been proposed with different metaphors and algorithmic features. These
algorithm were tried to solve the EED, for example, harmony search (HS) [12][13], teaching-learning-based optimization (TLBO)
[14], chemical reaction optimization (CRO) [15], backtracking search algorithm (BSA) [16][17], water cycle algorithm (WCA) [18],
squirrel search algorithm (SSA) [19], grey prediction evolutionary algorithm (GPEA) [19], and slime mould algorithm (SMA) [21].
They provided various ideas/operators to change/move solutions in the decision space.

B. Constrained Optimization

The EED problem commonly includes two kinds of constraints: the power limit constraints, which are boundary constraints on
the decision variables, and the demand constraint, which requires the total generated power to be equal to the total demand plus power
loss. There are three main methods to deal with these constraints in the literature: the penalty method, repair method, and hierarchical
method.

A feasible solution satisfies all constraints; otherwise, it is infeasible and leads to some constraint violation. The penalty method
aggregates the objective value(s) and the amount of constraint violation into a single value as the fitness of a solution. Then, the
solution with a better fitness value is preferred. In NGPSO [7], the authors dealt with the demand constraint by fixing values of (N –
1) decision variables and solving the derived quadratic equation to find the value of the last decision variable. Then, the amount of
violation of the boundary constraints is calculated. Finally, the fitness of a solution is the sum of the objective value and the constraint
violation times a penalty factor.

The repair method attempts to reduce the amount of constraint violations through an iterative procedure. It usually deals with the
boundary constraint by setting the infeasible values of variables to the closest boundary values. Then, the difference between the total
generated power and the demand is calculated. This difference is compensated by modifying the value of a (randomly selected)
decision variable. Next, the boundary constraint is checked for this variable, and the difference in the demand is calculated again.
These steps are repeated until a pre-specified number of trials or a pre-specified allowed error (e.g., 10-5) is reached. MO-DE/PSO,
Tribe-MDE, and CMOQPSO used this repair method.

The hierarchical method hierarchically minimizes constraint violation and objective values. More specifically, this method intends
to minimize constraint violation first and then minimize the objective value when there is no constraint violation. The constrained
domination principle (CDP) of NSGA-II follows the above concept and extends it to multiple objectives. The CDP defines the
dominance relationship between solutions by: (1) when one solution is feasible and the other one is infeasible, the feasible one
dominates the other one; (2) when both solutions are feasible, the standard dominance relationship is applied; (3) when both solutions
are infeasible, the one with smaller constraint violation dominates the other. This method was adopted in FMOPSO and SMODE [22].

Kuk et al. [23] analyzed the impact of constraint handling methods in four multi-objective EAs (MOEAs). They tested the three
methods mentioned above and compared the performance in solving ten test cases. For three MOEAs, the repair method outperformed
the other two methods in solving all ten cases. For the last MOEA, the repair method performed the best in solving small-scale cases.
They also reported that the penalty method had difficulty in finding feasible solutions. In conclusion, they recommended adopting
the repair method.

C. Multiobjective Optimization

The simplest method to deal with multiobjective optimization is to convert multiple objective values into a single one and then
solve the transformed single-objective problem. In BSA [16], after the cost (f1) and emissions (f2) of all solutions are calculated, the

corresponding normalized objective values are calculated by fk = (fk – fkmin)/(fk
max – fk

min), where fkmax and fk
min are the maximum and

minimum values of the kth objective function, respectively. Finally, the fitness of a solution is the weighted sum of the normalized
objective values. NGPSO also adopts this kind of method but uses a different normalization equation. One disadvantage of this
method is that decision-makers need prior knowledge to set the proper value of the objective weights. They may need to try different
weights and run the algorithm several times to get a satisfactory solution or investigate the tradeoff between the objectives. SMODE
also calculates the fitness of solutions by summing the normalized objective values, but it separates the objective space into grids and
collects the solutions with the smallest summation in the grids so that a set of well-spread solutions can be maintained.

While solving a multiobjective optimization problem, a common practice is the dominance-based method. The non-dominated
sorting procedure of NSGA-II is widely used. It classifies the solutions into several ranks based on the dominance relationship. Shortly
speaking, the solutions that are not dominated by any other solution are classified into the first rank; then, temporarily ignoring the

solutions of rank 1, 2, …, (r1), the solutions that are not dominated by any other are classified into the rth rank. A solution x is
regarded as better than another solution y if x has a lower rank. When two solutions have the same rank, they are compared by the
crowding distance, which measures the distance between the two neighboring solutions. The method of NSGA-II was adopted in
several studies on EED [9][23][24]. Wu et al. [8] also used NSGA-II but proposed an entropy-based measure to replace the crowding
distance.

For the metaheuristic algorithms without explicit selection steps (e.g., PSO), dealing with multiobjective optimization focuses on
collecting the set of non-dominated solutions and identifying leading solutions (e.g., personal/global best). Usually, an external
archive is maintained to store the non-dominated solutions that have been found so far during the search process. When the number
of solutions exceeds a pre-specified limit, inferior solutions are removed by considering some diversity measures [5]. The local or
personal leading solution is usually updated when the new solution is not dominated by the original one. The leading global solution
is often (randomly) selected from the archive. Some additional actions such as random expansion [5] and area-based selection [6]
may be applied to lead the population to move toward different parts of the objective space.

III. PROPOSED ALGORITHM (MO-RLDE)

This paper proposes a multiobjective DE to solve the EED problem. In addition to the standard components of an EA, we apply
the RL technique for adaptive control of two important parameters, F and CR, of DE. We call our algorithm MO-RLDE. The details
of MO-RLDE will be presented in the following sub-sections.

A. Solution Encoding and Initialization

To solve the EED problem, we aim to set the output of N power generation units in the power system. Intuitively, we encode a
solution Xj = {Pj1, Pj2, …, PjN} as a real-valued N-dimensional vector. Each solution Xj in the initial population is randomly initialized

by setting power output Pji of generation unit i to a random value within the feasible range [Pi
min, Pi

max] specified in the power limit
constraints (3).

B. Constraint Handling

Every time an infeasible solution is generated by initialization or mutation/crossover, we perform a repair procedure to make the
solution feasible – satisfying both power limit and total demand constraints. To do so, we utilize the repair procedure in [10], which
iteratively adjusts the power output of a randomly selected unit to reduce the violation in the demand constraint until the violation is
small enough. In our algorithm, we set the error threshold by 10-5.

C. Mating Selection

In an EA, mating selection refers to selecting solutions as parents to produce offspring (new solutions). In the canonical DE, each
solution in the population serves as a parent, called the target vector in the terminology of DE, for one time. The most common
operator of DE to produce new solutions is rand/1/bin, which generates a mutant solution based on three different solutions and
exchanges values of some variables between the target and the mutant to get the trial solution, which is the offspring of the target.

There are two implicit selection actions in the above steps: first, each solution is selected exactly once as a parent; second, all
remaining solutions (except the parent) are selected with the same probability of generating the mutant solution. In our algorithm, we
have two modifications. Since it is usually more difficult to find solutions close to the two ends of the Pareto front, solutions closer
to the ends of the Pareto front have a higher probability of being selected as a target solution. We sort the solutions in ascending order
of their cost (f1). Then, we use 2-tournament to select the target solution by preferring the solution with a smaller value of min(tj, Npop

+ 1 tj), where Npop is the population size, and tj denotes the order of solution Xj in the population sorted in the ascending order of f1.
For example, assume that Npop is 10. The solution Xp, whose tp is 1, is preferred over the solution Xq whose tq is 2 since min(1, 11 –
1)=1 is smaller than (2, 11 – 2)=2. Similarly, the solution Xp, whose tp is ten, is preferred over the solution Xq, whose tq is nine, since
min(10, 11 – 10)=1 is smaller than (9, 11 – 9)=2. Our second modification is that only solutions within a neighborhood of a target
solution can be selected to produce the mutant solution. This idea of mating restriction was borrowed from MOEA/D [25]. More
details of this selection approach are described in the following subsection.

D. Mutation and Crossover

We apply the rand/1 mutation in our algorithm. For each target solution, we generate a mutant solution V by V = Xr1 + F(Xr2
Xr3). The basic implementation of rand/1 randomly selects three distinct solutions, Xr1, Xr2, and Xr3, from the whole population. The
parameter F, called the scaling factor, is a real value, which is usually in the range [0, 2]. In multiobjective problems, however,
generating new solutions based on distant solutions in the objective space might reduce the effectiveness of the search [26]. Therefore,
we incorporate the idea of mating restriction; to do so, we use the index value tj of solution Xj in the sorted population. After we select
a target solution, we allow only Nnb solutions whose index values are closest to that of the target solution to produce the mutant
solution. For example, if the index value of the target solution is 4 and Nnb is 5, then only solutions whose index values fall in [2, 3,
4, 5, 6] are allowed. After mutation, we do the binomial crossover to the target and the mutant to generate the trial solution. The
values of the decision variables of the trial solution are taken from the mutant solution with probability CR or the target solution with
probability (1 – CR). The crossover rate, CR, is another important parameter of DE.

The canonical DE completes the generation of a new solution after executing the above mutation and crossover operators. From
preliminary experimental results, we found that the population could converge quickly, and thus we apply the polynomial mutation

[27] to the trial solution. The parameter m of polynomial mutation controls the distribution of the range of mutated values. In our

algorithm, we set the value of m(t) at generation t by

m(t) = m(0)(1 – t/Ngen), (6)

where m(0) is the initial value of m and Ngen is the maximum number of generations. By decreasing the value of m gradually, the
range of the mutated values gets larger and helps explore the search space more effectively.

E. Environmental Selection

In an EA, the environmental selection step determines which solutions survive to the next generation and maintains the population
size. The canonical DE employs a one-by-one environmental selection, that is, the better one of the target solution or the trial solution
survives. This mechanism is straightforward and reasonable in solving single-objective problems. However, when solving
multiobjective problems, it is not easy to decide the better one of two solutions since they usually do not dominate each other.
Therefore, we adopt a population-based environmental selection. In other words, we generate Npop trial solutions and then select Npop

solutions from 2Npop solutions (Npop current solutions from the previous generation plus Npop trial solutions) to survive. We use the

selection mechanism of NSGA-III. Like NSGA and NSGA-II, NSGA-III classifies 2Npop solutions into several ranks. The feature of
NSGA-III is that it sets evenly distributed reference lines in the objective space. Each solution is associated with the closest reference
line. The number of associated solutions serves as a measure of crowdedness. For the solutions of the same rank, those with less
crowdedness have a higher priority to survive. For more details, readers are referred to [2].

F. Reinforcement Learning-based Parameter Control

The scaling factor F and crossover rate CR are two important parameters of DE, and their values usually have a significant impact
on the performance of DE. Parameter tuning, which refers to running the algorithm with different fixed parameter settings, may be
able to find proper parameter values. However, this process takes a lot of computation time. Moreover, sometimes the algorithm may
need different parameter values in various stages of the search process, for example, large F at the beginning and small F at the end.
Furthermore, the best parameter values are usually problem-specific. Different scales and numbers of decision variables may require
different parameter settings. These motivated us to develop a mechanism to control the values of F and CR adaptively.

Reinforcement Learning (RL) is one machine learning technique that helps an agent learn how to respond to the environment
through repeated trials. The agent takes an action and then receives a reward from the environment. Recording the rewards obtained
by taking actions in different states, the agent gradually learns which action can lead to the maximum reward in each state. Using RL
as an adaptive parameter control mechanism of DE, the learning process is like that solutions learn how to choose values of F and
CR based on the results of previous trials. Visutarrom et al. [28] proposed a DE with RL to solve the economic dispatch problem,
which is a single-objective problem. This paper adapted and extended their RL control mechanism to the EED problem with two
objectives. In the following, we explain our approach by defining the RL mechanism's states, actions, and rewards embedded in our
multiobjective DE.

States: As in [28], we consider each solution as an agent and define the current state of a solution based on the relative quality of
solutions in the current population. The idea behind this approach is that the solutions of different levels of quality may need different
parameter values. Our algorithm applies the environmental selection mechanism of NSGA-III to decide which solutions survive. In
the selection process, the solutions of the lower level of domination rank are selected earlier. For the solutions of the last acceptable
level, solutions with less crowdedness are selected first. In other words, the order in which the solutions are selected to survive can
represent the quality of the solutions. We divide the solutions into Nst groups with roughly equal sizes based on this order of solutions.
Solutions in the sth group are said to be in state s. (For example, the best 1/Nst population are in state 1.)

Actions: The action refers to choosing the values of F and CR. An action ajk means that the value of F is randomly selected from

the range [j0.2, (j+1)0.2] and the value of CR is randomly selected from the range [k0.2, (k+1)0.2], where j and k are in [0, 1, 2, 3,

4]. In other words, there are 55 = 25 actions for every state. The Q-table stores the accumulated rewards Q(s, ajk) for all pairs of state
s and action ajk. When a solution is in state s, it selects the action a* corresponding to the largest Q(s, a*) among all 25 actions with

probability (1) and selects a random action in probability , where is a hyperparameter of RL.

Rewards: The reward R(s, a) of an action a reflects how beneficial the action in a state s is. Taking action a means that a target
solution generates a trial solution by using values of F and CR randomly selected from the range specified by a. The reward of the
action depends on the solution quality of the trial solution. If the trial solution survives with state s (s = 1, 2, …, Nst), the reward is

10(Nst s + 1); if the trial solution does not survive to the next generation, the reward is zero. The Q-table is updated by the standard

Q-learning equation in (7), where and are hyperparameters.

𝑄(𝑠, 𝑎) = (1 − 𝛼)𝑄(𝑠, 𝑎) + 𝛼[𝑅(𝑠, 𝑎) + 𝛾 ∙ 𝑚𝑎𝑥𝑎𝑄(𝑠′, 𝑎)] (7)

IV. EXPERIMENTS AND RESULTS

A. Test Cases and Experimental Setting

We examined the effects of the proposed ideas and the performance of our MO-RLDE by four test cases with different scales.
Unit data of test cases BASU6 and BASU10 were taken from [9]; unit data of test case IEEE14 were taken from [17]; unit data of
test cases TW40 were taken from [7]. Table I shows the number of units, power demand, and whether the valve point effect and
power loss are considered.

TABLE I. TEST CASES

Test Case Number of Units Demand Valve Point Effect Loss Considered?

BASU6 6 1200 N Y

BASU10 10 2000 Y Y

IEEE14 14 950 N Y

TW40 40 10500 Y N

Our MO-RLDE has several parameters. The population size (Npop) was fixed by 40 in the experiments in sub-sections BD. The
maximum number of generations (Ngen) was 200 for BASU6 and BASU10, 1000 for IEEE14, and 2000 for TW40, respectively. The

neighborhood size (Nnb) of mating restriction was 10, and the initial value of m of polynomial mutation was 5. The number of states
(Nst) and the initial Q values of the RL-based control mechanism were 4 and 0, respectively.

TABLE II. PARAMETER SETTING OF PROPOSED MO-RLDE

Parameter Initial Value Parameter Initial Value

Npop 40 m(0) 5

Ngen 200/200/1000/2000 Nst 4

Nnb 10 initial Q(s, a) 0

In sub-sections B, C, and D, we examined the effect of the proposed ideas, including the RL-based parameter control, enhanced

mating selection, and adaptive polynomial mutation. We used the inverted generational distance (IGD) to evaluate the quality of the
set of solutions obtained by different algorithm variants. The IGD calculates the average distance from the reference front to the
obtained front. We used the net set of non-dominated solutions among solutions obtained by the compared algorithm variants plus

the solutions obtained by the full version of MO-RLDE with 27 settings of (, ,) as the reference front. (Details will be given in
the following sub-section.)

B. Effect of RL-based Parameter Control Mechanism

In this sub-section, we examine the effect of the RL-based parameter control mechanism. The enhanced mating selection

mechanism and adaptive polynomial mutation were not added in this experiment. We tested 27 (333) algorithm variants with each

of the hyperparameters , , and being set by three values in {0.1, 0.5, 0.9}. For comparison, we also tested 25 algorithm variants
with static values of F and CR, where the values of F and CR were set by five values in {0.1, 0.3, 0.5, 0.7, 0.9}. The number of
variants with adaptive F/CR values and those with static F/CR values are roughly the same (27 vs. 25). Each algorithm variant solved
each test case for ten runs, and the IGD metric assessed the quality of the solutions obtained in each case.

We chose the best variant from the 25 variants with static parameter values and called it Static25Best; we also selected the best
variant from the 27 variants with adaptive parameter control, referred to as RL27Best. As mentioned, each algorithm variant solved
each test case for ten runs. The IGD values of the best and worst runs of each of Static25Best and RL27Best are presented in Table
III. The results show that the two best variants have similar performance.

TABLE III. IGD COMPARISON BETWEEN THE BEST VARIANT OF TWO CR/F CONTROL MECHANISMS

Test Case

Static25Best RL27Best

Best-run

IGD

Worst-run

IGD

Best-run

IGD

Worst-run

IGD

BASU6 0.003 0.004 0.003 0.004

BASU10 0.009 0.011 0.010 0.011

IEEE14 0.011 0.016 0.011 0.013

TW40 0.022 0.031 0.021 0.033

Next, we picked up the best and the worst variants from the 25 variants with static parameter values and from the 27 variants with
adaptive parameter control in terms of the median of IGD values over ten runs. Results are presented in Table IV. We can see that
the best static variant and the best adaptive variant have similar performance, but the worst adaptive variant is better than the worst
static variant, especially in larger problems.

TABLE IV. MEDIAN IGD COMPARISON BETWEEN THE BEST AND WORST VARIANTS OF TWO CR/F CONTROL MECHANISMS

 Static RL

Test Case Best

variant

Worst variant Best

variant

Worst variant

BASU6 0.003 0.005 0.003 0.004

BASU10 0.009 0.013 0.010 0.012

IEEE14 0.012 0.020 0.012 0.014

TW40 0.027 0.140 0.026 0.041

Based on the results of this experiment, we could tune parameters F and CR to find a static algorithm variant with a good
performance. However, the disadvantage of parameter tuning is that we need to spend significant time trying different parameter
values. If the parameter values were not set properly, the performance worsened significantly. (See the IGD values of the best and
worst static variants in Table IV.) We can achieve the same high solution quality using the proposed RL-based adaptive control.
Besides, the adaptive variants show strong robustness and are relatively insensitive to the values of the hyperparameters. All MO-

RLDE algorithm variants adopted RL-based adaptive control in the following two sub-sections. We fixed the values of , , and by
0.9, 0.1, and 0.1, respectively.

C. Effect of Enhanced Mating Selection Mechanism

In this sub-section, we examine the effect of the proposed mating selection mechanism, including a 2-tournament selection that
prefers solutions closer to the ends of the front and mating restriction based on neighborhood. We tested two algorithm variants with
and without the proposed mating selection mechanism. The IGD values of the best and the worst runs of each of the two variants are
presented in Table V. Since test cases BASU6 and BASU10 are relatively easy to solve, here we compared the two variants only by
using test cases IEEE14 and TW40. We present the best objective values (cost and emissions) found by the two variants over ten runs
in Table VI. From Table V, we found that the enhanced mating selection mechanism slightly improved the IGD value in the best case
but may have a negative effect in the worst case. From Table VI, we found that the proposed mechanism was helpful in improving
the extreme solutions at the two ends of the front.

TABLE V. IGD COMPARISON BETWEEN MATING SELECTION MECHANISMS

Test Case

Without enhancement With enhancement

Best

IGD

Worst

IGD

Best

IGD

Worst

IGD

IEEE14 0.011 0.013 0.010 0.012

TW40 0.021 0.031 0.019 0.039

TABLE VI. COST/EMISSIONS COMPARISON BETWEEN MATING SELECTION MECHANISMS

Test Case

Without enhancement With enhancement

Best

cost

Best

emissions

Best

cost

Best

emissions

IEEE14 4303.9621 25.9863 4303.5748 25.5331

TW40 122089.118 178125.765 121719.109 176876.148

D. Effect of Adaptive Polynomial Mutation

In the last experiment, we examined the effect of adaptive polynomial mutation (ADPM), which acts as an extra perturbation in
our algorithm. Again, we tested two algorithm variants with and without ADPM. The IGD values of the best and the worst runs of
each of the two variants are presented in Table VII. The best objective values found by the two variants over ten runs are shown in
Table VIII. We can see that ADPM helps to improve the worst-case performance.

TABLE VII. IGD COMPARISON BETWEEN VARIANTS WITH AND WITHOUT ADAPTIVE POLYNOMIAL MUTATION

Test Case

Without ADPM With ADPM

Best

IGD

Worst

IGD

Best

IGD

Worst

IGD

IEEE14 0.010 0.012 0.011 0.012

TW40 0.019 0.039 0.017 0.024

TABLE VIII. COST/EMISSION COMPARISON BETWEEN VARIANTS WITH AND WITHOUT ADAPTIVE POLYNOMIAL MUTATION

Test Case

Without ADPM With ADPM

Best

cost

Best

emissions

Best

cost

Best

emissions

IEEE14 4303.5748 25.5331 4303.6668 25.4101

TW40 121719.109 176876.148 121534.158 177012.457

E. Comparison with Existing Algorithms

In this sub-section, we compare the performance of MO-RLDE with that of the existing algorithms. We list the compared
algorithms and some related information in Table IX. The first column lists the algorithms and their references. The second column
shows how the algorithm solves the EED problem. If it solves EED by solving multiple converted single-objective problems with
different objective weights, we mark it by SO; otherwise, we mark it by MO. In the following four columns, we present the population
size (top value) and the maximum number of generations (bottom value) that each algorithm used. In [23], Kuk et al. only mentioned
that the stopping criterion is 300,000 function evaluations.

TABLE IX. COMPARED ALGORITHMS AND COMPUTATIONAL BUDGET

Algorithm SO/MO BASU6 BASU10 IEEE14 TW40

NGPSO [7] SO 40
200

40
200

40

800
BSA [16] SO n/a n/a

MOHS [12] MO
20

1000

BSA-NDA [17] MO
20

1000
20

1000

NSGA-II.R [23] MO (300000) (300000)

MO-RLDE MO 40
200

40
200

20
1000

40
2000

Tables X through XIII present the three best solutions obtained by each of the compared algorithms for four test cases, respectively.
The best-cost solution is the solution with the lowest cost, and the best-emissions solution is the solution with the lowest emissions.
The best compromise solution is the solution that achieves the best balance between cost and emissions.

In Tables X and XI, all compared algorithms show very similar performance when solving the two smaller test cases with 6 and
10 units. In Table XII, our MO-RLDE achieves the lowest cost and the lowest emissions among the three tested algorithms. In Table
XIII, NSGA-II.R achieves the lowest cost and NGPSO achieves the lowest emissions. However, they consumed more computational

budget to find the solutions. NSGA-II.R performed 300000 function evaluations, but our MO-RLDE only performed 402000 =

80000 function evaluations. NGPSO performed 40800 = 32000 function evaluations. However, NGPSO is a SO method; hence, it

needs to run three times to get the best cost, emissions, and compromise solutions. In total, it performed 320003 = 96000 function
evaluations.

TABLE X. SOLUTION COMPARISON FOR TEST CASE BASU6

Algorithm Objective value Best cost Best Emissions Best Compromise

BSA
fcost

femissions

63976

1360.1

65992

1240.6

64766.8227

1289.5856

NGPSO
fcost

femissions

63975.7788

1360.0659

65992.3518

1240.6542

n/a

MO-RLDE
fcost

femissions

63975.7782

1360.0654

65993.1048

1240.6592

64729.0025

1292.0096

TABLE XI. SOLUTION COMPARISON FOR TEST CASE BASU10

Algorithm Objective value Best cost Best Emissions Best Compromise

BSA
fcost

femissions

111497.6308

4572.1940

116412.4441

3932.2433

113126.7515

4146.7286

BSA-NDA
fcost

femissions

111498.8712

4563.3844

116395.0552

3932.8879

112807.3733

4188.0926

NGPSO
fcost

femissions

111497.6308

4572.1957

116412.4440

3932.2433

116179.6487

3939.2278

NSGA-II.R
fcost

femissions

111497.63

4572.21

116412.47

3932.24

112856.15

4181.17

MO-RLDE
fcost

femissions

111497.7502

4572.4319

116396.9403

3932.3578

112991.4391

4164.4028

TABLE XII. SOLUTION COMPARISON FOR TEST CASE IEEE14

 Objective value Best cost Best Emissions Best Compromise

MOHS fcost

femissions

4311.55

390.2289

4457.47

72.4220

4358.26

153.7821

BSA-NDA fcost

femissions

4321.5187

248.7270

4541.5267

26.5126

4405.8321

88.8972

MO-RLDE fcost

femissions
4303.7151

382.4276

4545.0061

25.5579

4359.6870

142.2466

TABLE XIII. SOLUTION COMPARISON FOR TEST CASE TW40

 Objective value Best cost Best Emissions Best Compromise

NGPSO fcost

femissions

121513.48

359295.8480

129955.0011

176682.52

129277.6300

177325.4405

NSGA-II.R fcost

femissions
121414.50

356705.57

129973.09

176718.90

125668.93

195668.93

MO-RLDE fcost

femissions

121534.1584

358456.0930

129852.8894

177012.4571

125290.4988

205709.0054

In Tables XXIII, we also found that none of the best compromise solutions dominates one another. Actually, this could be a
long-lasting problem in the EED literature. The EED problem is a multiobjective problem, and the Pareto front is sought. However,
performance comparison in most papers was carried out only based on three solutions (best-cost, best-emissions, and best compromise)
instead of the whole set of non-dominated solutions.

In Table XII, the best compromise solutions of BSA-NDA and MO-RLDE do not dominate each other. This might lead to the
conclusion that the two algorithms behave equally well. However, after we plot the 20 solutions found by both algorithms in Fig. 1,
we can see that the solutions of MO-RLDE dominate the solutions of BSA-NDA in some parts. (The 20 solutions of BSA-NDA were
taken from Table 30 in [17], and the 20 solutions of MO-RLDE were the solutions of the run with the worst IGD value over ten runs.)
We calculated the IGD values of these two solution sets. The IGD value of the solution set of BSA-NDA is 0.034, and the IGD value
of the solution set of MO-RLDE is 0.023. MO-RLDE outperformed BSA-NDA. Again, in Table XIII, the best compromise solutions
of NGPSO and MO-RLDE do not dominate each other. Nevertheless, the distribution of the obtained solutions by the two algorithms
is quite different, as shown in Fig. 2. NGPSO could not find a large part of the set of non-dominated solutions. In all cases, MO-
RLDE was able to discover solutions almost uniformly distributed across the whole spectrum of the Pareto font, indicating its
effectiveness in discovering the tradeoff between the objectives.

The above two examples show that comparing two multiobjective algorithms based on a single compromise solution cannot reflect
the real solution quality of the algorithms. We need the complete list of solutions to apply multiobjective performance indicators such
as IGD. To this end, we provide the solutions obtained by MO-RLDE as downloadable files on the first author’s website.

V. CONCLUSIONS AND FUTURE WORK

This paper proposed an adaptive EA to solve the EED problem. We used DE to generate new solutions for continuous optimization,
NSGA-III for dealing with two objectives simultaneously, and a repair method for constraint handling. In addition, we utilized RL
for adaptive control of parameters of DE, enhanced mating selection in DE by imposing some preferences and restrictions, and applied
an adaptive mutation operator for better exploration of the solution space. The computational studies using the four test cases from
the literature showed that the proposed methods positively improved the robustness and solution quality. The proposed algorithm also
provided competitive results when compared with existing algorithms.

In our future work, we plan to investigate more deeply the components of our algorithm. First, we will try different definitions of
the state in our RL-based control mechanism. Second, we will perform more studies on the effects of the neighborhood size (Nnb) of
mating restriction and the number of states (Nst) of RL. Finally, we will consider using more than one DE mutation strategy. Dynamic
or adaptive control of the above two parameters and mutation strategies will be the main research topic.

Fig. 1. Solutions obtained by BSA-NDA and MO-RLDE for test case IEEE14

(a) solutions of NGPSO (Fig. 7(e) in [7]) (b) solutions of MO-RLDE

Fig. 2. Solutions obtained by NGPSO and MO-RLDE for test case TW40

ACKNOWLDGEMENT

This research is supported by the Ministry of Science and Technology, Taiwan, R.O.C. under Grant no. 110-2221-E-003-017 and
the Pennsylvania State University-National Taiwan Normal University Collaboration Development Fund.

REFERENCES

[1] R. Storn and K. Price, “Differential evolution – a simple and efficient heuristic for global optimization over continuous spaces,” Journal of
Global Optimization, vol. 11, pp. 341359, 1997. [DE]

[2] K. Deb and H. Jain, “An evolutionary many-objective optimization algorithm using reference-point-based non-dominated sorting approach,
part I: solving problems with box constraints,” IEEE Transactions on Evolutionary Computation, vol. 18, no. 4, pp. 577–601, 2014. [NSGA-
III]

[3] N. Srinivas and K. Deb, “Multiobjective optimization using nondominated sorting genetic algorithms,” Evolutionary Computation, vol. 2, no.
3, pp. 221248, 1994. [NSGA]

[4] K. Deb, A. Pratap, S. Agarwal, and T. Meyarivan, “A fast and elitist multiobjective genetic algorithm: NSGA-II,” IEEE Transactions on
Evolutionary Computation, vol. 6, no. 2, pp. 182–197, 2002. [NSGA-II]

[5] L. Wang and C. Singh, “Environmental/economic power dispatch using a fuzzified multi-objective particle swarm optimization algorithm,”
Electric Power Systems Research, vol. 77, pp. 16541664, 2007. [FMOPSO]

[6] T. Liu, L. Jiao, W. Ma, J. Ma, and R. Shang, “Cultural quantum-behaved particle swarm optimization for environmental/economic dispatch,”
Applied Soft Computing, vol. 48, pp. 597611, 2016. [CMOQPSO]

[7] D. Zou, S. Li, Z. Li, and X. Kong, “A new global particle swarm optimization for the economic emission dispatch with or without transmission
losses,” Energy Conversion and Management, vol. 139, pp. 4570, 2017. [NGPSO]

[8] L. H. Wu, Y. N. Wang, X. F. Yuan, and S. W. Zhou, “Environmental/economic power dispatch problem using multi-objective differential
evolution algorithm,” Electric Power Systems Research, vol. 80, pp. 11711181, 2010. [MODE10]

[9] M. Basu, “Economic environmental dispatch using multi-objective differential evolution,” Applied Soft Computing, vol. 11, pp. 28452853,
2011. [BASU-MODE]

[10] T. Niknam, H. D. Maojarrad, and B. B. Firouzi, “A new optimization algorithm for multiobjective economic/emission dispatch,” Electrical
Power and Energy Systems, vol. 46, pp. 283293, 2013. [Tribe-MDE]

[11] D. W. Gong, Y. Zhang, and C. L. Qi, “Environmental/economic power dispatch using a hybrid multi-objective optimization algorithm,”
Electrical Power and Energy Systems, vol. 32, pp. 607614, 2010. [MO-DE/PSO]

[12] S. Sivasubramani and K. S. Swarup, “Environmental/economic dispatch using multi-objective harmony search algorithm,” Electric Power
Systems Research, vol. 81, pp. 17781785, 2011. [MOHS]

[13] B. Jeddi and V. Vahidinasab, “A modified harmony search method for environmental/economic load dispatch of real-world power systems,”
Energy Conversion and Management, vol. 78, pp. 661675, 2014. [MHSA]

[14] P. K. Roy and S. Bhui, “Multi-objective quasi-oppositional teaching learning based optimization for economic emission load dispatch
problem,” Electrical Power and Energy Systems, vol. 53, pp. 937948, 2013. [QOTLBO]

[15] K. Bhattacharjee, A. Bhattacharya, and S. H. nee Dey, “Solution of economic emission load dispatch problems of power systems by real
coded chemical reaction algorithm,” Electrical Power and Energy Systems, vol. 59, pp. 176187, 2014. [RCCRO]

[16] K. Bhattacharjee, A. Bhattacharya, and S. H. nee Dey, “Backtracking search optimization based economic environmental power dispatch
problems,” Electrical Power and Energy Systems, vol. 73, pp. 830842, 2015. [BSA]

[17] M Modiri-Delshad and N. A. Rahim, “Multi-objective backtracking search algorithm for economic emission dispatch problem,” Applied Soft
Computing, vol. 40, pp. 479494, 2016. [BSA-NDA]

[18] M. A. Elhameed and A. A. El-Fergany, “Water cycle algorithm-based economic dispatcher for sequential and simultaneous objectives
including practical constraints,” Applied Soft Computing, vol. 58, p. 145154, 2017. [WCA]

[19] V. P. Sakthivel, M. Suman, and P. D. Sathya, “Combined economic and emission power dispatch problems through multi-objective squirrel
search algorithm,” Applied Soft Computing, vol. 100, 2021. [MOSSA]

[20] Z. Hu, Z. Li, C. Dai, X. Xu, Z. Xiong, and Q. Su, “Multiobjective grey prediction evolution algorithm for environmental/economic dispatch
problem,” IEEE Access, 2020. [MOGPEA]

[21] M. H. Hassan, S. Kamel, L. Abualigah, and A. Eid, “Development and application of slime mould algorithm for optimal economic emission
dispatch,” Expert Systems with Applications, vol. 182, 2021. [ISMA]

[22] B. Y. Qu, J. J. Liang, Y. S. Zhu, Z. Y. Wang, and P. N. Suganthan, “Economic emission dispatch problems with stochastic wind power using
summation based multi-objective evolutionary algorithm,” Information Sciences, vol. 351, pp. 4866, 2016. [SMODE]

[23] J. N. Kuk, R. A. Gonçalves, L. M. Pavelski, S. M. G. S. Venski, C. P. de Almeida, A. T. R. Pozo, “An empirical analysis of constraint
handling on evolutionary multi-objective algorithms for the environmental/economic load dispatch problem,” Expert Systems with
Applications, vol. 165, 2021. [NSGA-II.R]

[24] T. C. Bora, V. C. Mariani, and L. dos S. Coelho, “Multi-objective optimization of the environmental-economic dispatch with reinforcement
learning based on non-dominated sorting genetic algorithm,” Applied Thermal Engineering, vol. 146, pp. 688700, 2019. [NSGA-RL]

[25] Q. Zhang and H. Li, “MOEA/D: A multiobjective evolutionary algorithm based on decomposition,” IEEE Transactions on Evolutionary
Computation, vol. 11, no. 6, pp. 712731, 2007. [MOEA/D]

[26] A. Konak and A. E. Smith, “Efficient optimization of reliable 2-node connected networks: a bi-objective approach,” INFORMS Journal on
Computing, vol. 23, no. 3, pp. 430－445, 2011.

[27] K. Deb and S. Agrawal, “A niched-penalty approach for constraint handling in genetic algorithms,” Artificial Neural Nets and Genetic
Algorithms, 1999. [PM]

[28] T. Visutarrom, T. C. Chiang, A. Konak, and S. Kulturel-Konak, “Reinforcement learning-based differential evolution for solving economic
dispatch problems,” In: Proceedings of IEEE International Conference on Industrial Engineering and Engineering Management, 2020. [RLDE]

