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Abstract—This paper addresses the economic emission dispatch (EED) problem where the goal is to allocate the power 

output of power generation units to satisfy power demand and minimize the cost and emissions simultaneously. We propose 

a multiobjective differential evolution algorithm and a reinforcement learning technique to adaptively control the 

parameters of differential evolution. Moreover, the proposed approach utilizes mating restriction and preferences in mating 

selection to improve search effectiveness and a dynamically controlled mutation to increase the exploration ability. The 

proposed ideas and algorithm were examined using four EED test cases. Experimental results showed positive effects of our 

proposed methods and the competitive performance of our algorithm. 

Keywords—economic dispatch, emission, multiobjective, evolutionary algorithm, adaptive control, reinforcement learning, 

parameter control 

I. INTRODUCTION 

Energy consumption and environmental protection are two important contemporary issues. The Economic Emission Dispatch 
(EED) problem aims to allocate the output of power generation units in a power system to minimize the cost and pollutant emissions 

simultaneously. In the EED problem, we are given N power generation units, and the output of each unit i (1  i  N) is denoted by 
Pi. The two objectives are to minimize the generation cost and emissions, which are formulated by (1) and (2), respectively. 

𝑓1: 𝑓𝑐𝑜𝑠𝑡 = ∑[𝑎𝑖 + 𝑏𝑖𝑃𝑖 + 𝑐𝑖𝑃𝑖
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𝑓2: 𝑓𝑒𝑚𝑖𝑠𝑠𝑖𝑜𝑛 = ∑[𝛼𝑖 + 𝛽𝑖𝑃𝑖 + 𝛾𝑖𝑃𝑖
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In (1) and (2), the values of model coefficients, including ai, bi, and so on, are fixed and known in advance. In some models, the 
coefficients di and ei are assumed to be zero, which means that those models do not consider the so-called valve-point effect. In the 
EED, there are two main types of constraints. First, the power limit constraints define the feasible range of Pi, as (3) shows. Second, 
the power demand constraint requires that the total power satisfy the power demand PD and the power loss PL as given in (4). Some 
models do not consider loss and set PL by zero. There are two types of loss models in the literature. This paper adopts Kron’s B-
coefficients formula to calculate the power loss as a quadratic power generation function, as given in (5). 
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The EED problem aims to minimize the two objective functions simultaneously. When there is some conflict between the cost 
and emissions objectives, decision-makers are interested in discovering tradeoffs between the two objectives. A set of solutions 
representing such tradeoffs can be found based on the concept of Pareto dominance. A solution x is said to dominate another solution 
y if and only if x is better than y in terms of at least one objective and is not worse than y in terms of all objectives. A solution is Pareto 
optimal if it is not dominated by any other solution. The projection of all Pareto optimal solutions onto the objective space is called 
the Pareto front. Our goal in solving the EED problem is to find or approximate the set of Pareto optimal solutions. 

Most approaches to the EED problem in the literature are based on metaheuristics, which are a group of stochastic search 
algorithms and are usually inspired by biological or physical phenomena. In this paper, we use an evolutionary algorithm (EA) to 
solve the EED problem. The EA is a population-based search algorithm and is thus suitable for simultaneously searching for the set 
of Pareto optimal solutions. The EED problem is a continuous, constrained, and multiobjective optimization problem. A simple way 
of understanding our algorithm is through how we deal with continuous optimization, constrained optimization, and multiobjective 
optimization. The proposed EA is based on differential evolution (DE) [1]. DE has many successful applications, especially in 
continuous optimization, but its performance could be sensitive to the parameter setting. Thus, in our algorithm, we apply 
reinforcement learning (RL) to adjust DE’s parameters adaptively. As for constraint handling, we adopt a repair mechanism that is 
commonly used in the EED literature. Only feasible solutions are allowed to participate in the evolutionary process. Lastly, we apply 
the selection mechanism of NSGA-III [2] to identify and keep promising solutions when the two objectives are considered 
simultaneously. NSGA-III is the third version of the well-known NSGA algorithm family [3][4]. Using NSGA-III, solutions are 
ranked by dominance relationship and evaluated by their distribution in the objective space when they have the same rank. 
Dominance-based selection enables an EA to search for the set of Pareto optimal solutions in a single run without requiring to define 
objective weights. 

The rest of this paper is organized as follows. Section II reviews the related literature, and Section III describes the proposed 
adaptive multiobjective DE (called MO-RLDE). Experiments and results are presented in Section IV, and conclusions and future 
work are given in Section V. 

II. LITERATURE REVIEW 

This section reviews the related literature through how the existing studies address continuous, constrained, and multiobjective 
optimization problems, which are three aspects of the EED problem. 

A. Continuous Optimization 

The EED problem includes N real-valued decision variables representing the output of N power generation units to satisfy demand 
and minimize the cost and emissions. In the literature, almost all metaheuristic algorithms for the EED problem with N power 
generation units encoded solutions as real vectors and searched in an N-dimensional continuous decision space. 

One of the common metaheuristics for continuous optimization is Particle Swarm Optimization (PSO). The PSO treats solutions 
in a metaphor of flocking birds. Each bird has its own velocity and position. Each bird adjusts its velocity based on its best position 
in the search history (pbest) and the best of all pbest (i.e., gbest). Then, it changes its position by its velocity. Wang and Singh [5] 
proposed FMOPSO to solve the EED problem. In addition to the classic PSO process, they added a turbulence operator, which was 
a kind of mutation operator. They compared their FMOPSO with two other algorithms in solving a 14-unit problem instance, and 
their algorithm showed the best result. Liu et al. [6] proposed a cultural quantum-behaved PSO (CMOQPSO). They incorporated the 
belief space of the cultural algorithm and the multi-measurement of quantum computing into PSO. Zou et al. [7] proposed NGPSO, 
which is featured by random re-initialization for exploration and ignoring the effect of personal best for exploitation. 

Another popular metaheuristic algorithm in the field of continuous optimization is differential evolution (DE). DE searches the 
decision space by moving solutions according to the difference between solutions directly (without the idea of velocity in PSO). 
Besides, DE does selection by comparing the current solutions and new solutions. Wu et al. [8] and Basu [9] proposed two MODEs, 
and both adopted classic rand/1/bin operators of DE. Niknam et al. [10] proposed Tribe-MDE, in which they divided the population 
into sub-populations (tribes) and evolved them separately, cooperatively, and wholly in three sequential stages. Two important 
parameters of DE, F and CR, were encoded into solutions and evolved together during the process. Gong et al. [11] combined PSO 
and DE. They took DE as a local optimizer of a small number of solutions located in the least crowded area of the objective space. 

Since 2000, many metaheuristic algorithms have been proposed with different metaphors and algorithmic features. These 
algorithm were tried to solve the EED, for example, harmony search (HS) [12][13], teaching-learning-based optimization (TLBO) 
[14], chemical reaction optimization (CRO) [15], backtracking search algorithm (BSA) [16][17], water cycle algorithm (WCA) [18], 
squirrel search algorithm (SSA) [19], grey prediction evolutionary algorithm (GPEA) [19], and slime mould algorithm (SMA) [21]. 
They provided various ideas/operators to change/move solutions in the decision space. 

B. Constrained Optimization 

The EED problem commonly includes two kinds of constraints: the power limit constraints, which are boundary constraints on 
the decision variables, and the demand constraint, which requires the total generated power to be equal to the total demand plus power 
loss. There are three main methods to deal with these constraints in the literature: the penalty method, repair method, and hierarchical 
method. 



A feasible solution satisfies all constraints; otherwise, it is infeasible and leads to some constraint violation. The penalty method 
aggregates the objective value(s) and the amount of constraint violation into a single value as the fitness of a solution. Then, the 
solution with a better fitness value is preferred. In NGPSO [7], the authors dealt with the demand constraint by fixing values of (N – 
1) decision variables and solving the derived quadratic equation to find the value of the last decision variable. Then, the amount of 
violation of the boundary constraints is calculated. Finally, the fitness of a solution is the sum of the objective value and the constraint 
violation times a penalty factor. 

The repair method attempts to reduce the amount of constraint violations through an iterative procedure. It usually deals with the 
boundary constraint by setting the infeasible values of variables to the closest boundary values. Then, the difference between the total 
generated power and the demand is calculated. This difference is compensated by modifying the value of a (randomly selected) 
decision variable. Next, the boundary constraint is checked for this variable, and the difference in the demand is calculated again. 
These steps are repeated until a pre-specified number of trials or a pre-specified allowed error (e.g., 10-5) is reached. MO-DE/PSO, 
Tribe-MDE, and CMOQPSO used this repair method. 

The hierarchical method hierarchically minimizes constraint violation and objective values. More specifically, this method intends 
to minimize constraint violation first and then minimize the objective value when there is no constraint violation. The constrained 
domination principle (CDP) of NSGA-II follows the above concept and extends it to multiple objectives. The CDP defines the 
dominance relationship between solutions by: (1) when one solution is feasible and the other one is infeasible, the feasible one 
dominates the other one; (2) when both solutions are feasible, the standard dominance relationship is applied; (3) when both solutions 
are infeasible, the one with smaller constraint violation dominates the other. This method was adopted in FMOPSO and SMODE [22]. 

Kuk et al. [23] analyzed the impact of constraint handling methods in four multi-objective EAs (MOEAs). They tested the three 
methods mentioned above and compared the performance in solving ten test cases. For three MOEAs, the repair method outperformed 
the other two methods in solving all ten cases. For the last MOEA, the repair method performed the best in solving small-scale cases. 
They also reported that the penalty method had difficulty in finding feasible solutions. In conclusion, they recommended adopting 
the repair method. 

C. Multiobjective Optimization 

The simplest method to deal with multiobjective optimization is to convert multiple objective values into a single one and then 
solve the transformed single-objective problem. In BSA [16], after the cost (f1) and emissions (f2) of all solutions are calculated, the 

corresponding normalized objective values are calculated by fk = (fk – fkmin)/(fk
max – fk

min), where fkmax and fk
min are the maximum and 

minimum values of the kth objective function, respectively. Finally, the fitness of a solution is the weighted sum of the normalized 
objective values. NGPSO also adopts this kind of method but uses a different normalization equation. One disadvantage of this 
method is that decision-makers need prior knowledge to set the proper value of the objective weights. They may need to try different 
weights and run the algorithm several times to get a satisfactory solution or investigate the tradeoff between the objectives. SMODE 
also calculates the fitness of solutions by summing the normalized objective values, but it separates the objective space into grids and 
collects the solutions with the smallest summation in the grids so that a set of well-spread solutions can be maintained. 

While solving a multiobjective optimization problem, a common practice is the dominance-based method. The non-dominated 
sorting procedure of NSGA-II is widely used. It classifies the solutions into several ranks based on the dominance relationship. Shortly 
speaking, the solutions that are not dominated by any other solution are classified into the first rank; then, temporarily ignoring the 

solutions of rank 1, 2, …, (r1), the solutions that are not dominated by any other are classified into the rth rank. A solution x is 
regarded as better than another solution y if x has a lower rank. When two solutions have the same rank, they are compared by the 
crowding distance, which measures the distance between the two neighboring solutions. The method of NSGA-II was adopted in 
several studies on EED [9][23][24]. Wu et al. [8] also used NSGA-II but proposed an entropy-based measure to replace the crowding 
distance. 

For the metaheuristic algorithms without explicit selection steps (e.g., PSO), dealing with multiobjective optimization focuses on 
collecting the set of non-dominated solutions and identifying leading solutions (e.g., personal/global best). Usually, an external 
archive is maintained to store the non-dominated solutions that have been found so far during the search process. When the number 
of solutions exceeds a pre-specified limit, inferior solutions are removed by considering some diversity measures [5]. The local or 
personal leading solution is usually updated when the new solution is not dominated by the original one. The leading global solution 
is often (randomly) selected from the archive. Some additional actions such as random expansion [5] and area-based selection [6] 
may be applied to lead the population to move toward different parts of the objective space. 

III. PROPOSED ALGORITHM (MO-RLDE) 

This paper proposes a multiobjective DE to solve the EED problem. In addition to the standard components of an EA, we apply 
the RL technique for adaptive control of two important parameters, F and CR, of DE. We call our algorithm MO-RLDE. The details 
of MO-RLDE will be presented in the following sub-sections. 

A. Solution Encoding and Initialization 

To solve the EED problem, we aim to set the output of N power generation units in the power system. Intuitively, we encode a 
solution Xj = {Pj1, Pj2, …, PjN} as a real-valued N-dimensional vector. Each solution Xj in the initial population is randomly initialized 



by setting power output Pji of generation unit i to a random value within the feasible range [Pi
min, Pi

max] specified in the power limit 
constraints (3). 

B. Constraint Handling 

Every time an infeasible solution is generated by initialization or mutation/crossover, we perform a repair procedure to make the 
solution feasible – satisfying both power limit and total demand constraints. To do so, we utilize the repair procedure in [10], which 
iteratively adjusts the power output of a randomly selected unit to reduce the violation in the demand constraint until the violation is 
small enough. In our algorithm, we set the error threshold by 10-5. 

C. Mating Selection 

In an EA, mating selection refers to selecting solutions as parents to produce offspring (new solutions). In the canonical DE, each 
solution in the population serves as a parent, called the target vector in the terminology of DE, for one time. The most common 
operator of DE to produce new solutions is rand/1/bin, which generates a mutant solution based on three different solutions and 
exchanges values of some variables between the target and the mutant to get the trial solution, which is the offspring of the target. 

There are two implicit selection actions in the above steps: first, each solution is selected exactly once as a parent; second, all 
remaining solutions (except the parent) are selected with the same probability of generating the mutant solution. In our algorithm, we 
have two modifications. Since it is usually more difficult to find solutions close to the two ends of the Pareto front, solutions closer 
to the ends of the Pareto front have a higher probability of being selected as a target solution. We sort the solutions in ascending order 
of their cost (f1). Then, we use 2-tournament to select the target solution by preferring the solution with a smaller value of min(tj, Npop 

+ 1  tj), where Npop is the population size, and tj denotes the order of solution Xj in the population sorted in the ascending order of f1. 
For example, assume that Npop is 10. The solution Xp, whose tp is 1, is preferred over the solution Xq whose tq is 2 since min(1, 11 – 
1)=1 is smaller than (2, 11 – 2)=2. Similarly, the solution Xp, whose tp is ten, is preferred over the solution Xq, whose tq is nine, since 
min(10, 11 – 10)=1 is smaller than (9, 11 – 9)=2. Our second modification is that only solutions within a neighborhood of a target 
solution can be selected to produce the mutant solution. This idea of mating restriction was borrowed from MOEA/D [25]. More 
details of this selection approach are described in the following subsection. 

D. Mutation and Crossover 

We apply the rand/1 mutation in our algorithm. For each target solution, we generate a mutant solution V by V = Xr1 + F(Xr2  
Xr3). The basic implementation of rand/1 randomly selects three distinct solutions, Xr1, Xr2, and Xr3, from the whole population. The 
parameter F, called the scaling factor, is a real value, which is usually in the range [0, 2]. In multiobjective problems, however, 
generating new solutions based on distant solutions in the objective space might reduce the effectiveness of the search [26]. Therefore, 
we incorporate the idea of mating restriction; to do so, we use the index value tj of solution Xj in the sorted population. After we select 
a target solution, we allow only Nnb solutions whose index values are closest to that of the target solution to produce the mutant 
solution. For example, if the index value of the target solution is 4 and Nnb is 5, then only solutions whose index values fall in [2, 3, 
4, 5, 6] are allowed. After mutation, we do the binomial crossover to the target and the mutant to generate the trial solution. The 
values of the decision variables of the trial solution are taken from the mutant solution with probability CR or the target solution with 
probability (1 – CR). The crossover rate, CR, is another important parameter of DE. 

The canonical DE completes the generation of a new solution after executing the above mutation and crossover operators. From 
preliminary experimental results, we found that the population could converge quickly, and thus we apply the polynomial mutation 

[27] to the trial solution. The parameter m of polynomial mutation controls the distribution of the range of mutated values. In our 

algorithm, we set the value of m(t) at generation t by 

m(t) = m(0)(1 – t/Ngen),                                                                                                                                                       (6) 

where m(0) is the initial value of m and Ngen is the maximum number of generations. By decreasing the value of m gradually, the 
range of the mutated values gets larger and helps explore the search space more effectively. 

E. Environmental Selection 

In an EA, the environmental selection step determines which solutions survive to the next generation and maintains the population 
size. The canonical DE employs a one-by-one environmental selection, that is, the better one of the target solution or the trial solution 
survives. This mechanism is straightforward and reasonable in solving single-objective problems. However, when solving 
multiobjective problems, it is not easy to decide the better one of two solutions since they usually do not dominate each other. 
Therefore, we adopt a population-based environmental selection. In other words, we generate Npop trial solutions and then select Npop 

solutions from 2Npop solutions (Npop current solutions from the previous generation plus Npop trial solutions) to survive. We use the 

selection mechanism of NSGA-III. Like NSGA and NSGA-II, NSGA-III classifies 2Npop solutions into several ranks. The feature of 
NSGA-III is that it sets evenly distributed reference lines in the objective space. Each solution is associated with the closest reference 
line. The number of associated solutions serves as a measure of crowdedness. For the solutions of the same rank, those with less 
crowdedness have a higher priority to survive. For more details, readers are referred to [2]. 



F. Reinforcement Learning-based Parameter Control 

The scaling factor F and crossover rate CR are two important parameters of DE, and their values usually have a significant impact 
on the performance of DE. Parameter tuning, which refers to running the algorithm with different fixed parameter settings, may be 
able to find proper parameter values. However, this process takes a lot of computation time. Moreover, sometimes the algorithm may 
need different parameter values in various stages of the search process, for example, large F at the beginning and small F at the end. 
Furthermore, the best parameter values are usually problem-specific. Different scales and numbers of decision variables may require 
different parameter settings. These motivated us to develop a mechanism to control the values of F and CR adaptively. 

Reinforcement Learning (RL) is one machine learning technique that helps an agent learn how to respond to the environment 
through repeated trials. The agent takes an action and then receives a reward from the environment. Recording the rewards obtained 
by taking actions in different states, the agent gradually learns which action can lead to the maximum reward in each state. Using RL 
as an adaptive parameter control mechanism of DE, the learning process is like that solutions learn how to choose values of F and 
CR based on the results of previous trials. Visutarrom et al. [28] proposed a DE with RL to solve the economic dispatch problem, 
which is a single-objective problem. This paper adapted and extended their RL control mechanism to the EED problem with two 
objectives. In the following, we explain our approach by defining the RL mechanism's states, actions, and rewards embedded in our 
multiobjective DE.  

States: As in [28], we consider each solution as an agent and define the current state of a solution based on the relative quality of 
solutions in the current population. The idea behind this approach is that the solutions of different levels of quality may need different 
parameter values. Our algorithm applies the environmental selection mechanism of NSGA-III to decide which solutions survive. In 
the selection process, the solutions of the lower level of domination rank are selected earlier. For the solutions of the last acceptable 
level, solutions with less crowdedness are selected first. In other words, the order in which the solutions are selected to survive can 
represent the quality of the solutions. We divide the solutions into Nst groups with roughly equal sizes based on this order of solutions. 
Solutions in the sth group are said to be in state s. (For example, the best 1/Nst population are in state 1.) 

Actions: The action refers to choosing the values of F and CR. An action ajk means that the value of F is randomly selected from 

the range [j0.2, (j+1)0.2] and the value of CR is randomly selected from the range [k0.2, (k+1)0.2], where j and k are in [0, 1, 2, 3, 

4]. In other words, there are 55 = 25 actions for every state. The Q-table stores the accumulated rewards Q(s, ajk) for all pairs of state 
s and action ajk. When a solution is in state s, it selects the action a* corresponding to the largest Q(s, a*) among all 25 actions with 

probability (1  ) and selects a random action in probability , where  is a hyperparameter of RL. 

Rewards: The reward R(s, a) of an action a reflects how beneficial the action in a state s is. Taking action a means that a target 
solution generates a trial solution by using values of F and CR randomly selected from the range specified by a. The reward of the 
action depends on the solution quality of the trial solution. If the trial solution survives with state s (s = 1, 2, …, Nst), the reward is 

10(Nst  s + 1); if the trial solution does not survive to the next generation, the reward is zero. The Q-table is updated by the standard 

Q-learning equation in (7), where  and  are hyperparameters. 

𝑄(𝑠, 𝑎) = (1 − 𝛼)𝑄(𝑠, 𝑎) + 𝛼[𝑅(𝑠, 𝑎) + 𝛾 ∙ 𝑚𝑎𝑥𝑎𝑄(𝑠′, 𝑎)] (7) 

IV. EXPERIMENTS AND RESULTS 

A. Test Cases and Experimental Setting 

We examined the effects of the proposed ideas and the performance of our MO-RLDE by four test cases with different scales. 
Unit data of test cases BASU6 and BASU10 were taken from [9]; unit data of test case IEEE14 were taken from [17]; unit data of 
test cases TW40 were taken from [7]. Table I shows the number of units, power demand, and whether the valve point effect and 
power loss are considered. 

TABLE I.   TEST CASES 

Test Case Number of Units Demand Valve Point Effect Loss Considered? 

BASU6 6 1200 N Y 

BASU10 10 2000 Y Y 

IEEE14 14 950 N Y 

TW40 40 10500 Y N 

 

Our MO-RLDE has several parameters. The population size (Npop) was fixed by 40 in the experiments in sub-sections BD. The 
maximum number of generations (Ngen) was 200 for BASU6 and BASU10, 1000 for IEEE14, and 2000 for TW40, respectively. The 

neighborhood size (Nnb) of mating restriction was 10, and the initial value of m of polynomial mutation was 5. The number of states 
(Nst) and the initial Q values of the RL-based control mechanism were 4 and 0, respectively. 

 



TABLE II.  PARAMETER SETTING OF PROPOSED MO-RLDE 

Parameter Initial Value Parameter Initial Value 

Npop 40 m(0) 5 

Ngen 200/200/1000/2000 Nst 4 

Nnb 10 initial Q(s, a) 0 

 
In sub-sections B, C, and D, we examined the effect of the proposed ideas, including the RL-based parameter control, enhanced 

mating selection, and adaptive polynomial mutation. We used the inverted generational distance (IGD) to evaluate the quality of the 
set of solutions obtained by different algorithm variants. The IGD calculates the average distance from the reference front to the 
obtained front. We used the net set of non-dominated solutions among solutions obtained by the compared algorithm variants plus 

the solutions obtained by the full version of MO-RLDE with 27 settings of (, , ) as the reference front. (Details will be given in 
the following sub-section.)  

B. Effect of RL-based Parameter Control Mechanism 

In this sub-section, we examine the effect of the RL-based parameter control mechanism. The enhanced mating selection 

mechanism and adaptive polynomial mutation were not added in this experiment. We tested 27 (333) algorithm variants with each 

of the hyperparameters , , and  being set by three values in {0.1, 0.5, 0.9}. For comparison, we also tested 25 algorithm variants 
with static values of F and CR, where the values of F and CR were set by five values in {0.1, 0.3, 0.5, 0.7, 0.9}. The number of 
variants with adaptive F/CR values and those with static F/CR values are roughly the same (27 vs. 25). Each algorithm variant solved 
each test case for ten runs, and the IGD metric assessed the quality of the solutions obtained in each case. 

We chose the best variant from the 25 variants with static parameter values and called it Static25Best; we also selected the best 
variant from the 27 variants with adaptive parameter control, referred to as RL27Best. As mentioned, each algorithm variant solved 
each test case for ten runs. The IGD values of the best and worst runs of each of Static25Best and RL27Best are presented in Table 
III. The results show that the two best variants have similar performance. 

TABLE III.  IGD COMPARISON BETWEEN THE BEST VARIANT OF TWO CR/F CONTROL MECHANISMS 

Test Case 

Static25Best RL27Best 

Best-run  

IGD 

Worst-run 

IGD 

Best-run  

IGD 

Worst-run 

IGD 

BASU6 0.003 0.004 0.003 0.004 

BASU10 0.009 0.011 0.010 0.011 

IEEE14 0.011 0.016 0.011 0.013 

TW40 0.022 0.031 0.021 0.033 

Next, we picked up the best and the worst variants from the 25 variants with static parameter values and from the 27 variants with 
adaptive parameter control in terms of the median of IGD values over ten runs. Results are presented in Table IV. We can see that 
the best static variant and the best adaptive variant have similar performance, but the worst adaptive variant is better than the worst 
static variant, especially in larger problems. 

TABLE IV.  MEDIAN IGD COMPARISON BETWEEN THE BEST AND WORST VARIANTS OF TWO CR/F CONTROL MECHANISMS 

 Static RL 

Test Case Best  

variant 

Worst variant Best  

variant 

Worst variant 

BASU6 0.003 0.005 0.003 0.004 

BASU10 0.009 0.013 0.010 0.012 

IEEE14 0.012 0.020 0.012 0.014 

TW40 0.027 0.140 0.026 0.041 

Based on the results of this experiment, we could tune parameters F and CR to find a static algorithm variant with a good 
performance. However, the disadvantage of parameter tuning is that we need to spend significant time trying different parameter 
values. If the parameter values were not set properly, the performance worsened significantly. (See the IGD values of the best and 
worst static variants in Table IV.) We can achieve the same high solution quality using the proposed RL-based adaptive control. 
Besides, the adaptive variants show strong robustness and are relatively insensitive to the values of the hyperparameters. All MO-

RLDE algorithm variants adopted RL-based adaptive control in the following two sub-sections. We fixed the values of , , and  by 
0.9, 0.1, and 0.1, respectively. 



C. Effect of Enhanced Mating Selection Mechanism 

In this sub-section, we examine the effect of the proposed mating selection mechanism, including a 2-tournament selection that 
prefers solutions closer to the ends of the front and mating restriction based on neighborhood. We tested two algorithm variants with 
and without the proposed mating selection mechanism. The IGD values of the best and the worst runs of each of the two variants are 
presented in Table V. Since test cases BASU6 and BASU10 are relatively easy to solve, here we compared the two variants only by 
using test cases IEEE14 and TW40. We present the best objective values (cost and emissions) found by the two variants over ten runs 
in Table VI. From Table V, we found that the enhanced mating selection mechanism slightly improved the IGD value in the best case 
but may have a negative effect in the worst case. From Table VI, we found that the proposed mechanism was helpful in improving 
the extreme solutions at the two ends of the front. 

TABLE V.  IGD COMPARISON BETWEEN MATING SELECTION MECHANISMS 

Test Case 

Without enhancement With enhancement 

Best  

IGD 

Worst 

IGD 

Best  

IGD 

Worst 

IGD 

IEEE14 0.011 0.013 0.010 0.012 

TW40 0.021 0.031 0.019 0.039 

TABLE VI.  COST/EMISSIONS COMPARISON BETWEEN MATING SELECTION MECHANISMS 

Test Case 

Without enhancement With enhancement 

Best  

cost 

Best 

emissions 

Best  

cost 

Best 

emissions 

IEEE14 4303.9621 25.9863 4303.5748 25.5331 

TW40 122089.118 178125.765 121719.109 176876.148 

D. Effect of Adaptive Polynomial Mutation 

In the last experiment, we examined the effect of adaptive polynomial mutation (ADPM), which acts as an extra perturbation in 
our algorithm. Again, we tested two algorithm variants with and without ADPM. The IGD values of the best and the worst runs of 
each of the two variants are presented in Table VII. The best objective values found by the two variants over ten runs are shown in 
Table VIII. We can see that ADPM helps to improve the worst-case performance. 

TABLE VII.  IGD COMPARISON BETWEEN VARIANTS WITH AND WITHOUT ADAPTIVE POLYNOMIAL MUTATION 

Test Case 

Without ADPM With ADPM 

Best  

IGD 

Worst 

IGD 

Best  

IGD 

Worst 

IGD 

IEEE14 0.010 0.012 0.011 0.012 

TW40 0.019 0.039 0.017 0.024 

TABLE VIII.  COST/EMISSION COMPARISON BETWEEN VARIANTS WITH AND WITHOUT ADAPTIVE POLYNOMIAL MUTATION 

Test Case 

Without ADPM With ADPM 

Best  

cost 

Best 

emissions 

Best  

cost 

Best 

emissions 

IEEE14 4303.5748 25.5331 4303.6668 25.4101 

TW40 121719.109 176876.148 121534.158 177012.457 

E. Comparison with Existing Algorithms 

In this sub-section, we compare the performance of MO-RLDE with that of the existing algorithms. We list the compared 
algorithms and some related information in Table IX. The first column lists the algorithms and their references. The second column 
shows how the algorithm solves the EED problem. If it solves EED by solving multiple converted single-objective problems with 
different objective weights, we mark it by SO; otherwise, we mark it by MO. In the following four columns, we present the population 
size (top value) and the maximum number of generations (bottom value) that each algorithm used. In [23], Kuk et al. only mentioned 
that the stopping criterion is 300,000 function evaluations. 

  



 

TABLE IX.  COMPARED ALGORITHMS AND COMPUTATIONAL BUDGET 

Algorithm SO/MO BASU6 BASU10 IEEE14 TW40 

NGPSO [7] SO 40 
200 

40 
200 

 
40 

800 
BSA [16]  SO n/a n/a   

MOHS [12] MO   
20 

1000 
 

BSA-NDA [17] MO  
20 

1000 
20 

1000 
 

NSGA-II.R [23] MO  (300000)  (300000) 

MO-RLDE MO 40 
200 

40 
200 

20 
1000 

40 
2000 

Tables X through XIII present the three best solutions obtained by each of the compared algorithms for four test cases, respectively. 
The best-cost solution is the solution with the lowest cost, and the best-emissions solution is the solution with the lowest emissions. 
The best compromise solution is the solution that achieves the best balance between cost and emissions. 

In Tables X and XI, all compared algorithms show very similar performance when solving the two smaller test cases with 6 and 
10 units. In Table XII, our MO-RLDE achieves the lowest cost and the lowest emissions among the three tested algorithms. In Table 
XIII, NSGA-II.R achieves the lowest cost and NGPSO achieves the lowest emissions. However, they consumed more computational 

budget to find the solutions. NSGA-II.R performed 300000 function evaluations, but our MO-RLDE only performed 402000 = 

80000 function evaluations. NGPSO performed 40800 = 32000 function evaluations. However, NGPSO is a SO method; hence, it 

needs to run three times to get the best cost, emissions, and compromise solutions. In total, it performed 320003 = 96000 function 
evaluations. 

TABLE X.  SOLUTION COMPARISON FOR TEST CASE BASU6 

Algorithm Objective value Best cost Best Emissions Best Compromise 

BSA 
fcost 

femissions 

63976 

1360.1 

65992 

1240.6 

64766.8227 

1289.5856 

NGPSO 
fcost 

femissions 

63975.7788 

1360.0659 

65992.3518 

1240.6542 

n/a 

MO-RLDE 
fcost 

femissions 

63975.7782 

1360.0654 

65993.1048 

1240.6592 

64729.0025 

1292.0096 

TABLE XI.  SOLUTION COMPARISON FOR TEST CASE BASU10 

Algorithm Objective value Best cost Best Emissions Best Compromise 

BSA 
fcost 

femissions 

111497.6308 

4572.1940 

116412.4441 

3932.2433 

113126.7515 

4146.7286 

BSA-NDA 
fcost 

femissions 

111498.8712 

4563.3844 

116395.0552 

3932.8879 

112807.3733 

4188.0926 

NGPSO 
fcost 

femissions 

111497.6308 

4572.1957 

116412.4440 

3932.2433 

116179.6487 

3939.2278 

NSGA-II.R 
fcost 

femissions 

111497.63 

4572.21 

116412.47 

3932.24 

112856.15 

4181.17 

MO-RLDE 
fcost 

femissions 

111497.7502 

4572.4319 

116396.9403 

3932.3578 

112991.4391 

4164.4028 

TABLE XII.  SOLUTION COMPARISON FOR TEST CASE IEEE14 

 Objective value Best cost Best Emissions Best Compromise 

MOHS fcost 

femissions 

4311.55 

390.2289 

4457.47 

72.4220 

4358.26 

153.7821 

BSA-NDA fcost 

femissions 

4321.5187 

248.7270 

4541.5267 

26.5126 

4405.8321 

88.8972 

MO-RLDE fcost 

femissions 
4303.7151 

382.4276 

4545.0061 

25.5579 

4359.6870 

142.2466 



TABLE XIII.  SOLUTION COMPARISON FOR TEST CASE TW40 

 Objective value Best cost Best Emissions Best Compromise 

NGPSO fcost 

femissions 

121513.48 

359295.8480 

129955.0011 

176682.52 

129277.6300 

177325.4405 

NSGA-II.R fcost 

femissions 
121414.50 

356705.57 

129973.09 

176718.90 

125668.93 

195668.93 

MO-RLDE fcost 

femissions 

121534.1584 

358456.0930 

129852.8894 

177012.4571 

125290.4988 

205709.0054 

 

In Tables XXIII, we also found that none of the best compromise solutions dominates one another. Actually, this could be a 
long-lasting problem in the EED literature. The EED problem is a multiobjective problem, and the Pareto front is sought. However, 
performance comparison in most papers was carried out only based on three solutions (best-cost, best-emissions, and best compromise) 
instead of the whole set of non-dominated solutions. 

In Table XII, the best compromise solutions of BSA-NDA and MO-RLDE do not dominate each other. This might lead to the 
conclusion that the two algorithms behave equally well. However, after we plot the 20 solutions found by both algorithms in Fig. 1, 
we can see that the solutions of MO-RLDE dominate the solutions of BSA-NDA in some parts. (The 20 solutions of BSA-NDA were 
taken from Table 30 in [17], and the 20 solutions of MO-RLDE were the solutions of the run with the worst IGD value over ten runs.) 
We calculated the IGD values of these two solution sets. The IGD value of the solution set of BSA-NDA is 0.034, and the IGD value 
of the solution set of MO-RLDE is 0.023. MO-RLDE outperformed BSA-NDA. Again, in Table XIII, the best compromise solutions 
of NGPSO and MO-RLDE do not dominate each other. Nevertheless, the distribution of the obtained solutions by the two algorithms 
is quite different, as shown in Fig. 2. NGPSO could not find a large part of the set of non-dominated solutions. In all cases, MO-
RLDE was able to discover solutions almost uniformly distributed across the whole spectrum of the Pareto font, indicating its 
effectiveness in discovering the tradeoff between the objectives.  

The above two examples show that comparing two multiobjective algorithms based on a single compromise solution cannot reflect 
the real solution quality of the algorithms. We need the complete list of solutions to apply multiobjective performance indicators such 
as IGD. To this end, we provide the solutions obtained by MO-RLDE as downloadable files on the first author’s website. 

V. CONCLUSIONS AND FUTURE WORK 

This paper proposed an adaptive EA to solve the EED problem. We used DE to generate new solutions for continuous optimization, 
NSGA-III for dealing with two objectives simultaneously, and a repair method for constraint handling. In addition, we utilized RL 
for adaptive control of parameters of DE, enhanced mating selection in DE by imposing some preferences and restrictions, and applied 
an adaptive mutation operator for better exploration of the solution space. The computational studies using the four test cases from 
the literature showed that the proposed methods positively improved the robustness and solution quality. The proposed algorithm also 
provided competitive results when compared with existing algorithms. 

In our future work, we plan to investigate more deeply the components of our algorithm. First, we will try different definitions of 
the state in our RL-based control mechanism. Second, we will perform more studies on the effects of the neighborhood size (Nnb) of 
mating restriction and the number of states (Nst) of RL. Finally, we will consider using more than one DE mutation strategy. Dynamic 
or adaptive control of the above two parameters and mutation strategies will be the main research topic. 

 

Fig. 1. Solutions obtained by BSA-NDA and MO-RLDE for test case IEEE14 



 

(a) solutions of NGPSO (Fig. 7(e) in [7])                            (b) solutions of MO-RLDE 

Fig. 2. Solutions obtained by NGPSO and MO-RLDE for test case TW40 
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