
An Evolutionary Algorithm with Heuristic Longest Cycle 

Crossover for Solving the Capacitated Vehicle Routing 

Problem 

Thammarsat Visutarrom and Tsung-Che Chiang 

Department of Computer Science and Information Engineering 

National Taiwan Normal University 

Taipei, Taiwan, R.O.C. 

thammarsat@gmail.com, tcchiang@ieee.org 

<< This paper is included in the Proceedings of IEEE Congress on Evolutionary Computation (CEC 2019),  

held in New Zealand during Jun. 11-13, 2019. >>

Abstract—Crossover is one of the most important parts of an evolutionary algorithm (EA) for solving optimization problems. Many 

crossover operators have been proposed for solving the capacitated vehicle routing problem (CVRP), a classical NP-hard problem in the 

field of operations research. This paper aims to improve the search ability of the cycle crossover (CX). The longest cycle selection and the 

nearest neighbor heuristic are utilized to improve the performance. Experimental results show that the proposed heuristic longest cycle 

crossover (HLCX) outperforms the original CX and four other operators. Additionally, we apply a search reduction strategy in the local 

refinement procedure to reduce the computation time at a little cost of solution quality. 
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I. INTRODUCTION 

The vehicle routing problem (VRP) [1] was first introduced by Dantzig and Wright in 1959 [2] as an NP-hard combinatorial 
optimization problem [3]. The VRP is to manage a fleet of vehicles to serve customers under a set of constraints to optimize the 
concerned objectives, for example, the total travel distance. Solving the VRP well is helpful for companies to reduce the transportation 
cost. There are many VRP variants [4], such as the VRP with time windows (VRPTW) and the multi-depot VRP (MDVRP), 
depending on the constraints and objectives. 

The capacitated VRP (CVRP) is a classical variant of VRP. There are M homogeneous vehicles and N customers. The demand 
of customer i is denoted by qi. The maximum capacity (Q) of each vehicle defines the main problem constraints. The total load, i.e., 
the sum of demand of served customers of a vehicle should not exceed Q. There is a single depot, and each vehicle starts and ends 
the route at the depot. Fig. 1 illustrates an example of a CVRP with nine customers and a solution with three vehicles. The distance 
between customers i and j is denoted by dij. The decision variable xijk is 1 if and only if the vehicle k travels from customer i to 
customer j. The objective is to minimize the total travel distance of all vehicles. The mathematical model of this problem can be 
formulated as follows. 
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The transportation cost is calculated by the total travel distance defined in (1). Constraints (2) guarantee that the routes start and 
end at the depot. The number of vehicles is limited in constraint (3). Constraints (4) guarantee that the load of each vehicle does not 
exceed the maximum capacity. Each vehicle must leave after visiting each customer, and each customer can be visited only one time 
by a single vehicle, modeled by constraints (5) and (6), respectively. 

The rest of this paper is organized as follows. Related research is presented in the next section. Section III describes thoroughly 

the proposed algorithm. Experiments and results are discussed in Section IV. Finally, the paper is concluded in the last section. 



 

 
Fig. 1. An example of a CVRP with nine customers and a solution with three vehicles 

II. LITERATURE REVIEW 

The CVRP attracts many researchers after it was introduced. Many approaches including exact, approximation, and metaheuristic 
methods have been proposed in solving the problem [5]. Long computation time required by exact methods  makes many researchers 
turn to apply the approximation and metaheuristic methods [6]. As this paper utilizes the metaheuristic method in solving the CVRP, 
related studies applying metaheuristics are reviewed in this section. 

Tabu search (TS) is one of the first metaheuristic methods utilized to solve NP-hard optimization problems. There are many 
papers about using it to deal with the CVRP. Toth and Vigo [7] combined TS with granular neighborhoods that used only a small 
number of “promising” moves. Their experimental results showed that their strategy was able to provide good solutions within 
acceptable computation time. Cordeau and Maischberger [8] introduced the parallel iterated tabu search together with heuristics to 
search for the optimal solution for different routing problems. They concluded that using heuristics could achieve better performance 
than the use of TS alone. 

Simulated annealing (SA) is another popular algorithm for handling the CVRP. Xiao et al. [9] presented SA for handling different-
sized CVRPs. They integrated variable neighborhood search (VNS) into SA to generate neighboring solutions and improved the 
algorithm performance. SA has also been used to solve other types of VRPs such as the VRPTW [10] and the CVRP for fuel 
optimization [11]. 

Multi-agent optimization algorithms have also been studied. Bin et al. [12] proposed an ant-weight strategy combined with swap 
and 2-opt exchange operators to improve the search performance of ant colony optimization (ACO). Szeto et al. [13] presented an 
artificial bee colony (ABC) algorithm together with several mutation operators including random swaps and inversion for handling 
the CVRP. The results showed that ABC could perform efficiently. 

Evolutionary algorithms (EAs), which are characterized by crossover, mutation, and selection, have shown good search ability in 
solving optimization problems. Prins [14] proposed an EA for solving medium- and large-scale CVRP, and the optimal split method 
was utilized to decode the permutation-encoded chromosomes into routes. The linear order crossover and local search were employed. 
The algorithm found the best-known solutions of many problem instances with little computation time. Nazif and Lee [15] proposed 
a genetic algorithm (GA), in which an optimized crossover together with inversion and swap sequence operators were used. They 
showed that the optimized crossover could be one of the competitive operators. Baker and Ayechew [16] applied the neighborhood 
search with GA to improve search ability and found that their solutions were better than the solutions of TS and SA. 

Crossover is the main operator to generate new (and better) solutions in EAs. Several classical crossover operators, for example, 
two-point crossover [17], partially mapped crossover (PMX) [18], and order crossover (OX) [19], have been proposed to solve 
combinatorial optimization problems in the early times. They are still consistently used, and meanwhile researchers [15][20] 
continued improving the performance of classical operators and developing new operators. 

In addition to the reproduction operator, the initialization procedure is also another important part that can help EAs find high-
quality solutions faster. There are many approaches to generate the initial solutions. The randomization technique is the simplest way 
and was adopted in many papers [15][21][22]. However, the randomization technique usually generates solutions with low quality. 
Thus, some better techniques were proposed. For example, Wang and Lu [19] clustered customers into groups based on polar angles 
and combined the concept of the nearest addition method and the sweep algorithm to generate initial solutions. Shanmugam et al. 
[23] generated half of the initial population by the nearest neighbor heuristic and the other half by randomization. Instead of clustering 
customers based only on polar angles, Tiwari and Chang [24] also considered customer demand during clustering. 

 

III. PROPOSED ALGORITHM 

In this paper, the EA is utilized for solving the CVRP. The whole process of our EA is presented in Table I. Chromosome encoding 
is explained in subsection A. The initialization procedure and chromosome decoding are thoroughly described in subsections B and 
C, respectively. Brief descriptions of the fitness calculation are given in subsection D. Duplicate elimination technique is presented 
in subsection E. Subsection F elaborates our proposed heuristic longest cycle crossover, and subsection G details the local refinement 
procedure. Subsections H and I describe the mutation operator and the 2-opt operator, respectively. 
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TABLE I.  THE PROPOSED EVOLUTIONARY ALGORITHM 

Notations 

P: the current population 

O: the set of offspring solutions 

CT: the set of the best 2NP solutions found so far 

p: parent 

NP: population size 

IMax: Maximum number of iterations 

BS: Best-found solution 
 

Initialization(P, NP) 

for i = 1 to IMax 

O ← ∅ 

P ← DuplicateRemoval(P) 

for j = 1 to NP/2 

 {p1, p2} ← TournamentSelection(P) 

 O ← O ∪ Crossover(p1, p2) 

end 

CT ← Update(P∪O∪CT)                   %Keep the best 2NP solutions 

for j = 1 to 3 

 CT ← LocalRefinement(CT)       

end 

P ← EnvironmentalSelection(CT)       %Return the best NP solutions 

        P ← Mutation(P) 

if i = IMax 

                  BS ← FindBest(P)                       %Take the best solution in P 

 BS ← 2-Opt(BS) 

end 

end 

return BS 

 

A. Chromosome Encoding 

A chromosome encodes a sequence of customers, which represents the order in which customers are visited by vehicles. Each 
element inside the sequence is an integer number from 1 to the number of customers (N). The sequence will be decoded into a set of 
routes, as illustrated in Fig. 1, where 0 denotes the depot and a subsequence between depots represents a route. The detailed steps to 
decode a customer sequence into a set of routes will be described in subsection C. 

B. Initialization 

Customers are separated into groups based on the polar angle. The number of groups is fixed as eight, and the angle of each group 
is 360°/8 = 45°. The first group is located between [0°, 45°), the second group is between [45°, 90°), and so on. Two customer 
sequences are generated by putting groups of customers clockwise and counterclockwise. Such a concept makes customers that are 
close geographically also close in the sequence. The first group that is put to the customer sequence is selected randomly, and its 
customers are also ordered randomly. This helps to increase the diversity of initial solutions. Fig. 2 illustrates the idea of angle-based 
clustering and two examples of initial solutions. 

 

 

Fig. 2. Clustering of customers and generation of initial solutions 
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C. Chromosome Decoding 

The decoding procedure consists of two steps: vehicle assignment and customer sequencing. Each step is described as follows.  

1) Vehicle assignment: this step starts with the first vehicle and checks whether it can serve unassigned customers without 
violating the capacity constraint (see constraints (4)) following the customer sequence. Taking the clockwise sequence in Fig. 2 as 
an example, customer 5 is checked at first, then customers 2, 4, 3, 6, and 1. If the vehicle can serve a customer, the customer is 
assigned to the vehicle; otherwise, the next customer is checked. If there is at least one unassigned customer after checking the whole 
customer sequence, the same procedure is repeated with a new vehicle. 

2) Customer sequencing: After assigning customers to vehicles, we need to determine the route of each vehicle, i.e., the order in 
which each vehicle serves its customers. The greedy insertion heuristic is applied to construct the routes. This step starts with an 
empty route for each vehicle. Then, the customers served by each vehicle are inserted one by one in the order the customers appear 
into the chromosome sequence. Each customer is inserted in the best position, which is the position that incurs the minimal extra 
distance. 

D. Fitness Function 

There are many ways to measure the cost in the CVRP, such as total travel time, fuel consumption, the number of vehicles used, 
and so on. In this paper, total travel distance is the objective function (see equation (1)) and is also taken as the fitness function. The 
smaller the fitness value is, the better the chromosome is. 

E. Duplicate Elimination 

Population diversity is important for an EA to perform with full potential. The existence of duplicate solutions might lead the 
search to get stuck. Here, solutions are regarded as duplicate if they have the same fitness value. These duplicate solutions will be 
replaced by randomly generated new solutions. 

F. Crossover 

The cycle crossover (CX) is one of the most well-known crossover operators in solving sequencing problems [25][26]. However, 
only a few papers about the VRP considered the CX operator [27][28]. From our preliminary experiments, CX did not perform well 
when it was compared with other classical operators like heuristic crossover (HX) or PMX. The results motivated us to investigate 
how to improve the performance of CX. Two improving strategies are proposed in this paper – the longest cycle selection and the 
nearest neighbor heuristic. The longest cycle selection, as the name indicates, picks up the longest cycle of customers (the largest-
sized set of customers whose union of gene positions is the same in both parents) from the parents to relocate in the offspring. It 
intends to cause a sufficiently large difference between parents and offspring. On the other hand, the nearest neighbor heuristic 
relocates the chosen customers by selecting the nearest neighbor. It intends to keep the solution quality (i.e. to keep short travel 
distance) during the big change. We call our improved operator the heuristic longest cycle crossover (HLCX). Detailed steps are 
described in the following: 

1. Select an unmarked customer i randomly from one parent, say p1. Mark i in p1, and let the position of i be pos(i). 

2. Identify the customer j in the position pos(i) in the other parent, say p2. Mark j in p2. 

3. Search for the customer j in p1. Let i = j. Mark i in p1, and let the position of i be pos(i). 

4. Repeat steps 2 and 3, and the procedure ends with a cycle when we meet a marked customer in p1 again. 

5. Repeat steps 1-4 to find all cycles. 

6. Select the longest cycle and copy all customers in the cycle to a reloc array. 

7. Copy the whole customer sequence from parents to the offspring, except the customers in the longest cycle. Thus, there 

will be some empty positions. 

8. Fill in the leftmost empty position by choosing from the reloc array the customer that is closest to the previous customer 

in the sequence. (See the rightmost part in Fig. 3, where customer 9 is chosen to fill in position 4.) Remove the chosen 

customer from the reloc array. 

9. Repeat step 8 until the reloc array is empty. 
 

Note that in step 8 there is a special case. If the first position is empty, the customer from the reloc array that is closest to the next 
customer is chosen since the first position has no previous customer (See the middle part in Fig. 3). In case the second position is 
also empty, the customer in the position of the parent is temporarily used as the next customer.  

 



 

Fig. 3. Heuristic Longest Cycle Crossover (HLCX) 

G. Local Refinement 

EAs are known for their high exploration ability but also for the lack of exploitation ability. Thus, a local refinement is added to 
our algorithm in every generation to improve search ability. Our idea is to refine high-quality solutions and avoid useless computation 
due to doing the same operator to the same solution. Table II presents the pseudo code of the local refinement procedure. 

TABLE II.  LOCAL REFINEMENT PROCEDURE 

Notations 

R: the set of better solutions 

CT: the set of the best 2NP solutions found so far 
NP: population size 

f: objective function, i.e., total distance 

NBi: neighborhood function, NB1 is NEH, NB2 is swap, and NB3 is ejection. 
 

for i = 1 to 3 

R ← ∅ 
j  NP 
for e in CT in ascending order of total distance 

 if all customers in e have been used in local refinement 

                        continue 
                  for x in NBi(e) 

                    if f(x) < f(e) 

                              R  R ∪ {x} 

         j  j  1 

        if j = 0 

                        break 

        end 

        CT = Update(R ∪ CT) 

end 

return CT 
 

 

We maintain CT, the set of the best 2NP solutions found during the search process (no two solutions in CT have the same total 
distance). We check the solutions in CT one by one in ascending order of total distance. Whenever a neighborhood function is applied 
to a solution e, an unused customer is chosen randomly and marked as used. If all customers in e are already used, skip the solution 
e. Neighboring solutions are stored in R if they are better than e. Three neighborhood functions, NEH [29], swap, and ejection, are 
adopted. Fig. 4 illustrates how these three neighborhood functions work. After one neighborhood function is applied to NP solutions 
successfully, we change to the next neighborhood function. Once all three neighborhood functions are finished, the local refinement 
procedure is done. Detailed steps of the neighborhood functions are described in the following. 

NEH: First, an unused customer i is chosen randomly. Then, the set A of the top % customers that are closest to i is identified. 
Finally, neighboring solutions are generated by relocating i in all positions before and after each customer in A. 

Swap: First, an unused customer i is chosen randomly. Let r denote the route to which i belongs. Then, the set A of the top % 

customers that are closest to i from a different route r is identified. Each customer j in A is swapped with i, and j and i are relocated 

in the best position in r and r, respectively. Note that i and j can be swapped only when the capacity constraints are not violated in r 

and r. 

Ejection: First, an unused customer i is chosen randomly. If i is not among the top 10% customers with the highest demand, skip 

doing ejection to e. Let r denote the route to which i belongs. A different route r is chosen randomly. A set B is initialized to be 

empty. Customers j in r are added to B one by one from the highest demand to the lowest demand if the demand of j is not greater 
than the demand of i. The set B stops growing when the total demand of customers in B is not smaller than the demand of i or when 

all customers in r are added to B. Finally, the set B of customers are swapped with customer i if the total demand of B is equal to the 

demand of i. The set B of customers are relocated into the best positions in r, and customer i is relocated into the best position in r. 
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If the total demand of B is not equal to the demand of i, another route is chosen randomly as r again. If it still fails to find a set B 
with equal demand to i, skip doing ejection to the solution e. 

 

Fig. 4. Local Refinement 

H. Mutation 

The mutation operator maintains population diversity and prevents the EA from getting stuck at the local optimum by adding 
(random) perturbation to the solutions. Except the best 30 solutions, 10% of the solutions in the population are selected randomly 
to apply the swap operator, which exchanges two random customers without violating the capacity constraint. 

I. 2-opt  

The 2-opt operator is applied only to the best solution in the population at the last iteration. We aim to use 2-opt to remove the 
crosses in the route to reduce the travel distance. For each route r in the solution, we start from the first link (r1, r2) and check whether 
it crosses any of the following links (r2, r3), (r3, r4), …, until the last link. The symbol ri refers to the ith customer in the route r. If no 
cross is found, we move to the next link (r2, r3) and check whether it crosses any of the following links (r3, r4), (r4, r5), and so on. 
When a cross is found between (ri, ri+1) and (rj, rj+1), we do 2-opt to reverse the sub-route [ri, ri+1, …, rj, rj+1] to [ri, rj, …, ri+1, rj+1]. If 
the new solution (with the partially reversed route) is better, it replaces the original solution. In this case, we move to link (rj+1, rj+2) 
and check the crosses between it and its following links. If the new solution is not better, we undo the 2-opt and keep checking 
whether (ri, ri+1) crosses (rj+1, rj+2), (rj+2, rj+3), and so on.  

IV. EXPERIMENTS AND RESULTS 

A. Benchmark Problems and Parameter Setting 

The performance of the proposed algorithm was tested by the E set of CVRPLIB [1], which was extensively used in the literature. 
The problem set contains 11 problem instances. The number of customers ranges from 20 to 100, and the number of vehicles ranges 
from 3 to 14. 

In all experiments, both the population size and the generation number were set by 100. The crossover rate and mutation rate 
were 1.0 and 0.1, respectively. In the first experiment, six EA variants were tested by using different crossover operators. Mutation, 
local refinement, and 2-opt were not included so that we could focus on the difference performance caused by crossover operators. 
In the second experiment, all operators were included. We examined whether the proposed HLCX still helped to improve algorithm 
performance, and we also want to know the quality gap between solutions found by our algorithm and the best-known solutions. In 
the last experiment, we investigated how we can save computation time and maintain solution quality by limiting the neighborhood 
size in the local refinement procedure. In all experiments, each tested algorithm variant solved each problem instance for thirty times. 

 

B. Experiment 1: Crossover-Only EA 

The HLCX was compared with five well-known operators: heuristic crossover (HX), partially mapped crossover (PMX), 
traditional cycle crossover (CX), one-point crossover (1PX), and two-point crossover (2PX). In Table III, best-known solution, BKS, 
presents the optimal travel distance of each instance obtained from [1]. For each EA variant, Min denotes the minimal total distance 

found over 30 runs, %Gap denotes (Min – BKS)/BKS100%, and Avg denotes the average total distance over 30 runs. 

Table III shows that the proposed HLCX outperforms other five crossover operators in terms of both best-case and average-case 
performance for 10 out of 11 problem instances. The traditional CX is usually the worst performer, but our proposed longest cycle 
selection and nearest neighbor heuristic are able to turn it to be the best performer. When larger-scale problem instances are solved, 

the performance gap can be improved by 25.4% (49.3  23.9 = 25.4) to 35.1% (59.0  23.9 = 35.1). Fig. 5 shows the average 
convergence curves of six EA variants for solving the E-108-k8 instance. In the early stage, HX performs better than HLCX does; 
however, HX gets stuck and is outperformed by HLCX after 30 generations. We also examined the performance of LCX and HCX, 
i.e. the CX with only longest cycle selection and the CX with only nearest neighbor heuristic. The results showed that HLCX performs 
better than LCX and HCX, which means that both proposed ideas are effective. Since crossover is not the computational bottleneck 
of the whole EA, the extra computational effort required by HLCX only slightly increases the total computation time of the whole 
EA by no more than 5%. 
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Fig. 5. The average convergence curves of EAs with six crossover operators for solving the E-108-k8 problem instance 

C. Experiment 2: Complete EA 

This experiment is similar to the previous one, but all operators (mutation, local refinement, and 2-opt) were included. Results 
are summarized in Table IV. By applying all operators, all six EA variants can find the best-known solutions for the first five smaller-
scale instances. For the remaining six larger-scale instances, the EA variant using HLCX found better solutions than the other five 
EA variants except one instance (E-N76-K14). Again, the advantage of the proposed HLCX is confirmed. 

D. Experiment 3: Search Reduction Strategy 

Section III-G mentioned a search reduction strategy when the NEH and swap neighborhood functions are applied – only the top 

% closest customers are considered. In the last experiment, we examined the influences of the strategy. We compared the 

computation time and solution quality of two EA variants with  = 100 and  = 30. Table III summarizes the results. Time and TD 

refer to the average computation time and average total travel distance, respectively. Note that the EA variant with  = 30 here is the 
same as the EA variant using HLCX in the previous experiment. The results show that the search reduction strategy not only saves 
computation time (up to around 25%) but also keeps high solution quality. 

TABLE III.  EFFECT OF THE SEARCH REDUCTION STRATEGY 

  = 100  = 30 Time 

(%) 
TDg (%) 

 Time(s) TD Time(s) TD 

E-n22-k4 19.4 375.0 17.8 375.0 -8.44 0.00 

E-n23-k3 22.0 569.0 21.6 569.0 -1.70 0.00 

E-n30-k3 29.4 535.8 29.1 541.6 -1.30 1.08 

E-n33-k4 32.7 835.8 31.6 835.0 -3.46 -0.10 

E-n51-k5 57.0 525.2 48.8 521.0 -14.35 -0.80 

E-n76-k7 123.1 702.8 99.9 697.1 -18.85 -0.81 

E-n76-k8 123.8 755.1 103.5 743.3 -16.37 -1.56 

E-n76-k10 107.9 865.7 87.3 854.2 -19.10 -1.33 

E-n76-k14 98.3 1056.2 83.8 1053.2 -14.79 -0.28 

E-n101-k8 287.6 844.5 216.7 837.0 -24.67 -0.89 

E-n101-k14 240.0 1130.9 198.4 1124.7 -17.31 -0.55 

V. CONCLUSIONS 

This paper addresses the CVRP by EAs and proposes a crossover operator based on the CX operator. CX is a classical crossover 
operator of EAs in solving combinatorial optimization problems but did not show good performance in solving the CVRP. Two ideas, 
the longest cycle selection and the nearest neighbor heuristic, are proposed to improve its performance. The longest cycle selection 
aims to increase the modifications to the offspring, and the nearest neighbor heuristic intends to utilize domain knowledge to improve 
the quality of the offspring. By comparing the proposed HLCX operator with five crossover operators using 11 public problem 
instances, we confirmed that the HLCX could provide very good performance. This research will continue with two directions: first, 
we will keep improving our algorithm for solving multiobjective and large-scale CVRP instances; second, we will investigate the 
performance of the proposed HLCX in solving other combinatorial optimization problems. 
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TABLE IV.  PERFORMANCE COMPARISON OF SIX CROSSOVER-ONLY EAS 

 BKS 

[30] 

HLCX HX PMX CX 1PX 2PX 

 Min %Gap Avg Min %Gap Avg Min %Gap Avg Min %Gap Avg Min %Gap Avg Min %Gap Avg 

E-N22-K4 375 384 2.4 389.8 381 1.6 381.0 384 2.4 398.3 400 6.7 417.1 384 2.4 413.4 409 9.1 429.5 

E-N23-K3 569 594 4.4 597.1 594 4.4 597.6 596 4.7 597.9 596 4.7 597.5 594 4.4 600 596 4.7 599.8 

E-N30-K3 534 539 0.9 543.1 539 0.9 544.4 542 1.5 558.0 546 2.2 565.7 542 1.5 558.4 560 4.9 582.9 

E-N33-K4 835 836 0.1 844.5 842 0.8 850.5 844 1.1 872.5 872 4.4 902.6 865 3.6 899.4 862 3.2 904.5 

E-N51-K5 521 549 5.4 573.8 587 12.7 602.0 578 10.9 619.8 647 24.2 669.8 588 12.9 660.4 616 18.2 643.9 

E-N76-K7 682 776 13.8 816.4 886 29.9 900.6 888 30.2 938.3 936 37.2 999.2 918 34.6 995.5 851 24.8 948.3 

E-N76-K8 735 846 15.1 881.7 980 33.3 999.6 944 28.4 1012.5 1084 47.5 1142.1 1013 37.8 1079 986 34.1 1061.0 

E-N76-K10 830 906 9.2 985.9 1088 31.1 1130.4 1142 37.6 1195.5 1202 44.8 1278.0 1246 50.1 1281 1142 37.6 1254.8 

E-N76-K14 1021 1154 13.0 1219.0 1325 29.8 1400.3 1434 40.5 1551.2 1495 46.4 1609.4 1528 49.7 1597 1451 42.1 1541.0 

E-N101-K8 815 1001 22.8 1090.9 1132 38.9 1164.3 1173 43.9 1263.4 1266 55.3 1327.0 1241 52.3 1296 1197 46.9 1296.2 

E-N101-K14 1067 1322 23.9 1437.9 1600 50.0 1625.0 1593 49.3 1709.4 1671 56.6 1774.1 1696 59.0 1833 1669 56.4 1765.3 

 

TABLE V.  PERFORMANCE COMPARISON OF SIX COMPLETE EAS 

 BKS 

[30] 

HLCX HX PMX CX 1PX 2PX 

 Min %Gap Avg Min %Gap Avg Min %Gap Avg Min %Gap Avg Min %Gap Avg Min %Gap Avg 

E-N22-K4 375 375 0 375.0 375 0 375.0 375 0 375.0 375 0 375.7 375 0 375.0 375 0 375.0 

E-N23-K3 569 569 0 569.0 569 0 569.0 569 0 569.0 569 0 569.0 569 0 569.0 569 0 569.0 

E-N30-K3 534 534 0 541.6 534 0 535.5 534 0 534.9 534 0 536.4 534 0 535.5 534 0 536.6 

E-N33-K4 835 835 0 835.0 835 0 836.7 835 0 835.4 835 0 835.8 835 0 835.4 835 0 835.0 

E-N51-K5 521 521 0 521.0 521 0 526.6 521 0 523.4 521 0 523.6 521 0 525.2 521 0 523.7 

E-N76-K7 682 692 1.5 697.1 696 2.1 703.2 696 2.1 705.6 699 2.5 702.3 698 2.3 702.3 699 2.5 707.5 

E-N76-K8 735 737 0.3 743.3 745 1.4 750.2 744 1.2 751.4 741 0.8 753.7 740 0.7 752.9 748 1.8 751.3 

E-N76-K10 830 842 1.4 854.2 848 2.2 860.4 844 1.7 859.5 845 1.8 860.7 855 3.0 865.7 849 2.3 862.2 

E-N76-K14 1021 1043 2.2 1053.2 1055 3.3 1066.3 1055 3.3 1066.4 1059 3.7 1070.5 1043 2.2 1063.6 1039 1.8 1062.7 

E-N101-K8 815 827 1.5 837.0 831 2.0 853.0 831 2.0 841.0 840 3.1 849.4 829 1.7 851.0 835 2.5 853.0 

E-N101-K14 1067 1098 2.9 1124.7 1113 4.3 1134.4 1103 3.4 1153.1 1131 6.0 1157.6 1115 4.5 1148.4 1125 5.4 1134.4 

 


