

Modified L-SHADE for Single Objective

Real-Parameter Optimization

Jia-Fong Yeh

Department of Computer Science and

Information Engineering,

National Taiwan Normal University,

Taipei, Taiwan

60647005S@ntnu.edu.tw

Ting-Yu Chen

Department of Computer Science and

Information Engineering,

National Taiwan Normal University,

Taipei, Taiwan

mazer0701@gmail.com

Tsung-Che Chiang

Department of Computer Science and

Information Engineering,

National Taiwan Normal University,

Taipei, Taiwan

tcchiang@ieee.org

<< This paper is included in the Proceedings of IEEE Congress on Evolutionary Computation (CEC 2019),

held in New Zealand during Jun. 11-13, 2019. >>

Abstract—In this paper we address single objective real parameter optimization by using differential evolution (DE). L-SHADE is a

well-known DE with success history-based adaptation and linear population size reduction. We propose a modified L-SHADE (mL-

SHADE), in which three modifications are made: (1) removal of the terminal value, (2) addition of polynomial mutation, and (3) proposal

of a memory perturbation mechanism. Performance of the proposed mL-SHADE is verified by using ten benchmark functions in the

CEC2019 100-Digit Challenge. The results show that mL-SHADE achieves a higher score than seven state-of-the-art adaptive

evolutionary algorithms.

Keywords—differential evolution, adaptive, success history

I. INTRODUCTION

Many real-world problems can be formulated as real parameter optimization problems. Solving a D-dimensional real parameter
optimization problem is to find the best decision vector X = [x1, x2, …, xD] to maximize or minimize an objective function f(X).
Differential evolution (DE) is a kind of evolutionary algorithm (EA) and shows high potential in solving real parameter optimization
problems in the literature. As an EA, DE searches for the optimal solution through repeating crossover, mutation, and selection. A
DE has three parameters, F, CR, and NP, which denotes the scaling factor used in mutation, crossover rate, and the population size.
Values of these parameters have great impact on the performance of DE and thus need to be determined carefully. Since manual
tuning of parameter values is laborious and ineffective, developing DE with the ability of setting parameter values automatically and
adaptively is an attractive and popular research topic.

This research is motivated by the 100-Digit Challenge Competition in CEC2019 [1]. The goal is to develop an algorithm to solve
each of ten given problems to ten digits of accuracy without limit of computation time. In the last decade, many adaptive DE have
been proposed for real-parameter optimization. In this study, we will develop a DE based on a recently proposed DE, called L-
SHADE [2]. The rest of this paper is organized as follows. Section II reviews recent studies on adaptive EAs for solving single
objective real parameter optimization, especially those developed based on L-SHADE. Section III elaborates the proposed mL-
SHADE. Section IV presents experiments and results. Conclusions are made in Section V.

II. LITERATURE REVIEW

The core idea in success-based adaptive DEs is to store successful CR and F values, i.e. the values by which the generated
offspring (trial vector) can replace the parent (target vector), and then use these successful values to adjust the CR and F
values/distributions to be used in later generations. JADE [3] and SaDE [4] are two representative algorithms. As the numeric study
[5] pointed out, SaDE could not deal with the problems that require low and high CR values simultaneously since it only stores a
single mean CR value.

Tanabe and Fukunaga proposed SHADE [6] based on JADE. The main feature of SHADE is to store multiple mean CR/F values
in the history memory. In each generation, the fitness-weighted Lehmer mean of successful CR/F values will update the history
memory in a round-robin way. To generate an offspring, SHADE first randomly selects a pair of CR and F values from the history
memory, say CRr and Fr. Then, an actually used CR/F value is generated by randn(CRr, 0.1)/ randc(Fr, 0.1), where randn and randc
are normal distribution and Cauchy distribution, respectively. Finally, the offspring is generated by the current-to-pbest/1/bin strategy
with the actual CR/F values. In the experiments, the SHADE outperformed several algorithms including JADE and CoDE [7].

Tanabe and Fukunaga later improved the SHADE by a linear population size reduction strategy (LPSR), proposing the L-SHADE
[2]. The population size decreases linearly to four as the number of fitness function evaluation increases. The worst individuals in
the population are removed when the population size decreases. In addition, the memory update mechanism is also modified.

Whenever a zero-value is used to update the CR memory, the memory cell is kept zero. Every time this memory cell is chosen, the
actual CR value is zero, not a value taken from randn(0, 0.1). L-SHADE has very good performance and becomes the basis of many
following algorithms.

Brest et al. [8] proposed iL-SHADE based on L-SHADE. JADE and its descendants all use the cur-to-pbest mutation strategy,
where one individual is randomly selected from the top p% of the current population as the pbest. In iL-SHADE, the value of p begins
with pmax and linearly decreases to pmin according to the number of fitness evaluations consumed. As for the memory update
mechanism, iL-SHADE updates the memory value by the average of the old value and the incoming value. In addition, the last cell
in the memory stores a pair of high CR/F values statically. When this cell is selected, the stored CR/F values are used directly without
taking a value from the normal/Cauchy distributions. Values of other parameters were also adjusted, for example, the initial CR value
was changed from 0.5 to 0.8 and the initial rNinit value (which controls the initial population size) was changed from 18 to 12. iL-
SHADE showed good performance and won the 3rd place in the CEC2016 competition. Brest et al. [9] continued improving iL-
SHADE and proposed jSO. They set bound values of CR and F by deterministic rules based on the number of fitness function
evaluations consumed. Values of some parameters such as initial F values in the history memory and the memory size were changed.
In the CEC2018 competition, jSO won the second place.

The algorithm L-SHADE-EpSin, proposed by Awad et al. [10], is also based on L-SHADE. The control mechanism of F is
divided into two stages. In the first stage, the value of F is generated by two sinusoidal functions; in the second stage, the control
method is the same as that of L-SHADE. As L-SHADE-EpSin is based on L-SHADE, the population size decreases in the
evolutionary process. When the population size reaches 20, ten individuals are generated randomly and then perform Gaussian walks
for 250 iterations. These individuals will replace the worst individuals in the population. In the CEC2016 competition, L-SHADE-
EpSin won the second place. Awad et al. [11] kept improving L-SHADE-EpSin and proposed L-SHADE-cnEpSin. Instead of
randomly selecting between the two sinusoidal functions, they introduced the learning strategy from SaDE to select the sinusoidal
functions. Besides, covariance matrix learning was applied in a certain probability. The local search procedure in L-SHADE-EpSin
was removed. This new algorithm won the third place in the CEC2017 competition.

Stanovov et al. [12] proposed L-SHADE-RSP, which is also an extension of L-SHADE. They introduced the rank selection into
the cur-to-pbest strategy. Specifically, the top p% individuals are selected as the pbest in the probability proportional to their ranks,
not just randomly as in L-SHADE. They also adopted the bounding rule of jSO to control CR. L-SHADE-RSP won the 2nd place in
the CEC2018 competition. The experimental results showed its potential in solving higher dimensional problems.

Kumar et al. [13] proposed EBOwithCMAR, which combines effective butterfly optimizer (EBO) [14] and a covariance matrix
adapted retreat (CMAR) phase. This algorithm divides the population into sub-populations. It also adopts the mechanisms of L-
SHADE and sequential quadratic programming (SEQ). Values of F are generated by tangential approaches. It won the first place in
the CEC2017 competition.

Zhang and Shi [15] proposed the hybrid sampling evolution strategy (HS-ES). It integrates CMA-ES, a multivariate sampling
method, and UMDAc, a univariate sampling method, by a cascade model. UMDAc is executed first, and then CMA-EA is executed.
Based on the results, values of some variables are fixed. At last, UMDAc is executed again. HS-ES combines the advantages of
multivariate and univariate methods and won the first place in the CEC2018 competition.

III. PROPOSED ML-SHADE ALGORITHM

A. Overview

In this paper we propose a modified L-SHADE (mL-SHADE) algorithm. Table I presents the pseudo code of mL-SHADE. Three
modifications are briefly described here:

1) Removal of the “terminal” value: In L-SHADE the terminal value is put in the CR memory when the incoming CR value

is zero. Thereafter, the terminal value cannot be modified, and CR is always set by zero when the terminal value is chosen. We

found that this mechanism is not good for solving some functions in the CEC2019 competition (e.g. f4) and hence removed it. The

removal gives the SHA mechanism more chance to adjust CR to suitable values.

2) Addition of polynomial mutation: We apply the polynomial mutation [16] to the trial vector in probability mr to introduce

randomness and increase diversity. (Check lines 12-17 in Table I.)

3) Proposal of a memory perturbation mechanism: Since we observed that the history memory may keep unchanged for a long

time and cause the search process to get stuck, we do perturbation to the memory after Nstuck generations without update. (Check

lines 38-42 in Table I.)

B. Initialization

The initial population are generated by uniform random initialization within the range of variables, as the rule of CEC2019
competition requires.

TABLE I. PSEUDO CODE OF THE PROPOSED ML-SHADE

 Notations:

D: problem dimension
Ninit: size of the initial population

A: the archive of inferior solutions

Nstuck: the maximum number of generations allowed no memory update
MCR, MF: the history memory of mean CR, F values

H: size of the history memory

SCR, SF, f: the archive of successful CR, F, and fitness improvement
 randn: normal distribution

randc: Cauchy distribution

mr: mutation rate for polynomial mutation

01 𝑔 = 1, 𝑁𝑔 = 𝑁
𝑖𝑛𝑖𝑡, 𝑨 = ;

02 𝑚𝑟 = 0.05, 𝑠𝑡𝑢𝑐𝑘 = 0; k = 1

03 Initialize population 𝑷 = (𝑥1,𝑔,⋯ , 𝑥𝑁,𝑔) randomly;

04 Set all values in 𝑀𝐶𝑅, 𝑀𝐹 to 0.5;

05 while the terminating criteria are not met do

06 𝑆𝐶𝑅 = ∅, 𝑆𝐹 = ∅ ;

07 for 𝑖 = 1 to 𝑁𝑔 do

08 𝑟𝑖 = Select from [1, 𝐻] randomly;

09 𝐶𝑅𝑖,𝑔 = randn𝑖(𝑀𝐶𝑅,𝑟𝑖
, 0.1);

10 𝐹𝑖,𝑔 = randc𝑖(𝑀𝐹,𝑟𝑖
, 0.1);

11 Generate trial vector 𝑢𝑖,𝑔 by current-to-pbest/1/bin;

12 if rand[0,1 ≤ 𝑚𝑟 then

13 𝑝𝑚_𝑢𝑖,𝑔 = PolynomialMutation(𝑢𝑖,𝑔, 1.0/𝐷, 10.0);

14 if 𝑓(𝑝𝑚_𝑢𝑖,𝑔) ≤ 𝑓(𝑢𝑖,𝑔) then

15 𝑢𝑖,𝑔 = 𝑝𝑚_𝑢𝑖,𝑔;

16 end if

17 end if

18 end for

19 for 𝑖 = 1 to 𝑁𝑔 do

20 if 𝑓(𝑢𝑖,𝑔) ≤ 𝑓(𝑥𝑖,𝑔) then

21 𝑥𝑖,𝑔+1 = 𝑢𝑖,𝑔;

22 else

23 𝑥𝑖,𝑔+1 = 𝑥𝑖,𝑔;

24 end if

25 if 𝑓(𝑢𝑖,𝑔) < 𝑓(𝑥𝑖,𝑔) then

26 𝑨 = 𝑨 ∪ {𝑥𝑖,𝑔};

27 𝑆𝐶𝑅 = 𝑆𝐶𝑅 ∪ {𝐶𝑅𝑖,𝑔}, 𝑆𝐹 = 𝑆𝐹 ∪ {𝐹𝑖,𝑔};

28 ∆𝑓= ∆𝑓 ∪ {|𝑓(𝑢𝑖,𝐺) − 𝑓(𝑥𝑖,𝐺)|}
29 end if

30 end for

31 if |𝑨| > |𝑷| then

32 Resize 𝑨 by removing |𝑨| − |𝑷| individuals randomly;

33 end if

34 if 𝑆𝐶𝑅 ≠ ∅ and 𝑆𝐹 ≠ ∅ then

35 Update the kth memory in 𝑀𝐶𝑅 and 𝑀𝐹 by Eq. (4)-(6);

36 k = k mod H + 1;

37 else

38 stuck = stuck + 1;

39 if stuck Nstuck then

40 Perturb the kth memory in 𝑀𝐶𝑅 and 𝑀𝐹 by Eq. (7)-(8);

41 stuck = 0; k = k mod H + 1;

42 end if

43 end if

44 Calculate 𝑁𝑔+1 according to LPSR;

45 if 𝑁𝑔+1 < |𝑷| then

46 Resize 𝑷 by removing |𝑷| − 𝑁𝑔+1 worst individuals;

47 Resize 𝑨 by removing |𝑨| − 𝑁𝑔+1 individuals randomly;

48 end if

49 g = g + 1;

50 end while

C. Mutation Strategy

We use the current-to-pbest/1 mutation to generate the mutant vector vi,g, as defined in (1). Every individual in the population
serves as the target vector xi,g once. The individual xpbest,g is randomly selected from the top p% (in terms of the fitness value) of the
population; the individual xr1,g is selected randomly from the entire population; the individual xr2,g is selected randomly from the
union of the population and the archive of inferior solutions. (When a target vector is replaced by a trial vector, the target vector is
added into the archive.) We ensure that xr1,g and xr2,g are different individuals.

 𝑣𝑖,𝑔 = 𝑥𝑖,𝑔 + 𝐹𝑖 ∙ (𝑥𝑝𝑏𝑒𝑠𝑡,𝑔 − 𝑥𝑖,𝑔) + 𝐹𝑖 ∙ (𝑥𝑟1,𝑔 − 𝑥𝑟2,𝑔)

When the mutation strategy generates values vj,i,g of variables out of the bounds [xj
min, xj

max], we repair the values by the method
of JADE, as presented in (2).

 𝑣𝑗,𝑖,𝑔 = {
(𝑥𝑗

𝑚𝑖𝑛 + 𝑥𝑗,𝑖,𝑔)/2 𝑖𝑓 𝑣𝑗,𝑖,𝑔 < 𝑥𝑗
𝑚𝑖𝑛

(𝑥𝑗
𝑚𝑎𝑥 + 𝑥𝑗,𝑖,𝑔)/2 𝑖𝑓 𝑣𝑗,𝑖,𝑔 > 𝑥𝑗

𝑚𝑎𝑥

D. Crossover

We use the binomial crossover to generate the trial vector ui,g, as defined in (3). The function rand[0, 1) returns a random value
between 0 and 1 (excluding 1). jrand is a random value in [1, D], where D is the problem dimension.

𝑢𝑗,𝑖,𝑔 = {
𝑣𝑗,𝑖,𝑔 𝑖𝑓 𝑟𝑎𝑛𝑑[0,1) ≤ 𝐶𝑅𝑖 or 𝑗 = 𝑗𝑟𝑎𝑛𝑑
𝑥𝑗,𝑖,𝑔 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

E. Selection

After generating a trial vector ui,G from a target vector xi,G by the current-to-pbest/1 mutation and the binomial crossover, xi,G will
be replaced by ui,G if ui,G is not worse than xi,G. Please check lines 20-24 in Table I.

F. Parameter Control

Our algorithm is based on L-SHADE, and we use its success history-based adaption and LPSR strategies. The history memory
MCR and MF stores potential mean values of CR and F. In Table I, lines 8-11 presents how values of CRi,g and Fi,g are obtained based
on the memory to generate new solutions ui,g. We also repair their values by the same method of L-SHADE. When the value of CRi,g
is out of the bound [0, 1], its value is fixed to the closer boundary value. When the value of Fi,g is not greater than zero, we take
another value by the Cauchy distribution again.

We update the history memory in the same way as L-SHADE does, as (4)-(6) show. Every time a trial vector produced by a pair
of CR/F values replaces the target vector, we store the CR and F values in SCR and SF, respectively. We also store the improvement

fk, where k means that it is the kth successful CR/F values. At the end of each generation, we calculate the weight of each successful
CR/F value by (5). Finally, we update the history memory by the weighted Lehmer mean, defined in (6). In (5) and (6), S can denote
SCR or SF, and Sk denotes the kth value in S.

 ∆𝑓𝑘 = |𝑓(𝑢𝑖,𝐺) − 𝑓(𝑥𝑖,𝐺)|

 𝑤𝑘 =
∆𝑓𝑘

∑ ∆𝑓𝑙
|𝑆|
𝑙=1

 𝑚𝑒𝑎𝑛𝑤𝐿(𝑆) =
∑ 𝑤𝑘∙𝑆𝑘

2|𝑆|
𝑘=1

∑ 𝑤𝑘∙𝑆𝑘
|𝑆|
𝑘=1

Recall that we remove the terminal value in L-SHADE. First, when the value of the selected memory MCR,ri is zero, we still
generate CRi,g by randn(0, 0.1). Second, the CR memory with a zero value can still be updated by incoming new values.

As mentioned in Section III-A, we count the number of consecutive generations without updating the history memory. When the
number reaches a predefined threshold Nstuck, we perturb the memory by (7) and (8). The idea is to change the value to the opposite
end. If the original value is small, we change it to a large value.

 𝑀𝐶𝑅,𝑘 = 1.0 − 𝑀𝐶𝑅,𝑘

 𝑀𝐹,𝑘 = 1.0 − 𝑀𝐹,𝑘

G. Terminating Criteria

Our algorithm stops when one of the following two criteria is satisfied: (1) when the error to the optimum (known for each
function in the CEC2019 100-Digit Challenge) is smaller than 10-9, i.e., we get the 10-point score (the perfect score for one test
function) in the challenge; (2) when the maximum number of fitness function evaluation is reached.

IV. EXPERIMENTS AND RESULTS

A. Benchmark Functions

There are ten test functions in the CEC2019 100-Digit Challenge. The optimum value of every tested functions is one. Table II
summarizes the dimensionality and search ranges of these ten functions. Their definitions are included in Appendix.

TABLE II. SCALE OF CEC2019 100-DIGIT CHALLENGE BENCHMARK FUNCTIONS

No. Function Name D Search Range

1 Storn's Chebyshev Polynomial Fitting Problem 9 [-8192, 8192]

2 Inverse Hilbert Matrix Problem 16 [-16384, 16384]
3 Lennard-Jones Minimum Energy Cluster 18 [-4, 4]

4 Rastrigin’s Function 10 [-100, 100]

5 Griewangk’s Function 10 [-100, 100]
6 Weierstrass Function 10 [-100, 100]

7 Modified Schwefel’s Function 10 [-100, 100]

8 Expanded Schaffer’s F6 Function 10 [-100, 100]
9 Happy Cat Function 10 [-100, 100]

10 Ackley Function 10 [-100, 100]

B. Parameter Setting

Since our mL-SHADE is based on L-SHADE, we need to set values for all parameters of L-SHADE. Table III lists our setting.
Values of Ninit, Nmin, H, p, and initial MCR/MF memory were set by the same values in L-SHADE [2]. We call the polynomial mutation

probabilistically and need to set three parameters, mr, pm, and . We did preliminary experiments on rarc, mr, and to determine their
values. We need one more parameter Nstuck in our history memory perturbation mechanism. According to the rule of the CEC2019
100-Digit Challenge, we can have at most two parameters with function-dependent values. Since the value of Nstuck is influential on
the performance, we set its values by functions. Table IV lists its values. The 100-Digit Challenge does not define the limit of
computation time or number of fitness function evaluations. We observed the convergence curves of our mL-SHADE and set the

maximum number of fitness evaluations by 2106.

TABLE III. VALUES OF PARAMETERS IN THE PROPOSED ML-SHADE

Parameter Meaning Value

Ninit size of the initial population 18D
Nmin minimal population size 4
H size of the history memory 6
rarc archive size |A| = round(rarcNinit) 1.0

p required in the cur-to-pbest/1 mutation 0.11
MCR

0/MF
0 initial values of CR/F memory 0.5

mr probability of polynomial mutation 0.05

pm, parameters of polynomial mutation 1/D, 10

MaxNFE maximum number of fitness evaluations 2106

TABLE IV. FUNCTION-SPECIFIC PARAMETER VALUES

No. Nstuck No. Nstuck

1 400 6 400

2 400 7 400

3 6 (same as H) 8 400

4 400 9 6 (same as H)

5 400 10 400

C. Benchmark Algorithms

We compared our mL-SHADE with seven state-of-the-art EAs: HS-ES, LSHADE-RSP, ELSHADE-SPACMA, EBOwithCMAR,
jSO, LSHADE-cnEpSin, and L-SHADE. The first six algorithms were the best performers in the previous CEC2018 and CEC2017
real-parameter competitions. We downloaded the source codes of these algorithms from the organizer’s website [17]. We re-
implemented L-SHADE. Since there is some difference between the rules of previous competitions and of CEC2019 100-Digit
Challenge, we did some small modifications to the codes. First, we removed their stopping criterion that stops when the error to the
optimum is smaller than 10-8. Second, we did some fix in EBOwithCMAR and LSHADE-cnEpSin for the population size: (1) the

archive size is rounded to the nearest integer, for example, it is 1.4189 = 226.8 227 when solving f1; (2) the code of

EBOwithCMAR cannot generate enough CR values (D values are required but only D1 are generated) when the problem dimension
D is an odd number. In this case, we duplicate the last CR value. Third, we fixed the value of parameter Gmax in LSHADE-cnEpSin
by 2163, which was used by LSHADE-cnEpSin to solve 10-D problems.

D. Performance Metric

We evaluated the eight algorithms by the scoring criterion of the CEC2019 100-Digit Challenge [1]. Each algorithm solved each
function by 50 runs. The total number of correct digits Nc in the 25 runs with the lowest function values is counted. The score for a
function is then Nc/25. The perfect score for one function is 10, and the perfect score for the challenge is 100, which is achieved when
the best 25 out of 50 runs for all ten functions give the minimum to 10-digit accuracy.

The minimum for all functions to ten digits of accuracy is 1.000000000. When an algorithm finds solutions with objective values
2.000000000, 1.924235666, and 1.003243567, it scores 0, 1, and 3 points, respectively.

E. Performance Analysis

In Table V, we summarize the number of runs with respect to the number of corrected digits after our mL-SHADE solved ten test
functions for 50 runs. mL-SHADE solved functions f1, f2, f3, and f6 perfectly in all 50 runs. For functions f4, f5, and f10, mL-SHADE
sometimes got stuck but still succeeded in at least 43 of 50 runs. Functions f7, f8, and f9 are difficult to mL-SHADE.

TABLE V. FIFTY RUNS FOR EACH FUNCTION SORTED BY THE NUMBER OF CORRECT DIGITS

No.
Number of correct digits

Score
0 1 2 3 4 5 6 7 8 9 10

1 0 0 0 0 0 0 0 0 0 0 50 10

2 0 0 0 0 0 0 0 0 0 0 50 10
3 0 0 0 0 0 0 0 0 0 0 50 10

4 2 0 0 0 0 0 0 0 0 0 48 10

5 0 0 2 4 0 0 0 0 0 0 44 10
6 0 0 0 0 0 0 0 0 0 0 50 10

7 0 21 19 0 0 0 1 0 0 0 9 5.04

8 1 49 0 0 0 0 0 0 0 0 0 1
9 0 0 46 4 0 0 0 0 0 0 0 2.16

10 7 0 0 0 0 0 0 0 0 0 43 10

Total: 78.2

In Table VI, we present the scores of all eight algorithms for all ten functions. The highest score of each function is marked in
bold. Our mL-SHADE and EBOwithCMAR are the best two algorithms, both got the highest scores for eight functions. In the
experiments, we found that L-SHADE-based algorithms did not perform well in solving f4, which could be caused by the terminal
value in L-SHADE. By removing the terminal value, our mL-SHADE solved f4 successfully. EBOwithCMAR also solved f4 well
since it is not based on L-SHADE. For the three difficult functions f7, f8, and f9, no single algorithm can get the highest score for more
than one of them. It is worth more investigations on the relationship between algorithm design and problem characteristics.

V. CONCLUSIONS

In this paper we proposed an adaptive DE to solve real-parameter optimization problems. We examined the search behaviors of
a recent algorithm, L-SHADE, and then developed a modified version by fixing the observed weakness. We removed the terminal
value to prevent the parameter control mechanism from sticking with zero CR values. We added the polynomial mutation to increase
diversity in the decision space. We also proposed a memory perturbation mechanism to increase diversity in the parameter space.
We tested the proposed mL-SHADE on the ten functions in CEC2019 100-Digit Challenge and compared its performance with seven
state-of-the-art algorithms. Our algorithm got the highest scores in eight out of ten functions and also the highest total score.

In our experiments, we found three functions that are difficult to all tested algorithms. No single algorithm can get the highest
score for more than one of them. We will continue our research to study how different algorithms fit different functions and then to
propose a better integration. Other research directions include developing an adaptive method to adjust the value of Nstuck in our
memory perturbation mechanism and a new method to update the CR/F values in the memory. Last, the mL-SHADE have many
hyper-parameters. We should examine whether performance of mL-SHADE is sensitive to the values of them.

TABLE VI. SCORES OF TESTED ALGORITHMS

No. mL-SHADE L-SHADE ELSHADESPACMA jSO

1 10 10 10 10

2 10 10 10 10

3 10 7.16 5.44 10

4 10 0.24 0.84 3.88
5 10 10 10 10

6 10 10 10 10

7 5.04 1 1.08 1
8 1 1 1.16 1.08

9 2.16 2.04 3 2.12

10 10 10 7.88 10

Score 78.2 61.44 59.4 68.08

No. LSHADE

-RSP

LSHADE

-cnEpSin

EBOwith

CMAR

HS-ES

1 10 10 10 7.6

2 10 10 10 0

3 10 6.12 10 1.72
4 6.76 4.6 10 4.96

5 10 10 10 10

6 10 10 10 10

7 1.36 0.84 0.56 0.16

8 1 1.04 1.68 0.16

9 2.2 2.36 2.08 3

10 10 10 10 10

Score 71.32 64.96 74.32 47.6

REFERENCES

[1] K. V. Price, N. H. Awad, M. Z. Ali, P. N. Suganthan, “Problem definitions and evaluation criteria for the 100-digit challenge special session and competition
on single objective numerical optimization,” Technical Report, Nanyang Technological University, Singapore, November 2018.

[2] R. Tanabe and A. Fukunaga, “Improving the search performance of SHADE using linear population size reduction,” In: Proceedings of IEEE Congress on
Evolutionary Computation (CEC2014), pp. 16581665, 2014. [L-SHADE]

[3] J. Zhang and A. C. Sanderson, “JADE: adaptive differential evolution with optional external archive,” IEEE Transactions on Evolutionary Computation, vol.
13, no. 5, pp. 945–958, 2009. [JADE]

[4] A. K. Qin, V. L. Huang, and P. N. Suganthan, “Differential evolution algorithm with strategy adaptation for global numerical optimization,” IEEE Transactions
on Evolutionary Computation, vol. 13, no. 2, pp. 398–417, 2009. [SaDE]

[5] C. A. Chen and T. C. Chiang, “Adaptive differential evolution: a visual comparison,” In: Proceedings of IEEE Congress on Evolutionary Computation
(CEC2015), pp. 401408, 2015.

[6] R. Tanabe and A. Fukunaga, “Success-history based parameter adaptation for differential evolution,” In: Proceedings of IEEE Congress on Evolutionary
Computation (CEC2013), pp. 71-78, 2014. [SHADE]

[7] Y. Wang, Z. Cai, and Q. Zhang “Differential evolution with composite trial vector generation strategies and control parameters,” IEEE Transactions on
Evolutionary Computation, vol. 15, no. 1, pp. 55–66, 2011. [CoDE]

[8] J. Brest, M. S. Maučec, and B. Bošković, “iL-SHADE: improved LSHADE algorithm for single objective real-parameter optimization,” In: Proceedings of
IEEE Congress on Evolutionary Computation (CEC2016), pp. 1188–1195, 2016. [iL-SHADE]

[9] J. Brest, M. S. Maučec, and B. Bošković, “Single objective real-parameter optimization: algorithm jSO,” In: Proceedings of IEEE Congress on Evolutionary
Computation (CEC2017), pp. 1311–1318, 2017. [jSO]

[10] N.H. Awad, M.Z. Ali, P.N. Suganthan, R.G. Reynolds, “An ensemble sinusoidal parameter adaptation incorporated with L-SHADE for solving CEC2014
benchmark problems,” In: Proceedings of IEEE Congress on Evolutionary Computation (CEC2016), pp. 2958-2965, 2016. [L-SHADE-EpSin]

[11] N.H. Awad, M.Z. Ali, P.N. Suganthan, R.G. Reynolds, “Ensemble sinusoidal differential covariance matrix adaptation with Euclidean neighborhood for
solving CEC2017 benchmark problems,” In: Proceedings of IEEE Congress on Evolutionary Computation (CEC2017), pp. 372-379, 2017. [L-SHADE-
cnEpSin]

[12] V. Stanovov, S. Akhmedova and E. Semenkin, “LSHADE algorithm with rank-based selective pressure strategy for solving CEC 2017 benchmark problems,”
In: Proceedings of IEEE Congress on Evolutionary Computation (CEC2018), pp. 1-8, 2018. [L-SHADE-RSP]

[13] A. Kumar, R. K. Misra and D. Singh, “Improving the local search capability of effective butterfly optimizer using covariance matrix adapted retreat phase,”
In: Proceedings of IEEE Congress on Evolutionary Computation (CEC2017), pp. 1835-1842, 2017. [EBOwithCMAR]

[14] A. Kumar, R. K. Misra, and D. Singh, “Butterfly optimizer,” In: Proceedings of IEEE Workshop on Computational Intelligence: Theories, Applications, and
Future Directions, pp. 1-6, 2015.

[15] G. Zhang and Y. Shi, “Hybrid sampling evolution strategy for solving single objective bound constrained problems,” In: Proceedings of IEEE Congress on
Evolutionary Computation (CEC2018) , pp. 1-7, 2018. [HS-ES]

[16] K. Deb and M. Goyal, “A combined genetic adaptive search (GeneAS) for engineering design,” Computer Science and Informatics, 1996.

[17] Benchmarks for Evaluation of Evolutionary Algorithms, http://www.ntu.edu.sg/home/epnsugan/index_files/cec-benchmarking.htm, accessed on 2019/1/20.

http://www.ntu.edu.sg/home/epnsugan/index_files/cec-benchmarking.htm

APPENDIX

TABLE VII. DEFINITIONS OF CEC2019 100-DIGIT CHALLENGE BENCHMARK FUNCTIONS

Storn's Chebyshev Polynomial Fitting Problem 𝑓1(x) = 𝑝1 + 𝑝2 + 𝑝3,

𝑝1 = {
(𝑢 − 𝑑)2 𝑖𝑓 𝑢 < 𝑑,
0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒;

 𝑢 =∑𝑥𝑗(1.2)
𝐷−𝑗

𝐷

𝑗=1

 𝑝2 = {
(𝑣 − 𝑑)2 𝑖𝑓 𝑣 < 𝑑,
0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒;

 𝑣 =∑𝑥𝑗(−1.2)
𝐷−𝑗

𝐷

𝑗=1

𝑝𝑘 = {

(𝑤𝑘 − 1)
2 𝑖𝑓𝑤𝑘 > 1

(𝑤𝑘 + 1)
2 𝑖𝑓𝑤𝑘 < 1

0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒;

 𝑤𝑘 =∑𝑥𝑗 (
2𝑘

𝑚
− 1)

𝐷−𝑗𝐷

𝑗=1

𝑝3 =∑𝑝𝑘

𝑚

𝑘=0

, 𝑘 = 0,1,… ,𝑚, 𝑚 = 32𝐷.

𝑑 = 72.661 for 𝐷 = 9
Inverse Hilbert Matrix Problem

𝑓2(x) =∑∑|𝑤𝑖,𝑘|

𝑛

𝑘=1

𝑛

𝑖=1

(𝑤𝑖,𝑘) = 𝐖 = 𝐇𝐙 − 𝐈, 𝐈 = [

1 0
0 1

… 0
… 0

⋮ ⋮
0 0

⋱ ⋮
… 1

]

𝐇 = (ℎ𝑖,𝑘), ℎ𝑖,𝑘 =
1

𝑖 + 𝑘 − 1
, 𝑖, 𝑘 = 1,2, … , 𝑛, 𝑛 = √𝐷

𝐙 = (𝑧𝑖,𝑘), 𝑧𝑖,𝑘 = 𝑥𝑖+𝑛(𝑘−1)

Lennard-Jones Minimum Energy Cluster

𝑓3(x) = 12.7120622568+∑ ∑ (
1

𝑑𝑖,𝑗
2 −

2

𝑑𝑖,𝑗
)

𝑛

𝑗=𝑖+1

𝑛−1

𝑖=1

,

𝑑𝑖,𝑗 = (∑ (𝑥3𝑖+𝑘−2 − 𝑥3𝑗+𝑘−2)
2

2

𝑘=0
)3, 𝑛 = 𝐷/3

Rastrigin’s Function

𝑓4(x) =∑(𝑥𝑖
2 − 10 cos(2𝜋𝑥𝑖) + 10)

𝐷

𝑖=1

Griewangk’s Function

𝑓5(x) =∑
𝑥𝑖
2

4000
−∏cos(

𝑥𝑖

√𝑖
)

𝐷

𝑖=1

+ 1

𝐷

𝑖=1

Weierstrass Function

𝑓6(𝑥) =∑(∑[𝑎𝑘 cos(2𝜋𝑏𝑘(𝑥𝑖 + 0.5))]

𝑘𝑚𝑎𝑥

𝑘=0

)−𝐷 ∑ 𝑎𝑘 cos(𝜋𝑏𝑘)

𝑘𝑚𝑎𝑥

𝑘=0

𝐷

𝑖=1

𝑎 = 0.5, 𝑏 = 3, 𝑘𝑚𝑎𝑥 = 20
Modified Schwefel’s Function

𝑓7(𝑥) = 418.9829𝐷 −∑𝑔(𝑧𝑖)

𝐷

𝑖=1

𝑧𝑖 = 𝑥𝑖 + 420.9687462275036

𝑔(𝑧𝑖) =

{

𝑧𝑖 sin(|𝑧𝑖|

1 2⁄) 𝑖𝑓 |𝑧𝑖| ≤ 500

(500 − 𝑚𝑜𝑑(𝑧𝑖 , 500)) sin (√|500 − 𝑚𝑜𝑑(𝑧𝑖 , 500)|) −
(𝑧𝑖 − 500)

2

10000𝐷
 𝑖𝑓 𝑧𝑖 > 500

(𝑚𝑜𝑑(|𝑧𝑖|, 500) − 500) sin (√|𝑚𝑜𝑑(𝑧𝑖 , 500) − 500|) −
(𝑧𝑖 + 500)

2

10000𝐷
 𝑖𝑓 𝑧𝑖 < −500

Expanded Schaffer’s F6 Function 𝑓8(𝑥) = 𝑔(𝑥1, 𝑥2) + 𝑔(𝑥2, 𝑥3)…+ 𝑔(𝑥𝐷−1, 𝑥𝐷) + 𝑔(𝑥𝐷, 𝑥1)

𝑔(𝑥, 𝑦) = 0.5 +
sin2(√𝑥2 + 𝑦2) − 0.5

(1 + 0.001(𝑥2 + 𝑦2))
2

Happy Cat Function

𝑓9(𝑥) = |∑𝑥𝑖
2 −𝐷

𝐷

𝑖=1

|

1/4

+ (0.5∑𝑥𝑖
2

𝐷

𝑖=1

+∑𝑥𝑖

𝐷

𝑖=1

) 𝐷⁄ + 0.5

Ackley Function

𝑓10(𝑥) = −20𝑒𝑥𝑝

(

 0.2√
1

𝐷
∑𝑥𝑖

2

𝐷

𝑖=1
)

 − 𝑒𝑥𝑝(
1

𝐷
∑cos(2𝜋𝑥𝑖)

𝐷

𝑖=1

)+ 20 + 𝑒

