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Abstract 

Economic dispatch (ED) has received considerable interest in the field of energy management and 

optimization. The problem aims to determine the most cost-effective power allocation strategy that 

satisfies the power demand and all physical constraints of the power system. To solve this problem, we 

propose an algorithm based on differential evolution and adopt a hybrid mutation strategy, a linear 

population size reduction mechanism, and an improved single-unit repair mechanism. Experimental 

results confirmed that these mechanisms are useful for performance improvement. The proposed 

algorithm (L-HMDE) showed good performance when compared with more than 90 algorithms in 

solving 22 test cases. It could provide high-quality solutions stably and efficiently. In addition to 

designing a good algorithm, we present a review of over 100 papers and highlight their algorithm features. 

We also provide a comprehensive collection of test cases in the literature. Through careful examination 

and verification, data coefficients of these test cases and solutions to them are included in this paper as a 

useful reference for researchers who are interested in this problem. 

Keywords: Economic dispatch, Differential evolution, Hybrid mutation strategy, Linear population size 
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1. The Economic Dispatch Problem 

Energy management has garnered significant attention in contemporary times, reflecting an 

increasing interest in energy sustainability [1]. Multiple research domains are now acknowledging the 

energy management as a pivotal factor in their analysis and resolution [2]. In the domains of industrial 

and power plant operation, effective power allocation strategies are crucial to enhance a power system 

to reach its full potential with the minimal operating cost. One of the fundamental challenges in the field 

of power management is the economic dispatch (ED) problem. It is a constrained continuous 

optimization problem that aims to allocate power output of generators to meet the power demand and 

minimize the generation cost. 

In the ED problem, a power system with NG generators needs to generate power output while 

satisfying operational constraints. The objective function Fc is mathematically formulated as a convex 

(1) or a nonconvex (2) quadratic function, which presents the operating cost incurred by the consumption 

of fossil fuel in the power system. In the convex objective function, the variable Pj denotes the power 

output, and aj, bj and, cj are the cost coefficients of the jth generator. The landscape of the solution space 

is a smooth curve when the objective function is convex [3].  
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Nevertheless, the convex function might not represent the nature of all power systems. The objective 

function of several ED test cases introduces a sine function, which represents the valve-point effect of 

the power system, as shown in (2) [4]. The variables dj and ej are the cost coefficients of the valve-point 

effect, and Pj
min is the minimal power output that the jth generator must generate. The non-convexity 

changes the landscape from a smooth curve to a rugged curve with multiple local minima. Fig. 1 

illustrates the landscape, where the horizontal axes are the power output of two different power generators, 

and the vertical axis represents the total operating cost. 

𝑚𝑖𝑛∑𝐹c(𝑃𝑗)

𝑁𝐺

𝑗

=∑(𝑎𝑗 + 𝑏𝑗𝑃𝑗 + 𝑐𝑗𝑃𝑗
2 + |𝑑𝑗 (𝑠𝑖𝑛 (𝑒𝑗(𝑃𝑗

min − 𝑃𝑗)))|)

𝑁𝐺

𝑗=1

 
(2) 

https://doi.org/10.1016/j.asoc.2023.110891


Economic dispatch using metaheuristics: Algorithms, problems, and solutions, ASC 2024   2 
 

  
Fig. 1. Illustration of the landscape of the ED problem with the 

objective function in (2) 
Fig. 2. Illustration of the landscape of the ED problem with the 

objective function in (2) and prohibited zones in (8) 

Four operational constraints are typically considered to reflect the problem's nature, including power 

balance, power limitation, ramping rate, and prohibited zone constraints. The power balance is the only 

equality constraint in the problem, and the other three are inequality constraints. 

The power balance constraint (3) requires total power output to be equal to the sum of power demand 

PD and the transmission loss PL of the power system. The transmission loss PL is calculated by Kron’s 

loss formula (4) [5], which can be ignored if there is no power loss in the system. The variables Bgh, B0g, 

and B00 are the loss coefficients. Note that if the loss coefficient is presented in the MVA base format [6], 

it must be transformed into the actual values by (5) before loss calculation [7]−[8]. The variable Bgh (p.u), 

B0g (p.u), and B00 (p.u) are the loss coefficient in the MVA format, and MVAbase is the base MVA value. For 

example, if the loss coefficient is presented with the 100-MVA base capacity [6], Bgh must be divided by 

100, and B00 (p.u) must be multiplied by 100. The power limitation constraint (6) requires the power output 

Pj to lie between the minimal output Pj
min and the maximal output Pj

max of the jth generator. Constraints 

(3) and (6) are included in all test cases. 
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𝐵𝑔ℎ = 𝐵𝑔ℎ (p.u) 𝑀𝑉𝐴𝑏𝑎𝑠𝑒⁄ , 𝐵0𝑔 = 𝐵0𝑔 (p.u), 𝐵00 = 𝐵00 (p.u) ∙𝑀𝑉𝐴𝑏𝑎𝑠𝑒 (5) 
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The ramping rate and prohibited zone constraints are included in some problem models. The ramping 

rate constraint (7) is involved in the ED problem when the power system does not allow power generators 

to change the output too much between two consecutive periods [6]. The operating boundary of the 

current period is controlled by the power output Pj
0 in the previous period and the specified maximum 

decrement DRj and increment URj of the output of the jth generator. 
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The prohibited zone constraint (8) is applied to the problem to avoid unavailable power output ranges 

due to instability or physical issues [6]. The variables Pl and Pu denote the lower and upper boundaries 

of the prohibited zones, and NZ denotes the number of prohibited zones. Fig. 2 illustrates the 

discontinuity of the solution space caused by the prohibited zones. 
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The objective functions can be explained as a piecewise quadratic function (9) if any power generator 

requires multiple fuel types to generate different levels of power [9]. The cost coefficients aj,k, bj,k, cj,k, 

dj,k, and ej,k vary with different fuel types, where the variable K is the number of fuel types (and power 

levels). The variables Pj,k
min and Pj,k

max are the minimal and maximal power output of each fuel type. The 

sine function is excluded from the problem when the valve-point effect does not happen in the power 

system [10]. This kind of problem model concerns not only power allocation but also the most economic 

fuel type. 
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The ED model can be adapted further to many additional challenging problems depending on the 

power system components and inquisitive objective functions. We briefly review four primary problems 

extended from the ED problem model as a roadmap for subsequent further research. 

1. The problem of multi-area economic dispatch (MAED) [11]−[13] lies in the operating cost 

minimization of the power system in multiple interconnected areas. The generating power can 

be transferred from one to other areas through tie-lines (connecting power wires across different 

areas). Apart from the conventional constraints of the ED problem, the MAED problem also 

considers a tie-line flow limits constraint to restrict the power flow capacity across different 

areas, maintaining the security and reliability of the power system. 

2. The combined heat and power economic dispatch problem (CHPED) [14]−[17] aims to increase 

the power generation capacity of the power system. In practice, the conventional thermal power 

system wastes a certain amount of energy in the form of heat during the power generation 

process. Combined heat and power (CHP) systems are integrated into the thermal power system, 

serving as cogeneration units to convert the wasted heat to electrical power. The CHP system's 

heat balance and capacity limitation are included in the problem model, where they are the 

physical constraints of CHP for power generation. The objective function of the CHPED 

problem is to minimize the operating cost of the whole power system by satisfying the 

constraints of the thermal and CHP systems. 

3. The dynamic economic dispatch (DED) [18]−[20] problem is an extensive practical ED problem 

that determines the most cost-effective allocation of the power output of generators to meet 

varying power demands across time intervals. The DED problem's complexity is upon time 

interval, as it directly controls the problem's dimensionality. The ramping rate is a security 

constraint typically included in the DED problem. The constraint regulates the rate at which the 

generator changes its power output between consecutive periods to maintain the reliability of 

the power system. 

4. The economic emission dispatch (EED) [21]−[23] problem has received much more attention 

due to the increasing awareness of contemporary global warming. Apart from the operating cost 

objective function of the ED problem, pollution emission level is integrated as a second 

objective function of the problems to verify an environmental impact from the power system. 

In the EED problem, both objective functions are minimized simultaneously, while they may 

be conflicting in nature. Therefore, the EED problem can be classified as multi-objective 

optimization, seeking non-dominated solutions. Furthermore, the EED problem can combine 

with renewable resources [24]−[25], such as wind and solar energy systems, to reduce pollution 

emissions from the thermal power system. 

The ED problem is itself important and challenging. Investigations into the ED problem provide 

high practical value since the ED problem serves as the basis of many extended problems as mentioned 

above. In the past decades, many research studies have addressed the ED problem. Abbas et al. [26] −[27] 

reviewed PSO-based approaches to the ED problem, and Jebaraj et al. [28] reviewed DE-based 

approaches. These surveys only included papers published before 2017. A recent survey by Lolla et al. 

[29] covered newer studies but still included only 20 papers published during 2018−2020 and no paper 

after 2020. In addition, we also lack of a work that collects data sets and solutions as a valid reference 

for researchers in this domain. The lack of a benchmark set also affects the completeness of experiments 

in the past literature. In this paper, we aim to fill these research gaps. The contributions of this paper are 

listed as follows: 
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1. A review based on algorithmic analysis: We review about 150 papers (about 90 papers 

published within recent ten years) that addressed the ED problem. We summarize the focused 

algorithmic components in these studies. This helps researchers to know what has been done 

and what may be done in the future. 

2. A comprehensive collection of test cases: In the literature on the ED problem, there are more 

than ten test cases and more than 20 sub-cases in total. There is no collection of these test 

cases, and thus sometimes experiments were carried out with different/wrong test cases, which 

may result in misleading performance comparison results. In this paper, we make a 

comprehensive collection of test cases and their model coefficients. We will make these test 

cases public and downloadable for the convenient use of other researchers. 

3. A simple but effective solver: We propose an algorithm called L-HMDE based on differential 

evolution (DE). It incorporates a hybrid mutation strategy, a linear population size reduction 

mechanism, and an improved repair mechanism. Although these components are not totally 

new, our integration makes the whole algorithm a simple but effective solver to the ED 

problem. 

4. A complete and trustful performance comparison between algorithms: As mentioned, due to 

the lack of a collection of test cases, it is difficult for researchers in this domain to do a 

complete performance verification of their proposed algorithms. In most studies, the proposed 

algorithms were evaluated by one to three test cases. In this paper, we collect and verify 

solutions in past studies. Then, the performance of our algorithm is verified by comparing it 

with algorithms from more than 50 papers using more than 20 test cases. Together with the 

collected test cases, these solutions can be trustful and useful benchmarks. 

The remaining of this paper is organized as follows. Section 2 presents a review of papers on the ED 

problem. Section 3 thoroughly describes the proposed L-HMDE. Section 4 presents the ED test cases. 

Section 5 presents experiments, results, and discussions. Section 6 concludes this paper and gives future 

research directions. 

2. Literature Review 

The ED problem with the convex objective function and operating boundary constraint might be 

solvable by deterministic approaches [30]−[32]. However, they might not be applicable for dealing with 

other ED characteristics like non-convexity or discontinuity. The Lagrangian approach, such as Lambda 

iteration, might provide an infeasible solution or get stuck in local minima because of improper initial 

values [33]−[35]. Dynamic programming might suffer from the curse of dimensionality in solving large-

scale ED problems [36]. Linear programming has difficulty in solving the problem model with the 

transmission loss and prohibited zones [37]. In view of these difficulties, these approaches require 

problem model transformation or modification to improve the searching ability in solving the ED 

problem [37]−[40]. Metaheuristics are a promising approach to overcome these challenges. Over years, 

metaheuristics have been introduced for solving the ED problem in many studies. This section aims to 

give a literature review of metaheuristic algorithms for the ED problem, categorized based on the 

algorithm design and the connection between their proposed strategies. 

Particle swarm optimization (PSO) [41]−[42] and DE [43] have gained considerable attention in 

solving the ED problem due to the ease of implementation and good performance. We review research 

studies related to DE and PSO separately in sub-sections 2.1 and 2.2, respectively. Sub-section 2.3 offers 

a brief review of other algorithms for solving the ED problem. Furthermore, the widely used constraint 

handling mechanisms for the ED problem are discussed in detail in sub-section 0. A summary of the 

essential features in solving the ED problem can be reviewed in Table 1. 

2.1 Differential evolution 

2.1.1 Solution reproduction mechanism 

● Operator modification: the mutation and crossover operators serve DE in reproducing new 

solutions. Some studies introduced novel mutation strategies to enrich DE’s capability of solving the ED 

problem. Amjady and Sharifzadeh [44] modified the mutation operator and created mutant vectors with 

the guidance of a group of elite solutions. Modiri-Delshad et al. [45]−[46] presented a backtracking 

search algorithm (BSA) analogous to the standard DE. BSA employed similar crossover and selection 
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operators of a standard DE. A mutant vector was generated through current and preceding solutions stored 

in the historical table. BSA provided high-quality solutions of small- and medium-scale test cases. 

● Hybrid mutation strategy: several studies showed an advantage of the hybrid mutation strategy in 

enhancing the performance of DE. Coelho et al. [47] applied the belief space concept of the cultural 

algorithm as a selection criterion to select between the rand/1 operator or the best/1 operator. Zou et al. 

[48] hybridized the rand/1 and rand/2 mutation operators based on probability selection. The chance to 

select the rand/2 operator was reduced throughout the search process. The worst half of the population 

was reinitialized to escape from local optima when it had no progress for a specified duration. Their 

proposed algorithm achieved better performance than other modified DEs in small- and medium-scale 

test cases. In [49] the mutation operators were selected based on quality and the number of improvement 

failures of each solution. Neto et al. [50] adopted self-adaptive DE (SaDE) as a local optimizer in the 

continuous-greedy randomized adaptive search procedure (C-GRASP) to enhance search performance. 

In SaDE, the rand/1 or rand/2 mutation operators were adaptively selected to create a new solution based 

on the probability calculated from the survival rate of new solutions. The proposed algorithm reached 

better solution quality over standard C-GRASP in small- to large-scale test cases. 

● Hybrid DE with other algorithms: several studies hybridized DE with other algorithms. In 

[51]−[52], they proposed hybrid frameworks that combined DE with PSO. PSO's mechanisms were 

employed to prevent premature convergence of DE. The hybrid algorithm provided promising results in 

solving a wide range of ED test cases. Xiong et al. [53] embedded DE operators and the Lévy flight 

function into biogeography-based optimization (BBO) to balance the exploitation and exploration. In 

their study, BBO parameters were controlled by a cosine function. Their algorithm outperformed the 

standard BBO [54] and other existing algorithms in solving small- and medium-scale test cases. Wang 

and Li [55] incorporated DE operators into the harmony search (HS) algorithm (DHS) to increase the 

global and local search capability. DHS performed effectively in solving small- and medium-scale test 

cases. Yang et al. [56] adapted the DE operators into Firefly Algorithm (FA) to enhance the searching 

ability. Their experimental results showed that the algorithm obtained better solutions quality than the 

standard FA in several ED test cases. Balamurugan and Subramanian [57] introduced a hybrid integer-

coded DE with dynamic programming (ICDEDP) in solving the multiple-fuel ED problem. They adopted 

an integer encoding scheme to represent the fuel types of generators. The operating cost of each solution 

was minimized by dynamic programming. Liu et al. [58] incorporated the DE algorithm with the gain-

sharing knowledge-based algorithm (GSK) to balance local and global searchability. In each iteration, 

the population was randomly divided into two sub-populations and assigned to the DE and GSK operators. 

At the end of each iteration, all sub-populations were combined together to share searching experiences 

for each other. 

● Multiple group search: an advantage of DE with multiple group search was discussed in [59]−[62]; 

the whole population was divided into multiple groups to improve the searching ability. Reddy and 

Vaisakh [59]−[60] proposed a shuffled DE (SDE) for tackling ED problems. A new solution was 

generated through the best and random solutions in the same group to maintain global and local search 

capability. SDE showed superior performance over existing algorithms in small- and medium-scale test 

cases. The concept of colonic competition was taken into DE (CCDE) by Ghasemi et al. [61]. The 

weakest group gradually reduces its size to increase the convergence rate. Li et al. [62] applied different 

mutation operators to different groups and proposed MPDE. The group without improvement was 

allowed to use solutions from other groups to create new solutions. MPDE obtained the optimal solution 

in small- to large-scale test cases. 

2.1.2 Parameter control mechanism 

The scaling factor and crossover rate are key parameters that influence the performance of DE. The 

scaling factor affects the moving distance of the mutant vector, and the crossover rate controls the number 

of exchanged variable values. Noman and Iba [63] investigated the parameter sensitivity of DE by fixing 

the parameter values during the search process. They showed that the standard DE performed effectively 

with small scaling factor and crossover rate in solving small- and medium-scale test cases.  

● Dynamic parameter adjustment mechanism: Many efforts indicated an improvement in DE by 

using dynamic parameter control mechanisms, which included linear functions [44], [48], uniform 

randomization [48], [61], or chaotic map functions [64]. Li et al. [62] applied a normal distribution to 

control DE's parameters; the mean value linearly decreased every iteration, and the standard deviation 

was fixed as a constant value. In Basu's study [65], a normal distribution was also utilized to adjust the 

scaling factor. The mean value was zero, and the standard deviation was calculated by the ratio of the 

operating cost of the current to that of the best-found solutions. His experiments demonstrated that the 
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normal-distribution-based parameter control mechanism accelerated the convergence of DE in solving 

small- to large-scale test cases. 

● Adaptive parameter adjustment: several studies applied adaptive mechanisms to select DE 

parameters. Wang et al. [66] applied the one-fifth success rule to regulate the increment and decrement 

of the scaling factor parameter. They incorporated migrating and accelerated operators into DE to 

enhance solution quality. Coelho et al. [47] utilized the ratio of the diversity of the current population to 

the diversity of the initial population to control the crossover rate adaptively. In [67], they also applied 

the Lévy flight function and population diversity to control the crossover rate. Zhang et al. [49] applied 

the number of improvement failures of each solution as a criterion for selecting the scaling factor and 

crossover rate. In [68]−[69], the reinforcement learning was utilized to select DE's parameters; it selected 

the parameter value based on the improvement condition of new solutions generated in each iteration. 

The mechanism demonstrated the enhancement of DE's searching ability in solving ED and related 

problems. 

2.2 Particle swarm optimization 

2.2.1 Solution reproduction mechanism 

The velocity updating mechanism is a crucial step of PSO. It updates the velocity of a particle 

through the cognitive, social, and inertial components. The cognitive component relies on the particle's 

personal best solution, and the social component relies on the best solution across the entire population. 

The inertial component is the velocity of a particle at the previous moment.  

● Search trajectory improvement mechanism: Several studies aimed to balance the exploitation and 

exploration of PSO by introducing new components into the standard velocity updating mechanism. In 

[70]−[72], the personal and global worst solutions were utilized to assist the population in escaping from 

poor areas. Abdullah et al. [73] introduced the neighbor's personal best solution to the velocity updating 

mechanism to prevent PSO from being stuck at local minima. Jadoun et al. [74] maintained the 

population diversity by introducing two new components to the velocity updating mechanism. The first 

component was a particle's preceding solution, and the second was the root-mean-square solution 

calculated from the current population. In [75], a new solution was updated through only one of the 

cognitive or social components to improve the search ability of their proposed PSO algorithm in solving 

the ED problem. The new solution was generated by the guidance of the personal best solution (the 

cognitive component) or one of the neighbors’ best solutions (the social component). The orthogonal 

strategy was utilized to lead a population to a new promising area. Xu et al. [76] introduced a concept of 

comprehensive learning to the velocity updating equation to improve population diversity and maintain 

the convergence rate of their proposed PSO. Singh et al. [77] improved the search trajectory of the PSO 

by using an attraction factor vector; each particle was attracted to move forward to the global best solution 

to speed up the convergence rate. 

● Hybrid PSO with other algorithms: Some studies combined hybrid PSO with other algorithms to 

improve searchability of their proposed algorithms. Duman et al. [78] hybridized PSO with a 

gravitational search algorithm (GSA) for dealing with ED problems. The cognitive component was 

replaced by the updating mechanism of GSA. The proposed algorithm obtained superior solutions 

compared to existing algorithms in small and medium test cases. Ellahi et al. [79] hybridized particle 

swarm optimization with bat algorithm (BA) in solving the ED problem. The BA frequency parameter 

was adopted to control the behavior of the social and cognitive components, which allowed the proposed 

algorithm to have more flexibility in parameter turning and also enhanced the algorithm's exploration. 

Gacem and Benattous [80] hybridized genetic algorithm (GA) with PSO for tackling the ED problem. 

The new population was generated by incorporating GA and PSO operators, which provided multiple 

search characteristics to the proposed algorithm. This entity could allow the algorithm more opportunities 

to reach the optimization solution. Saber [81] integrated the updating equation of PSO with the bacterial 

foraging (BF) algorithm. The concept of biased random walk from the BF algorithm was introduced to 

the PSO updating equation, which enhanced the search performance of the proposed hybrid algorithm. 

● Updating mechanism redefinition: many efforts demonstrated the improvement of PSO by 

redefining its updating mechanism. The Quantum-behaved PSO (QPSO) and Random Drift PSO 

(RDPSO) were respectively utilized in [82] and [83] in tackling ED problems. QPSO and RDPSO shared 

a similar concept of the updating mechanism using two components. The first component was an absolute 

difference between the current solution and the average of personal best solutions, and the second was 

the weighted arithmetic mean of personal and global best solutions. The concept of escaping prey was 

taken into PSO to prevent premature convergence by Chen et al. [84]. The population was divided into 
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three groups based on solution quality. The prey group (elite solutions) was updated by the Lévy flights 

to maintain the population diversity; the standard velocity updating mechanism was applied to the strong 

group; lastly, the random normal distribution was utilized to perturb the weak group. Their algorithm 

performed effectively in solving small and medium test cases. Kumar et al. [85] suggested a multi-agent 

PSO to tackle ED problems. The search space was divided into multiple regions occupied by particles. 

The Nelder-mean method was applied to update a particle. The final solution was created based on the 

obtained information from each region. The proposed algorithm obtained better solution quality than 

standard and modified PSOs. 

● Other mechanism: besides the velocity updating mechanism, some studies also discussed other 

aspects of enhancing PSO performance. Abdullah et al. [86] applied a tournament selection to select a 

survival solution for PSO. A group of solutions were randomly selected from the current and new 

populations to compete in tournaments, and the winner survived. The study obtained promising solutions 

in small- and medium-scale test cases. Hosseinnezhad and Babaei [87] introduced a new encoding 

scheme by mapping solutions to vectors of phase angles. This scheme might reshape the search space 

and allow the PSO to search potential solutions effortlessly. The proposed algorithm showed better 

performance than existing algorithms in solving small- and medium-scale test cases. 

2.2.2 Parameter control mechanism 

● Dynamic parameter adjustment mechanism: Several studies incorporated parameter control 

mechanisms into PSO to enhance performance. The first type of control mechanism is dynamic control, 

which adjusts parameter values based on search iterations without feedback information. Many studies 

utilized exponential functions [73]−[74] or linear functions [6], [70], [73], [88] to control their PSO 

parameters in a time-dependent manner. The studies [75], [89] applied a chaotic map function to control 

their PSO parameters, where the parameters were adjusted based on a chaotic map rule and previous 

parameter values. In [90], Gholamghasemi et al. controlled cognitive and social components' behavior 

by using the cosine and sine functions; the inertia component was excluded from their velocity updating 

mechanism. Other studies introduced a cosine function [72], a chaotic map [91], or random functions 

[92]−[93]. These studies enhanced the search capability of PSO by trying a broader value range of control 

parameters. 

● Adaptive parameter adjustment mechanism: In [78], [94], they utilized adaptive parameter 

control mechanisms, which selected appropriate parameter values based on feedback information. In [78], 

the parameters of the hybrid PSO were adaptively selected by the fuzzy logic. The parameter selection 

criterion was ruled by the quality and progress of the best solution found in each iteration. Li et al. [94] 

applied population diversities of the current and personal best solutions to control parameters. In [83], 

Elsayed et al. applied a self-adaptive parameter control mechanism to RDPSO; each particle took the 

parameters as a part of the solution and sought their appropriate values through the PSO search process. 

2.2.3 Local search 

The local search mechanism is usually adopted in evolutionary algorithms to improve the solution 

quality. The advantage of sequential quadratic programming (SQP) was discussed in [95]−[96]. Coelho 

and Mariani [89] improved PSO by using an implicit filtering (IF) local search. In [97]−[98], PSO's 

searching ability was enhanced using a space reduction mechanism. When it had no progress for a period 

longer than the specified limit, it reduces the search space according to the position of the global best 

solution. Their PSO with the space reduction mechanism reached the optimal solution in a small- and 

medium-scale test cases. 

2.3 Other existing algorithms 

2.3.1 Solution reproduction mechanism 

● Search direction improvement: The topic of determining the search direction has been addressed 

in various studies to improve the efficiency of algorithms in solving the ED problem. Amjady and Nasiri-

Rad [99]−[100] embedded the arithmetic-average-bound crossover operator into the real-coded genetic 

algorithm (GA), which had multiple operators with different search characteristics to improve global 

search efficiency. Many studies focused on reproducing new solutions with the guidance of the best 

solution. Babu et al. [101] embedded two operators into the evolutionary algorithm (EA) to balance 

exploitation and exploration. The first operator performed a random search, and the second one searched 

for a new solution with the guidance of the best solution. Their proposed algorithm found the best-known 

solutions when solving small- and large-scale test cases. The guidance of the best solution was also 

https://doi.org/10.1016/j.asoc.2023.110891


Economic dispatch using metaheuristics: Algorithms, problems, and solutions, ASC 2024   8 
 

adopted in the modified pitch adjustment of HS by Secui et al. [102]. The proposed algorithm reached 

promising results in small- and medium-scale test cases. Many studies [103]−[109] allowed the 

population of the artificial bee colony (ABC) algorithm to move toward the best solution, which 

accelerated the search performance of the algorithm. 

● Oppositional learning mechanism: Some studies utilized the oppositional learning concept to 

produce new solutions and allowed the population to change the search direction. Pradhan et al. presented 

a standard [110] and a modified [111] grey wolf optimization (GWO) algorithms in tackling ED problems. 

In [111], an oppositional learning concept was introduced into GWO to improve the search ability. This 

concept changed the moving trajectory of the population to the opposite direction to escape from local 

optima. The oppositional learning-based GWO achieved a better convergence rate than the standard 

version. The same advantage of the oppositional learning concept was also discussed in [112]−[113], 

which integrated the concept into invasive weed optimization (IWO) and beluga whale optimization 

algorithm (BWO), respectively. 

● Solution perturbation mechanism: Various studies mentioned the improvement of their algorithm 

by perturbation of solutions based on random distributions. In [4], [114], they reported the performance 

enhancement of evolutionary programming (EP) by combining Gaussian and Cauchy mutation operators 

to generate new solutions. Chen et al. [115] combined Gaussian and Cauchy mutation operators into the 

Jaya algorithm to avoid premature convergence. In their algorithm, the population size was dynamically 

changed during the search process. The proposed algorithm performed more effectively than other Jaya 

algorithms in solving small- and medium-scale test cases. Zheng et al. [116] applied a crossover operator 

and a Gaussian mutation operator of GA in IWO to enhance solution quality and maintain population 

diversity. The proposed algorithm performed effectively in several ED test cases. 

● Lévy flight mechanism: the Lévy flight was another random distribution utilized as a standard or 

additional component to improve algorithm efficiency in solving the ED problem. El-Sayed et al. [109] 

applied the Lévy flight in the ABC algorithm as a new phase to assist the population to escape from local 

optima. The proposed algorithm showed a higher opportunity to achieve the optimal solution than other 

algorithms. Yu et al. [117] introduced the Lévy flight into the multiple-group search Jaya algorithm. The 

proposed algorithm obtained better solution quality than other Jaya algorithms in solving various ED test 

cases. The Lévy flight function is one of the standard components of the cuckoo search algorithm (CSA), 

and it provides the exploration ability to CSA. Sahoo et al. [118] compared performance of the standard 

CSA and other evolutionary approaches in solving ED problems. Their experiment showed that CSA 

obtained better results than the standard GA and PSO in several test cases. Nguyen and Vo [119] modified 

the solution reproduction process of CSA. This algorithm combined the Lévy flight and a crossover 

operator to generate new solutions in a probabilistic way, and it improved the convergence rate. The 

searchability of the chameleon swarm algorithm was improved in Braik's work [120] using Lévy flight 

and roulette wheel mechanisms. The Lévy flight mechanism was applied to the updating equation to 

enhance exploration, and the roulette wheel mechanism was utilized for mating selection to maintain 

exploitation. 

● Hybrid algorithms: many efforts investigated the performance improvement of hybrid algorithms 

in solving the ED problem. Some studies [121]−[122] discussed the advantages of problem space 

reduction. In [121], tabu search (TS) was utilized to regulate the feasible search of the ABC algorithm. 

The hybrid ABC/TS delivered better solution quality than several canonical algorithms. In [122], the 

lambda iteration algorithm was adopted to narrow the search space and speed up the searchability of the 

simulated annealing (SA) algorithm. The algorithm demonstrated a better convergence than some 

canonical and modified algorithms. In studies [123]−[124] discussed the advantages of using B-hill 

climbing to enhance the sine-cosine algorithm (SCA) exploitation to improve local searchability Basak 

et al. [125] conducted a study on the hybrid crow search algorithm and JAYA algorithms. The updating 

equation of both algorithms was merged to accelerate convergence rate.  

● Mating selection mechanism: Some studies discussed the selection mechanism. Al-Betar et al. 

[126] introduced a tournament selection into the pitch adjustment condition of HS. The tournament-based 

HS obtained promising results in various test cases. Al-Betar et al. [127] also investigated the 

performance improvement of HS by using three new selection operators to select survival solutions: 

tournament selection, roulette wheel, and ranking-based selection mechanisms. Their experimental 

results showed that new selection operators enhance the search efficiency of HS over the classic selection 

operator. Awadallah et al. [108] introduced four new selection schemes to the onlooker bee phase of ABC. 

The modified ABC achieved high-quality solutions in solving the CEC benchmark functions and several 

ED problems. In [128]−[129], the perturbed solution of the crossover operator was selected based on 

competition instead of randomization. Their modified CSA reached impressive results in small- to large-
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scale test cases. 

2.3.2 Parameter control mechanism 

● Dynamic parameter adjustment mechanism: Many studies indicated a performance enhancement 

of algorithms by using dynamic parameter control mechanisms. Amjady and Nasiri-Rad [100] reported 

that adding exponential population size reduction to their proposed algorithm could speed up the 

convergence rate in solving small- and medium-scale test cases. Coelho and Mariani [130] utilized the 

population size and problem dimension to control the adjustment rate (PAR) parameter of the HS 

algorithm. They applied the exponential function to generate random step sizes of the bandwidth (BW) 

component. Jeddi and Vahidinasab [131] modified HS to obtain high-quality solutions. The parameters 

PAR and BW were dynamically adjusted using a linear function and an exponential function, respectively. 

The wavelet function was integrated into the proposed algorithm to reinitialize new solutions, which 

assisted the population in avoiding being trapped in local optima. Aydın and Ozyon [103]−[104] applied 

incremental social learning in the ABC algorithm. The population size increased during the search 

process until it reached the maximum size. In Secui's study [107], the step size of the updating mechanism 

of HS was controlled by chaotic map functions instead of pure randomization. Adarsh et al. [132] 

incorporated the sine function into the bat algorithm (BA) to control the loudness parameter. Liang et al. 

[133] utilized chaotic map functions to adjust the control parameters of BA, allowing the algorithm to 

escape from local minima. The random black hole model was incorporated into BA to accelerate the 

convergence. Lee et al. [134] introduced the adaptive Hopfield neural network (AHNN) for coping with 

multiple-fuel ED problems. Slope adjustment and bias adjustment mechanisms were utilized to control 

the HNN parameter. Their experimental results showed that AHNN reached similar solution quality with 

only one-half of the number of iterations used by the standard HNN [135]. 

2.3.3 More metaheuristic algorithms 

Besides the mentioned algorithms, several nature-inspired metaheuristic algorithms were used to 

solve the ED problem. Examples include continuous quick group search optimizer (CQGSO) [136], 

social spider algorithm (SSA) [137], crisscross search optimizer (CSO) [138]−[139], water cycle 

algorithm (WCA) [140], grasshopper algorithm (GSO) [141], artificial algae algorithm (AAA) [142], 

symbiotic organisms search (SOS) [143], salp swarm algorithm (SSA) [144], turbulent flow of water-

based optimization (TFWO) [145], slime mould algorithm (SMA) [146], ant colony optimization (ACO) 

[147], and Hooke-Jeeves algorithm (HJ) [150]. Details of these algorithms are referred to the original 

papers. 

Table 1 A summary of the essential features in solving the ED problem  

Algorithms Algorithm features References 

D
E

 

Solution reproduction 

mechanism 

Operator modification [44]−[46] 

Hybrid mutation strategy [47]−[50] 

Hybrid DE with other algorithms [51]−[58] 

Multiple group search [59]−[62] 

Parameter control mechanism 
Dynamic parameter adjustment mechanism [44], [48], [61]−[62], [64]−[65] 

Adaptive parameter adjustment [47], [49], [66]−[69] 

P
S

O
 

Solution reproduction 

mechanism 

Search trajectory improvement mechanism [70]−[77] 

Hybrid PSO with other algorithms [78]−[81] 

Updating mechanism redefinition [82]−[85] 

Other mechanisms [86]−[87] 

Parameter control mechanism 
Dynamic parameter adjustment mechanism [6], [70], [72]−[75], [88]−[93] 

Adaptive parameter adjustment mechanism [78], [83], [94], 

Local search [89], [95]−[98] 

O
th

er
 a

lg
o
ri

th
m

s 

Solution reproduction 

mechanism 

Search direction improvement [99]−[109] 

Oppositional learning mechanism [110]−[113] 

Solution perturbation mechanism [4], [114]−[116] 

Lévy flight mechanism [109] [117]−[120] 

Hybrid algorithms [121]−[125] 

Mating selection mechanism [108], [126]−[129] 

Dynamic parameter adjustment mechanism  [100], [103]−[104], [107], [130]−[135] 

More metaheuristic algorithms  [136]−[147] 
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2.4 Constraint handling mechanisms 

Constraint handling is essential to maintain the feasibility of solutions with respect to the constraints 

of the ED problem. This sub-section reviews popular constraint handling mechanisms in the studies on 

the ED problem. They are categorized into repair and penalty mechanisms. The repair mechanism fixes 

an infeasible solution directly; the penalty mechanism imposes penalty on solutions and expects the 

selection pressure pushes the population toward feasible regions. 

2.4.1 Repair mechanism 

The truncating mechanism [44], [53] was widely used to handle violation of the boundary constraints. 

It fixes the infeasible power output to the closest boundary. Nguyen and Vo [119] combined two repair 

mechanisms to deal with the power limit constraint. The first mechanism replaced the infeasible power 

output with the feasible power output from other solutions, and the second mechanism randomly 

regenerated the power output within the feasible range. In [139], [142], the authors integrated random 

shifting and truncating mechanisms to handle the prohibited zone constraints. The infeasible power 

output was adjusted to the closest boundary. 

The power balance constraint is more complicated to handle, especially in the ED problem with the 

transmission loss. Several studies transformed the constraint into an inequality constraint where a small 

violation (tolerance error) was acceptable. The tolerance error was commonly set as a value less than or 

equal to 10-3 [74], [56], [142]. The constraint handling mechanism for the power balance constraint can 

be categorized into single- and multiple-unit repair mechanisms. 

The single-unit repair mechanism modifies an infeasible solution by adding a compensating value 

to a single generator in each repair trial. In [48], [130], the authors allowed their single-unit repair 

mechanism to modify only generators with feasible power output. Studies [119], [128] applied a 

quadratic formula to handle the power balance constraint when the transmission loss was considered. 

The power balance constraint was rewritten as a quadratic function with a randomly selected generator. 

Then, the quadratic formula was solved, and a positive root was set as the new power output of the 

selected generator. 

The multiple-unit repair mechanism modifies more than one generator of an infeasible solution in 

each repair trial. Jadoun et al. [74] distributed the deviation to the power demand to all generators equally. 

Li et al. [62] introduced a multiple-repair mechanism with proportional adjustment. The error due to the 

power balance was distributed to only generators that satisfied the boundary constraints in proportion to 

their current power output. Reddy and Vaisakh [60] combined single- and multiple-unit repair 

mechanisms to handle the power balance constraint. A generator was arbitrarily selected from the 

infeasible solution to modify using the single-unit repair mechanism. The residual error was then 

distributed to all generators except for the selected generator in the single-unit repair mechanism. 

2.4.2 Penalty mechanism 

The penalty mechanism transforms a constrained optimization problem into an unconstrained 

problem, and penalty functions are introduced to the problem's objective function for evaluating the 

constraint violation of infeasible solutions. Some studies [73], [86], [64] repaired an infeasible solution 

to satisfy boundary constraints and utilized the penalty mechanism to deal with the power balance 

constraint, where the fitness was the sum of the operating cost and the penalty. One difficulty of the 

penalty mechanism is the penalty setting. The metaheuristic algorithms might loss exploration ability if 

the penalty is too large; in contrast, the algorithm might not find any feasible solution if the penalty is 

too small. Moreover, different ED test cases might require different penalty settings [86]. Kumar et al. 

[147] overcame the mentioned drawback by using an adaptive penalty function; the penalty was changed 

dynamically according to the violation degree of each infeasible solution. 

3. Proposed Algorithm 

This section describes our proposed L-HMDE in detail. Algorithm 1 shows the pseudo code and Fig. 

3 demonstrates the flow chart of L-HMDE. The encoding scheme and the solution initialization 

procedure are explained in subsection 3.1. The solution reproduction process is described in subsection 

3.2. Subsection 3.3 presents the environmental selection mechanism and the linear population size 

reduction mechanism. The constraint handling mechanisms is given in the subsection 3.4. The last 

subsection provides the time and space complexity analysis of L-HMDE. 
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Fig 3 Flowchart of the proposed L-HMDE 

Reduce population size by Eq (16) 

and only 𝑁𝑝 solution will survive to 
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Print the best-found solution 

End 

Generate mutant vector 𝑉𝑖 using hybrid mutation strategy by Eq (13) 

Generate trial vector 𝑈𝑖 using crossover operator by Eq (14) 

Apply greedy selection between target vector 𝑋𝑖and trial vector 𝑈𝑖 by Eq (15) 
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Verify all ED constraints Eq (3)-(8) 

and repair infeasible solutions by Algorithm 2 

Calculate operating cost by Eq (1), (2), or (9) 
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and repair infeasible solutions by Algorithm 2 
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Algorithm 1 L-HMDE 

 

Notations: 

Pop: Population 

NP: Population size 

NG: The number of generators in the power system 

NFE, NFEmax: The current and maximum number of fitness evaluations  

Xi, Ui: Target and trial vectors 

Vi: Mutant vector 

F, CR: Scaling factor and crossover rate 

Xbest: The best so far solution 

 

01 Initialize all control parameters 

02 Pop = Initialize(NP, NG) 

03 Pop = Repair(Pop) 

04 NFE = NP 

05 while NFE ≤ NFEmax do 

06  i = 1, U =   

07  while i ≤ NP and NFE ≤ NFEmax do 

08   Xi = Pop[i] 

09   Vi = Mutation(Xi, Pop, F) 

10   Ui = Crossover(Xi, Vi, CR) 

11   Ui = Repair(Ui) 

12   NFE = NFE + 1 

13   i = i + 1, U = U  {Ui} 

14  end while 

15  Pop = EnvironmentalSelection(Pop, U) 

16  Pop = Sort(Pop) 

17  Update NP by using linear population size reduction 

18  Pop = Pop[1:NP] 

19  Update Xbest 

20  end while 

3.1 Initialization 

The population Pop consists of NP candidate solutions, as given in (10). Each solution Xi is encoded 

as a real vector of length equal to the number of generators NG in the power system, as given in (11). 

The variable i denotes a running index of each solution. The variable Pi,j represents the power output of 

the jth generator of solution Xi.  

𝑃𝑜𝑝𝑇 = {𝑋1, 𝑋2, … , 𝑋𝑖 , …𝑋𝑁𝑃 }
𝑇, 1 ≤ 𝑖 ≤ 𝑁𝑃 (10) 

𝑋𝑖 = [𝑃𝑖,1, 𝑃𝑖,2, … , 𝑃𝑖,𝑗 , …𝑃𝑖,𝑁𝐺], 1 ≤ 𝑗 ≤ 𝑁𝐺 (11) 

Each initial solution is generated by a uniform randomization mechanism (12). The value of each 

decision variable Pi,j lies in the feasible range of power limit [Pj
min, Pj

max]. The term rand(0, 1) is a random 

function that uniformly generates a real value between zero and one. 

𝑃𝑖,𝑗 = 𝑃𝑗
min + 𝑟𝑎𝑛𝑑(0, 1) ∙ (𝑃𝑗

max − 𝑃𝑗
min) (12) 

3.2 Solution reproduction 

Each solution (target vector) iteratively generates a new solution by incorporating mutation and 

crossover operators. In the canonical DE, a mutant vector is generated from the rand/1 operator. However, 

we found that the rand/1 operator has a disadvantage due to parameter sensitivity in solving the ED 

problem. In this paper, we adopt a hybrid mutation strategy to take advantage of multiple search 

characteristics and reduce parameter sensitivity. The benefits of our hybrid operator are discussed in 

subsection 5.2.1. 

A mutant vector Vi is generated by either the rand/1 or the current-to-random/1 strategy based on 

probabilistic selection, as shown in (13). If the random value of rand(0, 1) is less than or equal to a pre-

specified value 𝛿, the mutant vector will be generated by the rand/1 strategy; otherwise, it will be 
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generated by the current-to-rand/1 strategy. Vectors Xr1, Xr2, and Xr3 are three distinct solutions selected 

randomly from the population and are different from the target vector Xi. Both mutation operators utilize 

the same constant scaling factor F. 

𝑉𝑖 = {
𝑋𝑟1 + 𝐹 ∙ (𝑋𝑟2 − 𝑋𝑟3) if 𝑟𝑎𝑛𝑑(0,1) ≤ 𝛿

𝑋𝑖 + 𝐹 ∙ (𝑋𝑟1 −𝑋𝑖) + 𝐹 ∙ (𝑋𝑟2 −𝑋𝑟3) 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

              
                 (13) 

Using the binomial crossover, a trial vector Ui = [ui,1, ui,2, …, ui,NG] is generated by crossing 

information from the mutant vector Vi and the target vector Xi based on the crossover rate CR, as shown 

in (14). The jth element of a trial vector will copy the value vi,j of the mutant vector when the value of 

rand(0, 1) is less than or equal to the crossover rate CR or when the jth element is equal to a randomly 

selected element jrand. Otherwise, it will copy the power output Pi,j from the target vector Xi. The purpose 

of the variable jrand is to guarantee that the trial vector differs from its target vector. 

𝑢𝑖,𝑗 = {
𝑣𝑖,𝑗  if 𝑟𝑎𝑛𝑑(0,1) ≤ 𝐶𝑅 and 𝑗 = 𝑗rand
𝑃𝑖,𝑗 otherwise

    
                                              (14) 

3.3 Environmental selection 

The trial vector Ui will replace the target vector Xi if its operating cost is not greater than the cost of 

the target vector, as given in (15). After the replacement process, the population is sorted in the ascending 

order of cost. 

𝑋𝑖 = {
𝑈𝑖 if 𝐹𝑐(𝑈𝑖) ≤ 𝐹𝑐(𝑋𝑖)

𝑋𝑖 otherwise

        
                                           (15) 

In canonical DE, the population size (NP) is equal in all generations, which can cause slow progress 

in solving some problems. In L-HMDE, the population size is linearly reduced to enhance search 

performance using Eq. (16), and only NP solutions survive to the next generation. This mechanism was 

borrowed from L-SHADE [148], and it has shown positive effects in L-SHADE. The paramters NPintial 

and NPfinal are the values of the initial and final population size, respectively; NPfinal equals to the 

minimum number of solutions required in the adopted mutation operators. Parameters NFE and NFEmax 

are the current and the maximum number of fitness evaluations. L-HMDE will continue its search until 

the variable NFE reaches NFEmax. This mechanism only adds one more parameter to our algorithm, which 

is the NPintial parameter. The performance improvement of the proposed algorithm with/without the linear 

population size reduction is discussed in subsection 5.2.3. 

𝑁𝑃 = 𝑟𝑜𝑢𝑛𝑑 ((
𝑁𝑃final −𝑁𝑃initial

𝑁𝐹𝐸Max
∙ 𝑁𝐹𝐸) + 𝑁𝑃initial) (16) 

3.4 Constraint handling 

Infeasible solutions might be generated during the initialization and the reproduction processes, and 

they cannot be used as final solutions for the ED problem. In L-HMDE, we proposed an improved single-

unit repair mechanism to fix these infeasible solutions. 

3.4.1 Repair for handling boundary constraints 

The violation of the power limit constraint (6) is handled by the truncating mechanism. The power 

output Pi,j with an infeasible value is fixed to the closest power boundary Pj
min or Pj

max, as defined in (17). 

If the ramping rate constraint (7) is included in the problem, we also take the boundary values in (7) into 

consideration. The violation of the prohibited zone constraint (8) is handled by (18). The power output 

Pi,j in the prohibited zone is fixed to the closest boundary. If it is at the middle point of the prohibited 

zone, it is fixed to the boundary Pl. 

𝑃𝑖,𝑗 = {
𝑃𝑗
min, 𝑖𝑓 𝑃𝑖,𝑗 < 𝑃𝑗

min

𝑃𝑗
max, 𝑖𝑓 𝑃𝑖,𝑗 > 𝑃𝑗

max (17) 

𝑃𝑖,𝑗 = {
𝑃l, 𝑖𝑓|𝑃l − 𝑃𝑖,𝑗| ≤ |𝑃

u − 𝑃𝑖,𝑗| 

𝑃u, otherwise 
 (18) 
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Algorithm 2 Improved single-unit repair mechanism 

 

Notations: 

Xi: The infeasible solution to be repaired 

PD, PL: The power demand and the transmission loss of the power system 

Diff: The deviation to the sum of power demand and loss of an infeasible solution 

Pi,j: The power output of the jth generator of the solution Xi 

ε: The tolerance error 

T, Tmax: The current and the maximum number of repair trials 

NG: The number of generators in the power system 

S: The set of selected generators to repair 

 

01 Repair all variables of Xi to meet all boundary constraints by Eq (17) and (18)  

02 Calculate the transmission loss PL by Eq (4) 

03 Diff = PD + PL − ∑ 𝑃𝑖,𝑗
𝑁𝐺
𝑗=1  

04 T = 1, Tmax = 30, S =  

05 while T ≤ Tmax and abs(Diff) ≥ ε do 

06  for j = 1 to NG do 

07   if Pj
min ≤ (Pi,j + Diff) ≤ Pj

max preliminary checking 

08    S ← S ∪ {j} 

09   endif 

10  end for 

11  if S ≠ Ø 

12   Randomly select j* from S 

13  Else 

14   Randomly select j* from {1, 2, …, NG} 

15  endif 

16  Pi,j* = Pi,j* + Diff 

17  Repair to meet all boundary constraints by Eq (17) and (18) 

18  Recalculate the transmission loss PL by Eq (4) 

19  Diff = PD + PL − ∑ 𝑃𝑖,𝑗
𝑁𝐺
𝑗=1  

20  T = T + 1 

21 end while 

3.4.2 Repair for handling the power balance constraint 

Following many studies, we relax the power balance constraint (3) as an inequality constraint (19). 

A solution is regarded as a feasible solution when its error is less than or equal to a pre-specified tolerance 

error ε, which should be a very small value. The transmission loss PL will be set to zero if it is not 

considered in the problem model. Fixing infeasible solutions to meet the power balance constraint usually 

requires many trials of repair when the transmission loss is considered. 

𝜀 ≥  |𝑃D + 𝑃L −∑𝑃i,j

𝑁𝐺

𝑗=1

| (19) 

An infeasible solution Xi that violates the power balance constraint (3) is fixed by our improved 

single-unit repair mechanism. Each infeasible solution is allowed to be repaired for at most 30 trials; if 

an infeasible solution is not fixed to be feasible within 30 trials, it will not survive to the next generation. 

The procedure of the improved single-unit repair mechanism is presented in Algorithm 2.  

First, we apply equations (17) and (18) to fix all infeasible power outputs Pi,j that do not satisfy the 

boundary constraints. Then, we calculate the transmission loss. Next, we calculate the difference diff 

between the total power output and the sum of the power demand PD and the transmission loss PL. We 

want to absorb the difference diff by adjusting the power output of some generators. Before adjusting the 

solution, we do a preliminary checking: we find the generators j that do not violate the power limitation 

constraint (6) if we add the diff value to their power output Pi,j. Let S denote the set of the indices of these 

generators. If S is not empty, we select one generator randomly from S; otherwise, we select one generator 

randomly from all generators. We add the diff value to the selected generator. After adjusting the solution, 

we check the constraints again. If the solution can be regarded as feasible (i.e. the diff is not greater than 

the tolerance error) or the maximum number of trials is reached, the repair procedure stops; otherwise, 

we repeat the above steps. 

https://doi.org/10.1016/j.asoc.2023.110891


Economic dispatch using metaheuristics: Algorithms, problems, and solutions, ASC 2024   15 
 

The key difference between our improved mechanism and the standard single-unit repair mechanism 

(SR) [48], [130] is the step of preliminary checking. The preliminary checking helps to repair the solution 

successfully within fewer trials and to keep the modifications of the solution smaller. Fig. 4 is an example. 

In this example, we need to repair an infeasible solution and the initial diff value is 490. There are six 

generators that do not reach the boundary output values, and the standard single-unit repair mechanism 

selects one at a time from these generators to adjust the power output to absorb the diff power. In the 

example, the standard mechanism absorbs the diff by adjusting three generators. As for our improved 

mechanism, it first finds the two generators that can individually absorb the diff power. In the example, 

it selects the sixth generator, adjusts its output, and fixes the solution within just one trial. 

 

Fig 4 The difference between the standard and the improved single-unit repair mechanisms 

3.5 Time and space complexity analysis 

In this sub-section, we analyze the time and space complexity of the proposed L-HMDE. Our 

algorithm only needs space to store the population, and thus the space complexity is O(NPinitialNG), 

where NPinitial is the initial population size and NG is the number of generators in the power system. Let 

NP(t) denote the population size at generation t, T denote the number of generations, R denote the 

maximum number of trials in the repair operator, and E denote the maximum number of fitness 

evaluations. The time complexity of our algorithm is derived in the following. 

There are six main operators in our L-HMDE: initialization, evaluation, repair, mutation, crossover, 

and environmental selection. The time complexity of applying each of the initialization, evaluation, 

mutation, and crossover operators to a single solution is O(NG), and applying each of them to a 

population leads to the time complexity O(NP(t)NG). The time complexity of repairing one solution is 

O(RNG) and of repairing a population is O(NP(t)RNG). The environmental selection operator consists 

of evaluation of the population, which takes complexity O(NP(t)NG), and sorting of the population, 

which has complexity O(NP(t)logNP(t)). Since logNP(t) is usually smaller than NG, the time complexity 

of the environmental selection is approximately O(NP(t)NG). In each generation, the time complexity 

of all operators is bounded by O(NP(t)RNG). Repeating all the operators for T generations, the time 

complexity is 𝑂(∑ 𝑁𝑃(𝑡)𝑅𝑁𝐺𝑇
𝑡=1 ) = O(ERNG). In summary, the time complexity of our L-HMDE 

is controlled by the maximum number of fitness evaluations (E), the maximum number of repair trials 

(R), and the problem dimension (NG), i.e. the number of generators in the power system. 

 

4. ED Test Cases Review 

In the literature on the ED problem, many test cases were used to verify the performance of 

algorithms. We collect 13 test cases and introduce them briefly in this section. Table 2 gives a summary 

of them. Data of the model coefficients of these test cases are given in the appendix. One important thing 

worth noting is that some test cases have several versions and these sub-cases are very similar and 

• Section criteria: Search for the power output Pi,j that can be adjust by diff value without violation power limitation (6) (mark by ) 
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diff= 2500 – 2200 = 300 diff= 2500 – 2225 = 275 diff= 2500 – 2500 = 0 
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diff= 2500 – 2500 = 0 

Improved single-unit repair mechanism 

Min (120+490, 750) 

• Selection criterion: Search for the generators that do not violate power limit constraints after adding the diff value (marked by ) 

• It can absorb the difference between total output and the demand by adjusting the output of only one generator. 

Standard single-unit repair mechanism 

• Selection criterion: Search for the generators that do not reach the upper bound or lower bound (marked by ●) 

• It needs to select three generators (the 4
th

,3
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, 6
th generators) to absorb the difference between total output and the demand. 
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different only in the values of very few coefficients. Different versions of each test case have different 

optimal solutions, and comparing experimental results across versions will be misleading. Researchers 

should be careful when they compare algorithm performance by using these test cases. 

⚫ Test case 1 [6] is a small-scale power system with six generators considering the transmission loss, 

the ramping rate, and prohibited zones. The system's power demand is 1263 MW. Note that the loss 

coefficient B00 must be changed from 0.056 to 0.0056 according to the notification of the data set 

owner in [149]. The loss coefficients of the test case are presented with the 100-MVA base capacity 

and must be transformed into the actual values by (5) before loss calculation. The data set of test 

case 1 is given in Appendix A.1. 

⚫ Test cases 2 and 3 [9] are small-scale power systems with 10 generators, requiring multiple fuel types 

for different power levels. The power demand of both test cases is set to 2700 MW, and only test 

case 3 considers the valve-point effect. The data set of the test cases is given in Appendix B.1. 

⚫ Test case 4 is a small-scale power system with 13 power generators, considering the valve-point 

effect. We found two versions of the cost coefficients, which were published in [4] and [82], 

respectively. Test case 4 has two widely used power demands, which are 1800 and 2520 MW. In this 

paper, we call the two cases using the cost coefficients in [4] with the power demand of 1800 and 

2520 MW test cases 4.1 and 4.2, respectively. The other two cases using cost coefficients in [82] 

with the power demand of 1800 and 2520 MW are called test cases 4.3 and 4.4, respectively. The 

coefficient values of all versions are given in Appendix C.1−2. 

⚫ Test case 5 is a small-scale power system with 13 power generators, considering the valve-point 

effect and the transmission loss. We found four versions of this test case that used different coefficient 

values. Test cases 5.1 to 5.3 use the cost coefficients from [4], and test case 5.4 uses the cost 

coefficients from [82]. All versions use the transmission loss coefficients from [62] with some 

modifications. Test case 5.1 uses the same loss coefficients from [62]. Test case 5.2 sets the loss 

coefficient B0,11 by 0.0017, and test cases 5.3 and 5.4 set the loss coefficient B1,10 by 0.0005 and B00 

by 0.000055, respectively. The loss coefficients of this test case are presented with the 100-MVA 

base capacity and must be transformed into the actual values by (5) before loss calculation. The 

power demand of all versions is 2520 MW. The data set of all versions are given in Appendix D.1−5.. 

⚫ Test case 6 is a small-scale power system with 15 generators, considering the transmission loss, the 

ramping rate, and prohibited zones. The system's power demand is 2630 MW. We found two versions 

of this test case that use different previous power outputs Pj
0. Test case 6.1 uses the coefficient data 

set from [6]. Test case 6.2 modifies the previous power output P2
0 to 360 and P5

0 to 190 according 

to the notification of the data set owner in [149]. Both versions use the same transmission loss data 

set from [6]. Note that the loss coefficient B1,10 must be changed to -0.0005 to make the loss 

coefficient matrix symmetrical due to the notification in [149]. The loss coefficients of this test case 

are presented with the 100-MVA base capacity and must be transformed into the actual values by (5) 

before loss calculation. The data set of all versions are given in Appendix E.1−3. 

⚫ Test case 7 [5] is a medium-scale power system with 20 generators considering the transmission loss. 

The system's power demand is 2500 MW. The data set of the test case is provided in Appendix F.1. 

⚫ Test case 8 is a medium-scale power system with 40 power generators considering the valve-point 

effect. Test case 8.1 was published in [4]. Test cases 8.2 and 8.3 use the data set from [4] with some 

modifications of cost coefficients. Test case 8.2 sets the cost coefficient a7 by 278.71. Test case 8.3 

sets cost coefficients a15 and a16 by 1760.4, b15 and b16 by 8.84, and c15 and c16 by 0.00752. The data 

set of all versions can be reviewed in Appendix G.1−3. 

⚫ Test case 9 [112] is a large-scale power system with 110 power generators, and the system's power 

demand is 15000 MW. The data set of the test case can be reviewed in Appendix H.1. 

⚫ Test cases 10−12 [91] is a large-scale power system with 140 generators and a power demand of 

49342 MW. These test cases consider different problem characteristics. Test case 10 considers the 

valve-point effect, the ramping rate, and prohibited zones. Test case 11 ignores the ramping rate, and 

test case 12 ignores the valve-point effect. These three test cases use the same data set provided in 

Appendix I.1. 

⚫ Test case 13 is the largest power system in this study, which consists of 160 generators and requires 

different fuel types for different power levels. The test case is built up by replicating the test case 3 

for 16 times. The system's power demand is 43200 MW. 
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Table 2 Summary of ED test cases 

Test 

case 

Model characteristics 

Number of 

generators 

Power demand 

(MW.) 

Transmission 

loss 

Valve-point 

effect 

Ramping 

rate 

Prohibited 

zones 

Multiple fuel 

types 

MVA base 

capacity 

1 6 1263 ✔  ✔ ✔  ✔ 

2 10 2700     ✔  

3 10 2700  ✔   ✔  

4* 13 1800/2520  ✔     

5* 13 2520 ✔ ✔    ✔ 

6* 15 2630 ✔  ✔ ✔  ✔ 

7 20 2500 ✔      

8* 40 10500  ✔     

9 110 15000       

10 140 49342  ✔ ✔ ✔   

11 140 49342  ✔  ✔   

12 140 49342   ✔ ✔   

13 160 43200  ✔   ✔  

* We found more than one version of these test cases. 

5. Experiments and results 

We carried out experiments to verify the effects of mechanisms of our algorithm and to compare the 

performance of the algorithm with existing studies. The parameter setting and the computing 

environment of our experiments are given in sub-section 5.1. The effects of the mechanisms of our L-

HMDE are presented in sub-section 5.2. Performance comparison results are presented in sub-sections 

5.3 and 5.4. 

5.1 Parameter setting 

The parameter settings are presented in Tables 3 and 4. The initial population size NPintial was 15, 

and the final population size NPfinal was 4, which meets the minimal required number in the two mutation 

operators of L-HMDE. The probabilistic selection parameter 𝛿 of the hybrid mutation strategy was set 

to 0.7, which means L-HMDE selects the rand/1 mutation with probability 0.7 and the current-to-rand/1 

mutation with probability 0.3. The experimental results on tuning of NPinitial and 𝛿 are provided later in 

this sub-section. The scaling factor F and the crossover rate CR were fixed as constant values at 0.5 and 

0.1, respectively. The experimental results on tuning of F and CR will be presented in Section 5.2.1. The 

maximum number of repair trials Tmax for each infeasible solution was 30. The acceptable tolerance error 

ε was 10-8 to maintain the accuracy of solutions; this value is much smaller than the error of most 

solutions in the literature. The maximum number of fitness evaluations NFEmax (termination criterion) is 

listed in Table 4. Note that NFEmax is the only parameter with values dependent on the test cases. We 

used the same parameter setting for L-HMDE to solve all 13 test cases when we compared its 

performance with existing algorithms. We implemented L-HMDE by the Matlab programming language 

(R2021a). Experiments were carried out on a computer with an Intel i7-10700 2.90GHz processor and 8 

GB RAM. Each test case was solved for 100 times by each tested algorithm variant. 

Table 3 Parameter setting for L-HMDE 

Parameter NPintial NPfinal 𝛿 F CR Tmax ε 
Value 15 4 0.7 0.5 0.1 30 10-8 

Table 4 Maximum number of fitness evaluations for each test case 

Test case 1 2 3 4 5 6 7 

NFEmax 1500 2000 10000 25000 25000 5000 5000 

Test case 8 9 10 11 12 13  

NFEmax 50000 50000 50000 50000 50000 150000  

We determined the appropriate values of the initial population size NPintial and the probabilistic 

selection parameter 𝛿 by tuning each parameter separately. The effectiveness of parameter values was 

evaluated by the overall average of normalized cost Ecost, as defined in (20). We selected four test cases 
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(3, 4.1, 8.1, and 10) that cover different model characteristics. Each variant of L-HMDE with a specific 

parameter value solved each of the four selected test cases for 100 times and the average cost was 

recorded. Let AvgCostm(j) denote the average cost obtained by an algorithm variant j using a specific 

parameter value; AvgCostm
max and AvgCostm

min denote the maximum and minimum of the average costs 

obtained by all algorithm variants in the test case m, respectively. The smaller Ecost(j) is, the better 

performance the algorithm variant j is. The performance results of the algorithm variants using different 

values of the initial population size and of the mutation probabilistic selection parameter are presented 

in Tables 5 and 6, respectively. Each cell contains the normalized average cost (in parentheses) and the 

original average cost. The last row presents the sum of normalized average cost over four test cases. 

𝐸𝑐𝑜𝑠𝑡(𝑗) = ∑
𝐴𝑣𝑔𝐶𝑜𝑠𝑡𝑚(𝑗) − 𝐴𝑣𝑔𝐶𝑜𝑠𝑡𝑚

𝑚𝑖𝑛

𝐴𝑣𝑔𝐶𝑜𝑠𝑡𝑚
𝑚𝑎𝑥 − 𝐴𝑣𝑔𝐶𝑜𝑠𝑡𝑚

𝑚𝑖𝑛

4

𝑚=1

 
(20) 

Initial population size: Nine values were examined for the initial population size. The values of F, 

CR, and 𝛿 were set by 0.5. We can infer from the results of Table 5 that L-HMDE tends to perform better 

with smaller initial population sizes. We set the initial population size by 15 due to its lowest Ecost value. 

Mutation probabilistic selection parameter: Seven values were examined for the mutation 

probabilistic selection parameter. In this step, the initial population size was 15. Both extreme parameters 

(0 and 1) can negatively impact the L-HMDE in some test cases. We set the parameter by 0.7, which lead 

to the lowest overall average cost. 

Table 5 Performance comparison of values of the initial population size 

Test 

case 

Initial population size NPintial 

5 10 15 20 30 40 50 100 200 

10 
(0.05) 

623.84 

(0.00)  

623.83 

(0.05)  

623.84 

(0.08)  

623.85 

(0.15)  

623.86 

(0.20)  

623.87 

(0.26)  

623.88 

(0.50)  

623.91 

(1.00) 

 623.99 

13 
(1.00) 

18045.73 

(0.20) 

18001.03 

(0.02) 

17990.75 

(0.00) 

17989.67 

(0.01) 

17989.99 

(0.00) 

17989.90 

(0.01) 

17990.44 

(0.03) 

17991.20 

(0.17) 

17999.47 

40 
(0.65) 

121698.86 

(0.06) 

121480.17 

(0.00) 

121457.88 

(0.32) 

121576.69 

(0.49) 

121639.26 

(0.50) 

121643.66 

(0.51) 

121649.53 

(0.75) 

121738.54 

(1.00) 

121830.08 

140 
(1.00) 

1658078.94 

(0.13) 

1657979.97 

(0.07) 

1657972.96 

(0.02) 

1657968.04 

(0.00) 

1657965.38 

(0.00) 

1657965.77 

(0.02) 

1657968.03 

(0.21) 

1657988.82 

(0.79) 

1658055.01 

Escore (2.70) (0.39) (0.14) (0.43) (0.64) (0.71) (0.81) (1.49) (2.96) 

Table 6 Performance comparison of values of the mutation probabilistic selection parameter 

Test 

case 

Mutation probabilistic selection parameter 𝛿 

0 0.1 0.3 0.5 0.7 0.9 1 

10 

(1.00) 

623.85 

(0.85) 

623.85 

(0.57) 

623.84 

(0.59) 

623.84 

(0.11) 

623.84 

(0.00) 

623.84 

(0.18) 

623.84 

13 

(1.00) 

18007.99 

(0.81) 

18001.32 

(0.48) 

17990.28 

(0.50) 

17990.75 

(0.00) 

17973.77 

(0.00) 

17973.76 

(0.02) 

17974.30 

40 

(0.70) 

121481.14 

(0.39) 

121469.84 

(0.00) 

121455.28 

(0.07) 

121457.88 

(0.08) 

121458.14 

(0.75) 

121482.89 

(1.00) 

121492.27 

140 

(0.94) 

1657985.74 

(0.27) 

1657972.98 

(0.40) 

1657975.48 

(0.08) 

1657972.96 

(0.00) 

1657968.82 

(0.17) 

1657971.23 

(1.00) 

1657986.86 

Escore (3.64) (2.31) (1.45) (1.24) (0.19) (0.92) (2.19) 

5.2 Impact of the proposed mechanisms in L-HMDE 

5.2.1 The effect of F/CR parameters and the advantage of hybrid mutation strategy 

In the first experiment, we intended to examine the effect of the hybrid mutation strategy. We 

replaced the hybrid mutation strategy in L-HMDE by using only the current-to-rand/1 mutation or only 

the rand/1 mutation to make two other versions of algorithms. For each of the three algorithms, we tested 

81 (99) variants with the values of F and CR in {0.1, 0.2, …, 0.9}. Each algorithm variants solved each 

test case for 100 runs. We compared their solution quality in terms of the average cost, the success rate, 

and the result of the Wilcoxon rank-sum test. When an algorithm variant is able to find a solution with 

the cost the same as the best solution in the literature in a run, we say that run is successful. The success 

rate is the ratio of the number of successful runs to 100. We tested whether the difference between L-

HMDE and the two other algorithms is statistically different by the Wilcoxon rank-sum test at a 
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significance level of 5%. 

For each test case, we visualize the experimental results by three sets of heat maps. Taking the top 

three sets of heat maps for test case 4.1 in Fig. 5 as an example. The leftmost set of heat maps consist of 

three heat maps, each of which shows the average cost over 100 runs for one algorithm using the specified 

mutation operator (current-to-rand/1, rand/1, or hybrid). One heat map consists of 99 = 81 cells, and 

each cell represents the average cost of an algorithm variant using F and CR with specified values. The 

middle set of heat maps is similar to the first set, and the difference is in that each cell of a heat map 

represents the success rate of an algorithm variant over 100 runs. In these two sets of heat maps, the 

darker color means better performance (lower cost or higher success rate). The rightmost set of heat maps 

consists of only two heat maps. Each heat map illustrates the results of the Wilcoxon rank-sum tests on 

the solution quality of the version using the hybrid mutation strategy and one of the versions using a 

single mutation operator. In this set of heat maps, the dark color (■ +), light color (■ ≈), and white 

(  -) color represent that the version using the hybrid mutation strategy is statistically better than, equal 

to, or worse than the compared version, respectively. Based on our observations, we found that the hybrid 

mutation strategy has positive impact on solving seven out of 13 test cases and negative impact on only 

two test cases. The impact is not obvious in the remaining four test cases. We present the results in the 

following. 

The hybrid mutation strategy positively impacts the algorithm performance in solving seven test 

cases. We show the heat maps of some selected test cases in Fig. 5. (Not all test cases are shown due to 

the limitation of space.) We can see that each version of algorithm performs well with some parameter 

settings but not all parameter settings. It reveals that the parameter setting is influential. The good settings 

of the versions using the current-to-rand/1 mutation and the rand/1 mutation are different; taking test 

case 8.1 as an example, current-to-rand/1 prefers medium-to-large F values but rand/1 prefers small-to-

medium F values. Besides, the good settings could change when different test cases are solved; taking 

test cases 8.1 and 9 as examples, rand/1 prefers small F values when solving test case 8.1 but prefers 

large F values when solving test case 9. By using the hybrid mutation strategy, the algorithm can perform 

well under a larger number of parameter settings. Taking test case 9 as an example, the two algorithms 

using a single mutation operator perform well under around 1/3 of 81 parameter settings; by hybridizing 

the two mutation operators, the algorithm performs well under almost all parameter settings. We can 

observe the same positive impact in the middle set of heat maps about the success rate. In the rightmost 

set of heat maps, we can see that the algorithm using the hybrid mutation strategy significantly 

outperforms the two other algorithms under many parameter settings and is outperformed under very few 

parameter settings. 

 

Fig 5 Heat maps of experimental results of test cases (only some are shown) that show positive impact of the hybrid mutation 

strategy 
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The hybrid mutation strategy does not show obvious effect when test cases 1, 2, 6, and 7 are solved. 

This is because that these test cases are relatively easy to solve. We show the heat maps of test cases 1 

and 2 in Fig. 6. We can see that the algorithm using only the rand/1 mutation already solved these test 

cases very well, and these is little space for performance improvement.  

 

Fig 6 Heat maps of experimental results of test cases that are easy to solve by algorithms using a single mutation or hybrid 

mutation 

The hybrid mutation strategy negatively impacts the proposed algorithm in only two test cases, case 

3 and case 13, as shown in Fig. 7. These two test cases are related; actually, test case 13 are an enlarged 

version of test case 3. We can find that the rand/1 mutation performs much better than the current-to-

rand/1 mutation does, and thus hybridizing them does not bring positive effects.  

Based on our observation, the proposed algorithm with the hybrid mutation strategy performs quite 

well in most test cases with CR around 0.1 to 0.3 and F less than 0.6. Therefore, we set the CR parameter 

to 0.1 and the F parameter to 0.5 for our algorithm in all following experiments. 

 

Fig 7 Heat maps of experimental results of test cases that show negative impact of the hybrid mutation strategy 
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algorithm to find high-quality solutions in solving large-scale test cases (test case 9−13); SR, MR, and 

MRPA cannot solve test case 8 well, either. ISR performs worse than other repair mechanisms in only 

few test cases; it is significantly worse than MRPA in 2 test cases and QDT in 1 test case.  

We further tested the four versions of L-HMDE using ISR, SR, MR, and MRPA with higher 

computational budget (i.e. larger NFEmax). The average cost obtained by the four algorithms consuming 

different NFE in solving test cases 8.1, 9, and 10 is presented in Table 8. The results showed that using 

the existing repair mechanisms SR, MR, and MRPA leads to a slow convergence progress. Although the 

algorithms using those repair mechanisms still improve the solution quality gradually as the NFE 

increases, they could not find the solution as good as the solution by the algorithm using our ISR even 

they consumed three times of NFE. In contrast, our ISR helps to find high-quality solutions effectively 

and efficiently. As we mentioned in subsection 3.4, ISR aims to fix the infeasible solutions with smaller 

modification and within fewer trials. These could help to keep the search direction, obtain feasible 

solutions, and hence improve the final performance of the algorithm. 

Table 7 Result comparison between our repair mechanism and four widely used repair mechanisms in 

ED problems 

Test case ISR SR MR MRPA QDT 

 Avg (Std) Avg (Std) Avg (Std) Avg (Std) Avg (Std) 

1 15449.90 (3.24·10
-7

) 15449.90 (4.33·10
-7

) ≈ 15449.90 (7.86·10
-4

) + 15449.90 (7.09·10
-7

) - 15449.90 (8.35·10
-7

) + 

2 623.81 (2.00·10
-4

) 623.81 (2.60·10
-4

) + 623.95 (0.24) + 623.81 (3.08·10
-5

) -  

3 623.83 (6.38·10
-4

) 623.83 (7.47·10
-4

) ≈ 624.04 (0.03) + 623.95 (0.02) +  

4.1 17964.90 (2.98) 17971.13 (3.56) + 18030.78 (33.61) + 17998.53 (25.61) +  

4.2 24169.96 (0.42) 24170.14 (1.32) + 24198.59 (31.54) + 24181.09 (17.93) +  

4.3 17961.22 (2.44) 17967.66 (3.51) + 18028.15 (32.74) + 17994.13 (23.92) +  

4.2 24164.15 (0.67) 24171.09 (24.00) + 24198.77 (36.63) + 24177.55 (16.97) +  

5.1 24514.88 (1.56·10
-4

) 24519.76 (19.49) + 24559.03 (52.42) + 24522.57 (22.17) + 24519.56 (17.39) + 

5.2 24516.28 (7.97) 24521.53 (25.96) + 24556.84 (54.09) + 24521.04 (15.47) + 24518.47 (14.69) ≈ 

5.3 24514.82 (7.02·10
-5

) 24520.86 (23.09) + 24562.36 (55.09) + 24530.21 (36.57) + 24519.30 (16.78) + 

5.4 24513.04 (6.09) 24521.35 (24.78) + 24558.01 (54.10) + 24522.05 (18.75) + 24515.82 (14.98) + 

6.1 32704.45 (1.65·10
-5

) 32704.45 (3.62·10
-4

) + 32708.51 (3.78) + 32710.65 (3.60) + 32704.45 (9.85·10
-7

) - 

6.2 32588.92 (1.83·10
-7

) 32588.92 (5.63·10
-5

) + 32589.17 (1.15) + 32592.30 (3.72) + 32588.92 (5.10·10
-8

) ≈ 

7 62456.63 (3.33·10
-5

) 62456.63 (4.28·10
-5

) ≈ 62456.63 (9.11·10
-4

) + 62456.63 (1.13·10
-4

) + 62456.63 (6.43·10
-5

) + 

8.1 121417.94 (3.81) 121477.36 (32.23) + 122185.22 (141.48) + 121481.52 (41.40) +  

8.2 121409.43 (4.51) 121465.44 (32.28) + 122150.01 (112.47) + 121460.05 (37.69 +  

8.3 121375.89 (4.85) 121431.46 (28.20) + 122149.48 (139.16) + 121447.89 (35.97) +  

9 197988.18 (8.80·10
-8

) 197988.18 (5.80·10
-8

) ≈ 204654.59 (968.01) + 201486.84 (538.30) +  

10 1657962.73 (1.07·10
-3

) 1657965.61 (14.88) + 1753592.79 (9105.74) + 1733826.76 (6753.14) +  

11 1559708.45 (2.69·10
-4

) 1559719.55 (27.81) + 1642539.95 (10393.88) + 1612998.26 (7338.46) +  

12 1655679.43 (1.82·10
-4

) 1655679.43 (7.07·10
-5

) ≈ 1706658.04 (5372.19) + 1701636.37 (5442.47) +  

13 9983.69 (0.12) 9983.71 (0.15) ≈ 10081.49 (12.37) + 9996.82 (5.26) +  

 +/≈/- 16/6/0 22/0/0 20/0/2 5/2/1 

Table 8 Comparison of the average solution quality at different periods of NFE of our repair 

mechanism, SR, MR, and MRPA 

Test case Repair mechanism 
Avg 

NFE = 50000 NFE =75000 NFE =100000 NFE =125000 NFE =150000 

8.1 

ISR 121417.94 121416.37 121415.96 121415.80 121415.63 

SR 121477.36 121450.65 121442.71 121439.90 121438.78 

MR 122185.22 121690.33 121530.18 121478.85 121464.09 

MRPA 121481.52 121462.86 121456.43 121452.54 121451.02 

9 

ISR 197988.18 197988.18 197988.18 197988.18 197988.18 

SR 197988.18 197988.18 197988.18 197988.18 197988.18 

MR 204654.59 200987.63 199719.35 199237.87 198947.79 

MRPA 201486.84 199725.33 198896.74 198504.30 198310.56 

10 

ISR 1657962.73 1657962.73 1657962.73 1657962.73 1657962.73 

SR 1657965.61 1657962.73 1657962.73 1657962.73 1657962.73 

MR 1753592.79 1709679.50 1694655.14 1687742.45 1682462.64 

MRPA 1733826.76 1705306.47 1688840.50 1678453.38 1671656.69 
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5.2.3 The effect of the linear population size reduction mechanism 

The impact of the linear population size reduction mechanism on the proposed algorithm was 

investigated in this experiment. The solution quality of the two versions of algorithms with and without 

linear population size reduction (hereafter called L-HMDE and HMDE) was compared. The population 

size of HMDE was set by 15 and remained the same in the whole search process. On the other hand, the 

population size of L-HMDE was initially set by 15 and linearly reduced to four. The other parameters of 

both algorithms were set as the values in Tables 3 and 4. The Wilcoxon rank-sum test was utilized to 

check the difference between L-HMDE and HMDE at a significant level of 5%. 

In Table 9, the abbreviation Avg and Std stand for the average and standard deviation of the cost 

obtained over 100 runs. L-HMDE significantly outperforms HMDE in solving 15 out of 22 test cases 

and is outperformed in no test case. The linear population size reduction mechanism is particularly useful 

when medium- and large-scale test cases (test case 8−13) are solved. 

Table 9 Result comparison of the proposed algorithm with/without linear population size reduction 

mechanism 

Test case 
L-HMDE HMDE 

Test case 
L-HMDE HMDE 

Avg (Std) Avg (Std) Avg (Std) Avg (Std) 

1 15449.90 (3.24·10-7) 15449.90 (2.05·10-7) ≈ 6.1 32704.45 (1.65·10-5) 32704.45 (5.14·10-4) + 

2 623.81 (2.00·10-4) 623.81 (1.08·10-3) + 6.2 32588.92 (1.83·10-7) 32588.92 (1.53·10-4) + 

3 623.83 (6.38·10-4) 623.83 (1.47·10-3) + 7 62456.63 (3.33·10-5) 62456.63 (3.37·10-5) ≈ 

4.1 17964.90 (2.98) 17965.32 (2.93) + 8.1 121417.94 (3.81) 121420.13 (3.77) + 

4.2 24169.96 (0.42) 24170.01 (0.66) ≈ 8.2 121409.43 (4.51) 121411.86 (6.99) + 

4.3 17961.22 (2.44) 17962.47 (3.65) + 8.3 121375.89 (4.85) 121376.08 (4.52) ≈ 

4.2 24164.15 (0.67) 24164.46 (3.64) ≈ 9 197988.18 (8.80·10-8) 197988.20 (0.01) + 

5.1 24514.88 (1.56·10-4) 24515.55 (6.76) + 10 1657962.73 (1.07·10-3) 1657984.46 (16.01) + 

5.2 24516.28 (7.97) 24517.45 (16.26) ≈ 11 1559708.45 (2.69·10-4) 1559728.53 (13.57) + 

5.3 24514.82 (7.02·10-5) 24514.82 (6.40·10-4) + 12 1655679.43 (1.82·10-4) 1655688.07 (1.87) + 

5.4 24513.04 (6.09) 24512.43 (1.45·10-4) ≈ 13 9983.69 (0.12) 9984.41 (0.13) + 

    +/≈/- 15/7/0 

5.3 Performance comparison with algorithms for the ED problem 

The performance comparison between L-HMDE and existing algorithms is discussed in this 

subsection. For each test case, we present the statistical results of the best 15 algorithms (including our 

L-HMDE) in the literature. (There could be fewer than 15 algorithms when a test case is not widely 

studied.) The statistical results include the minimum (Min), the maximum (Max), the average (Avg), and 

the standard deviation (Std) of the cost of the solutions obtained by an algorithm over multiple runs. An 

algorithm is considered only when the detailed solution was reported in the paper and the cost of the 

solution was confirmed to be the same as the cost reported in the paper. We also estimated the NFE of 

these algorithms by the product of the population size and the number of generations/iterations reported 

in the paper. In the following tables, algorithms are ranked in the hierarchical order of Min, Avg, and 

NFE. The detailed solutions obtained by L-HMDE are given in the section of Appendix for reference. 

The power outputs Pj of solutions are presented with eight decimals to maintain the solution accuracy. 

5.3.1 Test case 1: the system with six generators with the transmission loss 

Table 10 gives the performance results of L-HMDE and the other 14 effective algorithms in solving 

test case 1. The best solution obtained by L-HMDE is presented in Appendix A.2. In this test case, some 

papers provided solutions with smaller cost than the solutions in Table 10; however, their solutions had 

inaccurate transmission loss or high error with respect to the power balance constraint. The concern 

about solution accuracy and error in test case 1 was also mentioned in [7], [83], [107], [133]. Therefore, 

these results are not included in our comparison. 

In Table 10, our proposed L-HMDE is the fourth place of the top 15 algorithms. Although RCBA 

and LM found lower costs (15449.61 and 15449.80 respectively) than L-HMDE did (15449.90), we 

found that their solution had a relatively high error (8.66·10-2 and 2.90·10-3 respectively) with respect 

to the power balance constraint than the solution of L-HMDE did (3.42·10-9). When we ran L-HMDE 

with a larger tolerance error ε as 8·10-2, L-HMDE could obtain a solution with cost 15449.62, which is 
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very close to that of those two algorithms. The detailed information is provided in Appendix A.2. ST-

IRDPSO found a solution with a slightly lower cost than that of the solution of L-HMDE; however, it 

consumed much more NFE and its performance was not stable, as shown by a large Std value. As for 

the remaining nine algorithms, L-HMDE could achieve better solution quality using fewer 

computational efforts. 

Table 10 Performance comparison for test case 1 

Rank Algorithms Publication 

year 

Min ($/h) Avg ($/h) Max ($/h) Std NFE 

1 RCBA [133] 2018 15449.61 - - - 10000 

2 LM [34] 2022 15449.80 - - - - 

3 ST-IRDPSO [83] 2017 15449.89 15450.70 - 1.42 4000 

4 L-HMDE  15449.90 15449.90 15449.90 3.24·10-7 1500 

5 MABC [107] 2015 15449.90 15449.90 15449.90 6.04·10-8 2000 

6 MCSA [128] 2018 15449.90 15449.90 15449.90 1.64·10-11 5000 

7 MHS [102] 2014 15449.90 15449.90 15449.90 1.76·10-7 8000 

8 CMFA [56] 2018 15449.90 15449.90 15449.90 8.96·10-6 10000 

9 BSA [46] 2016 15449.90 15449.90 15449.91 1.00·10-3 3000 

10 DHS [55] 2013 15449.90 15449.93 15449.99 2.04·10-2 3000 

11 MSSA [137] 2016 15449.90 15449.94 15453.55 3.65·10-1 12000 

12 MPSO-TVAC [73] 2014 15449.91 15450.17 15451.57 3.70·10-1 15000 

13 EPSO [86] 2013 15449.94 15450.35 15452.00 - - 

14 NPSO-LRS [70] 2007 15450.00 15450.50 15452.00 - - 

15 PSO [6] 2003 15450.00 15454.00 15492.00 2.00·10-4 20000 

5.3.2 Test case 2-3: the system with ten generators considering multiple types of fuel 

Test cases 2 and 3 are systems with ten generators that use the same coefficient values. The difference 

between these two test cases is that only test case 3 considers the valve-point effect. The performance 

comparison between L-HMDE and the other effective algorithms are given in Tables 11 and 12, 

respectively. The best solutions achieved by L-HMDE for test cases 2 and 3 are listed in Appendix B.2. 

Our literature review found 12 studies that applied their algorithms to solve test case 2. Their results 

are listed in Table 11. L-HMDE is the first place. We can see that test case 2 is an easy problem to solve; 

top nine algorithms could find the minimal cost in the best case, and top five algorithms could even find 

the minimal cost in the worst case. L-HMDE offered good solution quality and consumed the fewest 

NFE among all 12 algorithms. 

Table 11 Performance comparison for test case 2 

Rank Algorithms Publication 

year 

Min ($/h) Avg ($/h) Max ($/h) Std NFE 

1 L-HMDE  623.81 623.81 623.81 2.00·10-4 2000 

2 IPSO [98] 2013 623.81 623.81 623.81 1.35·10-5 3000 

3 ICDEDP [57] 2008 623.81 623.81 623.81 - 4000 

4 SDE [60] 2013 623.81 623.81 623.81 - 9000 

5 DE [63] 2008 623.81 623.81 623.81 - 12000 

6 ALHN [40] 2013 623.81 625.94 626.25 8.26·10-1 - 

7 PPSO [90] 2019 623.81 - - - 20000 

8 IGA-MU [9] 2005 623.81 - - - - 

9 MPSO [97] 2005 623.81 - - - - 

10 HM [10] 1984 625.18 - - - - 

11 MHNN [135] 1993 626.12 - - - - 

12 AHNN [134] 1998 626.24 - - - - 

 

For test case 3, the comparison results are presented in Table 12. Although some studies reported 

lower cost values than the results in Table 12, the cost values re-calculated from the detailed solutions in 

these papers did not match their reported cost values, as discussed in [7], [83], [56]. Thus, those results 

were excluded in our comparison. Test case 3 is also an easy problem. All top 15 algorithms could find 

the minimal cost in the best case. SDE is the best algorithm, and our L-HMDE is the second place. 

CCPSO is the only algorithm that reported a lower Std value than L-HMDE did, but it consumed 30 

times of NFE of L-HMDE.  
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Table 12 Performance comparison for test case 3 

Rank Algorithms Publication 

year 

Min ($/h) Avg ($/h) Max ($/h) Std NFE 

1 SDE [60] 2013 623.83 623.83 623.83 - 9000 

2 L-HMDE  623.83 623.83 623.83 6.38·10-4 10000 

3 IODPSO-L [75] 2017 623.83 623.83 623.83 0.00 15000 

4 DHS [55] 2013 623.83 623.83 623.83 - 50000 

5 CQGSO [136] 2012 623.83 623.83 623.85 - 120000 

6 CCPSO [91] 2010 623.83 623.83 623.83 5.00·10-4 300000 

7 DPSOEP [84] 2017 623.83 623.84 623.85 - 60000 

8 ARCGA [100] 2010 623.83 623.84 623.86 - - 

9 TFWO [145] 2020 623.83 623.85 - 9.80·10-3 8000 

10 PPSO [90] 2019 623.83 623.85 - 9.80·10-3 20000 

11 RCGA [99] 2009 623.83 623.85 623.88 - 1000 

12 CCEDE [61] 2016 623.83 623.86 623.89 7.60·10-3 7000 

13 CMFA [56] 2018 623.83 623.87 623.91 1.89·10-2 10000 

14 CACO-LD-AP [147] 2022 623.83 623.89 624.02 2.95·10-2 - 

15 DEPSO [51] 2013 623.83 623.90 624.08 - 25000 

5.3.3 Test case 4: the system with 13 generators with the valve-point effect 

The solution results of L-HMDE and existing algorithms in solving test cases 4.1 to 4.4 are presented 

in Tables 13 to 16, respectively. The best solutions obtained by L-HMDE for these test cases are given 

in Appendix C.3. 

Table 13 shows the results of solving test case 4.1. Our L-HMDE is the seventh place. Among the 

13 algorithms that could find the minimal cost, L-HMDE consumed the fifth fewest NFE. It took fewer 

NFE to achieve lower average cost than two algorithms (DE and ORCSA). In general, we can observe a 

trade-off between computational effort (NFE) and performance stability (Std).  

Table 14 shows the results of solving test case 4.2. We can separate the top six algorithms into two 

groups: the top two algorithms could find the minimal cost (24169.91) but consumed large NFE and 

provided unstable performance; the next four algorithms found a slightly higher cost (24169.92) but 

provided stable performance. Our L-HMDE is in the second group, and it consumed the fewest NFE 

among the top six algorithms. 

Table 13 Performance comparison for test case 4.1 

Rank Algorithms Publication 

year 

Min ($/h) Avg ($/h) Max ($/h) Std NFE 

1 MABC [107] 2015 17963.83 17963.83 17963.83 2.26·10-4 216000 

2 MPDE [62] 2019 17963.83 17963.83 17963.83 0.00 1080000 

3 ESSA [144]  2020 17963.83 17963.92 17964.41 1.05·10-1 800000 

4 HAAA [142] 2018 17963.83 17963.84 17963.93 1.90·10-2 1187106 

5 MsEBBO [53] 2013 17963.83 17964.05 17969.03 1.92 80000 

6 FV-ICLPSO [76] 2022 17963.83 17964.09 17969.22 1.0397 100000 

7 L-HMDE  17963.83 17964.90 17978.14 2.98 25000 

8 θ-PSO [87] 2013 17963.83 17965.21 17980.20 - 4500 

9 DE [63]  2008 17963.83 17965.48 17975.36 - 93600 

10 CBA [132] 2016 17963.83 17965.49 17995.23 6.85 12000 

11 GSO [141] 2017 17963.83 17968.46 17982.41 3.63 - 

12 ORCSA [119] 2015 17963.83 17985.41 18028.56 21.95 200000 

13 FMILP [37] 2020 17963.83 - - - - 

14 PSO-TVAC [88] 2009 17963.88 18154.56 18358.31 - 6250 

15 HQPSO [82] 2008 17963.96 18273.86 18633.04 123.22 16000 

Table 14 Performance comparison for test case 4.2 

Rank Algorithms Publication 

year 

Min ($/h) Avg ($/h) Max ($/h) Std NFE 

1 Jaya-SML [117] 2019 24169.91 24217.09 24285.89 52.91 90000 

2 Ijaya [115] 2020 24169.91 24220.57 24277.55 50.34 250000 

3 DE [63] 2008 24169.92 24169.92 24169.92 4.45·10-5 78000 

4 MABC [107] 2015 24169.92 24169.92 24169.92 5.77·10-7 180000 

5 MCSA [128] 2018 24169.92 24169.92 24169.92 5.86·10-5 25000 

6 L-HMDE  24169.92 24169.96 24174.08 4.20·10-1 25000 

7 ORCSA [119] 2015 24169.92 24182.21 24271.92 21.99 200000 

8 CPSO-SQP [96] 2012 24190.97 - - - - 

9 PSO-SQP [95] 2004 24261.05 - - - 10000 

10 Interior Point [35] 2019 24383.46 - - - - 

Table 15 shows the results of solving test case 4.3. L-HMDE is the fourth place. We can see that this 

test case may have a challenging landscape for metaheuristics since most algorithms have large Std 

values. Although 11 algorithms could achieve the minimal cost, large Std values reveal that these 

algorithms sometimes got stuck at local optimal solutions of high cost. L-HMDE offered the fourth 
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smallest Std value, which shows its robustness of performance.  

Table 16 shows the results of solving test case 4.4. L-HMDE is the third place. Only six algorithms 

could achieve the minimal cost, and L-HMDE is one of them. In addition, L-HMDE consumed the fewest 

NFE, and its Std value is smaller than DHS, ECSA, and RQEA, which consumed much more NFE. 

Table 15 Performance comparison for test case 4.3 

Rank Algorithms Publication 

year 

Min ($/h) Avg ($/h) Max ($/h) Std NFE 

1 ESAHJ [150] 2021 17960.36 - - - 130000 

2 MPDE [62] 2019 17960.37 17960.37 17960.50 2.70·10-2 1080000 

3 DHS [55] 2013 17960.37 17961.12 17968.36 1.92 60000 

4 L-HMDE  17960.37 17961.22 17970.39 2.44 25000 

5 IDE [48] 2016 17960.37 17961.47 17969.49 2.65 120000 

6 IHS [130]  2009 17960.37 17965.42 17971.65 16.95 22500 

7 DEL [67] 2014 17960.37 17966.13 17975.41 4.72 24000 

8 HAAA [142] 2018 17960.37 17967.56 17990.92 6.79 1187106 

9 THS [126] 2016 17960.37 17977.60 - 17.06 50000000 

10 NTHS [127] 2018 17960.37 17987.10 - - 50000000 

11 SDE [59] 2013 17960.37 - - - 18000 

12 SCA- βHC [123] 2023 17960.39 - 17960.96 5.45·10-1 30000 

13 C-GRASP-SaDE [50] 2017 17960.39 17966.11 17968.87 2.70 24000 

14 MDE [44] 2010 17960.39 17967.19 17969.09 - 280000 

15 CDEMD [47] 2009 17961.94 17974.69 18061.41 20.31 25000 

Table 16 Performance comparison for test case 4.4 

Rank Algorithms Publication 

year 

Min ($/h) Avg ($/h) Max ($/h) Std NFE 

1 IDE [48] 2016 24164.05 24164.05 24164.05 2.55·10-8 120000 

2 IODPSO-G [75] 2017 24164.05 24164.13 24164.79 2.30·10-1 60000 

3 L-HMDE  24164.05 24164.15 24168.81 6.70·10-1 25000 

4 DHS [55] 2013 24164.05 24164.53 24168.81 1.14 40000 

5 ECSA [120] 2023 24164.05 24168.61 - 15.959 10000000 

6 RQEA [101] 2008 24164.05 - - - 50000 

7 NRHS [127] 2018 24164.06 24185.61 - - 50000000 

8 THS [126] 2016 24164.06 24195.21 - 30.21 50000000 

9 ESAHJ [150] 2021 24164.06 - - - 130000 

10 SCA- βHC [123] 2023 24164.09 24164.38 - 2.84·10-1 30000 

11 ADE-MMS [49] 2019 24164.12 24168.97 24255.61 23.67 8000 

12 ABC [105] 2014 24166.22 - - - 100000 

13 SDE [59] 2013 24169.92 - - - 18000 

5.3.4 Test case 5: the system with 13 generators with the valve-point effect and the transmission loss 

The solution results of L-HMDE and existing algorithms in solving test cases 5.1 to 5.4 are presented 

in Tables 17 to 20, respectively. The best solutions obtained by L-HMDE for these test cases are given 

in Appendix D.6. The 13-unit test cases were not widely studied in the literature. Thus, we only listed 

eight algorithms in Table 17, four in Table 18, and three in Tables 19 and 20. 

Table 17 shows the results of solving test case 5.1. Among the eight algorithms, only half of them 

could achieve the minimal cost stably. L-HMDE is the second place and consumed the fewest NFE 

among the top four algorithms. MCSA consumed the same number of NFE and achieved even lower Std 

value than L-HMDE. We will have a deeper investigation of its design and consider integrating its feature 

in our algorithm in the future. 

Table 17 Performance comparison for test case 5.1 

Rank Algorithms Publication 

year 

Min ($/h) Avg ($/h) Max ($/h) Std NFE 

1 MCSA [128] 2018 24514.88 24514.88 24514.88 3.12·10-7 25000 

2 L-HMDE  24514.88 24514.88 24514.88 1.56·10-4 25000 

3 MABC [107] 2015 24514.88 24514.88 24514.88 3.50·10-7 180000 

4 MPDE [62] 2019 24514.88 24514.88 24514.88 0.00 900000 

5 SDE [59] 2013 24514.88 24516.31 - - 18000 

6 DSOS [143] 2020 24514.88 - - - 15000 

7 Self-tuning HDE [66] 2007 24560.08 24706.63 24872.44 - 12500 

8 MHSA [131] 2014 24585.36 24638.37 24711.30 - 45000 

 

Tables 18−20 show the results of solving test cases 5.2−5.4. Few studies considered these three test 

cases. Our L-HMDE and MPDE are the only two algorithms that could achieve the minimal cost for 

these three cases. The advantage of L-HMDE is that it required less than 3% of NFE of MPDE. 
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Table 18 Performance comparison for test case 5.2 

Rank Algorithms Publication 

year 

Min ($/h) Avg ($/h) Max ($/h) Std NFE 

1 MPDE [62] 2019 24515.23 24515.23 24515.23 0.00 900000 

2 L-HMDE  24515.23 24516.28 24588.31 7.97 25000 

3 FMILP [37] 2020 24515.23 - - - - 

4 FPSOGSA [78] 2015 24515.36 24516.68 - - 100000 

Table 19 Performance comparison for test case 5.3 

Rank Algorithms Publication 

year 

Min ($/h) Avg ($/h) Max ($/h) Std NFE 

1 L-HMDE  24514.82 24514.82 24514.82 7.02·10-5 25000 

2 MPDE [62] 2019 24514.82 24514.82 24514.82 0.00 900000 

3 OIWO [112] 2016 24514.83 24514.83 24514.83 - - 

Table 20 Performance comparison for test case 5.4 

Rank Algorithms Publication 

year 

Min ($/h) Avg ($/h) Max ($/h) Std NFE 

1 MPDE [62] 2019 24512.43 24512.43 24512.43 - 900000 

2 L-HMDE  24512.43 24513.04 24573.30 6.09 25000 

3 OGWO [111] 2018 24512.72 24512.85 24513.09 9.83·10-2 5000 

5.3.5 Test case 6: the system with 15 generators with the transmission loss 

The solution results of L-HMDE and existing algorithms in solving test cases 6.1 and 6.2 are 

presented in Tables 21 and 22, respectively. The best solutions obtained by L-HMDE for these test cases 

are given in Appendix E.4. Test case 6.2 was less popularly examined in the literature, and thus only six 

algorithms are listed in Table 22. 

Table 21 lists the results of top 15 algorithms in solving test case 6.1. Even though ESSA obtained 

a smaller cost than L-HMDE, it still had a higher error (2.70·10-1) than ours (2.99·10-9). L-HMDE 

outperforms ten algorithms in terms of both solution quality and computational efficiency. It is 

outperformed only by CLCS-CLM, which consumed slightly fewer NFE and achieved slightly lower Std 

value than L-HMDE. 

Table 22 lists the results of six algorithms in solving test case 6.2. The top three algorithms achieved 

better solutions than L-HMDE. However, DEPSO and DE consumed eight to nine times of NFE of L-

HMDE, and their performance is not stable. Moreover, the errors of their solutions (DEPSO = 1.00·10-2, 

DE = 7.00·10-3) with respect to the power balance constraints are much larger than that of L-HMDE 

(1.35·10-10). L-HMDE is the fourth place. It offers good solution quality stably and efficiently. 

Table 21 Performance comparison for test case 6.1  

Rank Algorithms Publication 

year 

Min ($/h) Avg ($/h) Max ($/h) Std NFE 

1 ESSA [144] 2020 32701.21 32701.22 32701.22 5.00·10-3 80000 

2 CLCS-CLM [129] 2020 32704.45 32704.45 32704.45 8.79·10-6 4500 

3 L-HMDE  32704.45 32704.45 32704.45 1.65·10-5 5000 

4 CTPSO [91] 2010 32704.45 32704.45 32704.45 0.00 300000 

5 BSA [46] 2016 32704.45 32704.47 32704.58 2.80·10-2 5000 

6 WCA [140] 2017 32704.45 32704.51 32704.52 4.51·10-5 60000 

7 SWT-PSO [92] 2013 32704.45 - - - 9000 

8 MPSO-TVAC [73] 2014 32704.47 32705.80 32728.99 3.51 75000 

9 EPSO [86] 2013 32704.83 32725.37 32762.01 - 50000 

10 MDE [44] 2010 32704.90 32708.10 32711.50 - 160000 

11 Jaya-SML [117] 2019 32706.36 32706.68 32707.29 2.32 150000 

12 CACO-LD-AP [147] 2022 32706.38 32712.47 32728.28 5.41 - 

13 Ijaya [115] 2020 32706.62 32707.24 32708.59 3.08 500000 

14 CSO [118] 2015 32706.66 - - - 25000 

15 IPSO [98] 2013 32706.66 - - - - 

Table 22 Performance comparison for test case 6.2  

Rank Algorithms Publication 

year 

Min ($/h) Avg ($/h) Max ($/h) Std NFE 

1 DEPSO [51] 2013 32588.81 32588.99 32591.49 - 40000 

2 DE [63] 2008 32588.87 32609.85 32641.42 - 45000 

3 L-HMDE  32588.92 32588.92 32588.92 1.83·10-7 5000 

4 DHS [55] 2013 32588.92 32588.92 32588.93 3.47·10-3 24000 

5 IDP [38] 2008 32590.00 - - - - 

6 PSO [149] 2003 33020.00 - - - 20000 
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5.3.6 Test case 7: the system with 20 generators with the transmission loss 

Based on our literature review, we listed the results of 12 algorithms in solving test case 7 in Table 

23. DSOS [143] achieved a better solution than all listed algorithms did, but it is not included since its 

solution has a large error (larger than 0.2) with respect to the power balance constraint. The best solution 

obtained by L-HMDE is presented in Appendix F2. 

ADE-MMS is the only algorithm that could achieve the minimal cost. A disadvantage of ADE-MMS 

is that its performance is less stable than other algorithms. ORCSA and our L-HMDE are the second and 

third place, respectively. They offered very similar solution quality and consumed the same NFE. MCSA 

and CQGSO could also achieve good and robust solution quality, but they required much more NFE. 

Table 23 Performance comparison for test case 7  

Rank Algorithms Publication 

year 

Min ($/h) Avg ($/h) Max ($/h) Std NFE 

1 ADE-MMS [49] 2019 62456.51 62456.64 62457.06 1.32·10-1 8000 

2 ORCSA [119] 2015 62456.63 62456.63 62456.63 3.00·10-5 5000 

3 L-HMDE  62456.63 62456.63 62456.63 3.33·10-5 5000 

4 MCSA [128] 2018 62456.63 62456.63 62456.63 1.21·10-11 40000 

5 CQGSO [136] 2012 62456.63 62456.63 62456.63 - 120000 

6 CBA [132] 2016 62456.63 62456.63 62501.67 3.88·10-1 12000 

7 GABC [106] 2014 62456.63 62456.69 62456.72 1.70·10-2 5000 

8 CACO-LD-AP [147] 2022 62456.63 62513.52 62554.37 20.80 - 

9 HNN [5] 2000 62456.63 - - - - 

10 λ-Logic Based [39] 2009 62456.63 - - - - 

11 FMILP [37] 2020 62456.63 - - - - 

12 BSA [45] 2014 62456.69 62457.15 62458.13 - 400000 

13 BBO [54] 2010 62456.79 62456.79 62456.79 - 20000 

5.3.7 Test case 8: the system with 40 generators with the valve-point effect 

The solution results of L-HMDE and existing algorithms in solving test cases 8.1−8.3 are presented 

in Tables 24−26, respectively. The best solutions obtained by L-HMDE for these test cases are given in 

Appendix G.4. Test cases 8.2 and 8.3 were less popularly examined in the literature, and thus only nine 

and five algorithms are listed in Tables 25 and 26, respectively. 

Table 24 Performance comparison for test case 8.1  

Rank Algorithms Publication 

year 

Min ($/h) Avg ($/h) Max ($/h) Std NFE 

1 ESSA [144] 2020 121412.50 121450.60 121517.00 31.02 1600000 

2 C-MIMO-CSO [139] 2019 121412.50 121454.20 121517.80 28.81 1400000 

3 MsEBBO [53] 2013 121412.53 121417.19 121450.00 5.80 80000 

4 CACO-LD-AP [147] 2022 121412.53 121428.16 121439.76 9.26 - 

5 GSK-DE [58] 2023 121412.53 121451.19 121506.66 28.1149 400000 

6 PPSO [90] 2019 121412.54 121412.59 121413.95 5.63·10-2 120000 

7 MPDE [62] 2019 121412.54 121412.62 121414.62 4.09·10-1 2400000 

8 CLCS-CLM [129] 2020 121412.54 121412.99 121414.67 7.59·10-1 90000 

9 CCEDE [61] 2016 121412.54 121413.00 121414.69 9.74·10-2 70000 

10 FPSOGSA [78] 2015 121412.54 121413.56 121414.98 - 300000 

11 MCSA [128] 2018 121412.54 121414.16 121421.12 2.75 80000 

12 SDE [59] 2013 121412.54 121415.72 121418.58 - 60000 

13 L-HMDE  121412.54 121417.94 121426.34 3.81 50000 

14 FV-ICLPSO [76] 2022 121412.54 121419.66 121424.27 3.2791 200000 

15 DCPSO [74] 2014 121412.54 121423.13 121516.89 - 250000 

Table 24 lists the results of top 15 algorithms in solving test case 8.1. We can separate the top nine 

algorithms into three groups. The algorithms of ranks 1, 2, and 5 consumed large NFE but still had 

unstable performance (large Std values). The algorithms ESSA and C-MIMO-CSO obtained the lowest 

cost, but their solutions have relative larger errors (9.90e-3 and 3.7e-3 respectively) with respect to the 

problem constraints. The algorithms MsEBBO and CACO-LD-AP achieved a slightly higher cost 

(121412.53) more stably using fewer NFE. The last four algorithms provided high quality solutions quite 

stably; among them, CCEDE consumed the fewest NFE. Test case 8.1 is the most challenging case to L-

HMDE. In fact, it is one of the only two test cases that L-HMDE is not among the top six algorithms. L-

HMDE could achieve the same cost in the best case as other ten algorithms did by using the fewest NFE. 

However, we still need to think of how to improve its solution quality without increasing too more NFE. 

Tables 25 and 26 present the results of solving test cases 8.2 and 8.3, respectively. Not many studies 

solved these two test cases. L-HMDE is ranked second and first place, respectively. Regarding test case 

8.2, L-HMDE outperforms all algorithms except MPDE and DEC-SQP in terms of solution quality, 

stability, and computational efficiency simultaneously. MPDE achieved more stable solution quality than 
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L-HMDE but meanwhile consumed much more NFE (48 times). DEC-SQP consumed much fewer NFE 

than all others, but its solution quality is much worse. As for test case 8.3, L-HMDE outperforms IDE in 

terms of solution quality and efficiency. The results of the other three algorithms show the trade-off 

between solution quality and computational effort. 

Table 25 Performance comparison for test case 8.2  

Rank Algorithms Publication 

year 

Min ($/h) Avg ($/h) Max ($/h) Std NFE 

1 MPDE [62] 2019 121403.54 121403.66 121405.62 4.95·10-1 2400000 

2 L-HMDE  121403.54 121409.43 121429.09 4.51 50000 

3 DHS [55] 2013 121403.54 121410.60 121417.23 4.80 240000 

4 CCPSO [91] 2010 121403.54 121445.33 121525.49 32.49 300000 

5 HAAA [142] 2018 121403.70 121425.56 121428.90 5.25 1947546* 

6 HcSCA [124] 2021 121403.87 121537.00 121913.32 105.98 867030* 

7 IDE [48] 2016 121411.49 121429.04 121468.73 16.83 160000 

8 DEC-SQP [64] 2006 121741.98 122295.13 122839.29 386.18 18000 

9 Interior Point [35] 2023 122264.88 - - - - 

* Ref. [142], [124] only presented the maximum NFE over 30 runs. 

Table 26 Performance comparison for test case 8.3  

Rank Algorithms Publication 

year 

Min ($/h) Avg ($/h) Max ($/h) Std NFE 

1 L-HMDE  121369.08 121375.89 121403.13 4.85 50000 

2 IDE [65] 2014 121370.13 121372.28 121376.01 - 60000 

3 ADE-MMS [49] 2019 121370.82 121428.65 121539.50 38.87 24000 

4 MPSO [93] 2015 121379.43 121384.43 121391.07 - 20000 

5 FCEP [114] 2017 121393.00 121394.00 121395.00 - 30000 

5.3.8 Test case 9: the system with 110 generators 

Test case 9 is a large-scale problem. It was provided in [112] in 2015, and hence there are still not 

many studies working on it. We listed the results of nine algorithms in Table 27. The best solution 

obtained by L-HMDE is presented in Appendix H.2. L-HMDE is ranked second place. It outperforms all 

algorithms except HcSCA in terms of solution quality, stability, and computational efficiency 

simultaneously. HcSCA found a solution with a slightly lower cost, but it consumed more than 20 times 

of NFE of L-HMDE. 

Table 27 Performance comparison for test case 9  

Rank Algorithms Publication 

year 

Min ($/h) Avg ($/h) Max ($/h) Std NFE 

1 HcSCA [124] 2021 197988.17 197988.17 197988.17 8.79·10-4 1052020* 

2 L-HMDE  197988.18 197988.18 197988.18 8.80·10-8 50000 

3 GSK-DE [58] 2023 197988.18 197988.18 197988.18 1.17·10-4 110000 

4 TFWO [145] 2020 197988.18 197988.18 197988.19 6.80·10-3 160000 

5 HIWO [116] 2019 197988.19 197988.20 197988.20 2.50·10-3 60000 

6 OIWO [112] 2015 197989.14 197989.41 197989.93 - - 

7 DSOS [143] 2020 198007.60 - - - 500000 

8 ISMA [146] 2021 198565.90 198782.10 198949.10 153.465 5000000 

9 EBWO [113] 2023 199417.20 201729.10 205262.60 1869.996 1500000 

* Ref. [124] only presented the maximum NFE over 30 runs. 

5.3.9 Test case 10−12: the system with 140 generators 

Test cases 10 to 12 are large-scale systems with 140 generators that take the same coefficient values 

but consider different problem constraints. Test case 10 considers the valve-point effect, the ramping rate, 

and prohibited zones. Test case 11 ignores the ramping rate, and test case 12 ignores the valve-point 

effect. The solution results of L-HMDE and existing algorithms in solving test cases 10−12 are presented 

in Tables 28−30, respectively. The best solutions obtained by L-HMDE for these test cases are given in 

Appendix I.2. We found that in the literature some studies compared experimental results across test 

cases. This should be avoided since these test cases have different problem characteristics and optimal 

solutions.  

Table 28 lists the results of eight algorithms in solving test case 10. Although L-HMDE is the fifth 

place, the top four algorithms got a very small reduction of cost by using at least 4.5 times of NFE of L-

HMDE. In addition to high computational efficiency, L-HMDE is also good for stability. It provides the 

second lowest average cost and the smallest Std value among all algorithms. 
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Test case 11 is the most popular one among the three 140-unit test cases. Table 29 lists the results of 

the top 15 algorithms in solving this case. L-HMDE is the fourth place. It outperforms nine algorithms 

in terms of solution quality, stability, and computational efficiency. CLCS-CLM is slightly more stable 

than L-HMDE by using 3.6 times of NFE of L-HMDE, while C-MIMO-CSO achieved slightly lower 

cost by using 30 times of NFE. ESSA obtained the minimal cost by using 60 times of NFE of L-HMDE; 

besides, its solution has a considerable error (7·10-2) with respect to the power balance constraint. 

We only found five algorithms that solved test case 12. Table 30 lists the results. Again, L-HMDE 

shows its advantage in terms of solution quality, stability, and computational efficiency. There is only 

one algorithm (HHE) that can achieve lower cost than L-HMDE, but HHE consumed 170 times of NFE 

of L-HMDE. 

Table 28 Performance comparison for test case 10 

Rank Algorithms Publication 

year 

Min ($/h) Avg ($/h) Max ($/h) Std NFE 

1 CCEDE [61] 2016 1657962.70 1657963.05 1657965.18 1.15 400000 

2 HHE [52] 2014 1657962.71 - - - 9500000 

3 DCPSO [74] 2015 1657962.72 1657962.72 1657962.72 - 500000 

4 DEL [67] 2014 1657962.72 1658001.70 1651518.67 57.98 225000 

5 L-HMDE  1657962.73 1657962.73 1657962.73 1.07·10-3 50000 

6 CQGSO [136] 2012 1657962.73 1657962.74 1657962.78 - 120000 

7 FMILP [37] 2020 1657964.71 - - - - 

8 WCA [140] 2017 1658006.70 1658029.91 1658116.01 37.15 1500000 

Table 29 Performance comparison for test case 11 

Rank Algorithms Publicat

ion year 

Min ($/h) Avg ($/h) Max ($/h) Std NFE 

1 ESSA [144] 2020 1559705.00 1559706.00 1559707.00 0.84 3000000 

2 C-MIMO-CSO [139] 2019 1559708.00 1559709.54 1559725.00 4.43 1500000 

3 CLCS-CLM [129] 2020 1559708.44 1559708.44 1559708.44 4.23·10-6 180000 

4 L-HMDE  1559708.45 1559708.45 1559708.45 2.69·10-4 50000 

5 HcSCA [124] 2021 1559708.47 1559709.98 1559714.50 1.51 2058030 

6 MPDE [62] 2019 1559708.81 1559709.06 1559709.43 3.06·10-1 4800000 

7 WCA [140] 2017 1559709.42 - - - 1500000 

8 HIWO [116] 2019 1559709.53 1559709.70 1559709.90 8.56·10-2 60000 

9 OGWO [111] 2018 1559709.97 1559713.26 1559743.47 9.36·10-2 5000 

10 HAAA [142] 2018 1559710.00 1559712.87 1559731.00 4.14 5236471 

11 MSSA [137] 2016 1559708.70 1559708.82 1559709.21 1.10·10-1 160000 

12 GWO [110] 2016 1559953.18 1560132.93 1560228.40 1.02 5000 

13 SDE [59] 2013 1560236.85 - - - 120000 

14 MPSO [93] 2015 1560436.00 1560445.00 1560462.00 - 60000 

15 IDE [65] 2014 1564648.66 1564663.54 1564682.73 - 250000 

* Ref. [142], [124] only presented the maximum NFE over 30 runs. 

Table 30 Performance comparison for test case 12 

Rank Algorithms Publication 

year 

Min ($/h) Avg ($/h) Max ($/h) Std NFE 

1 HHE [52] 2014 1655679.41 - - - 8500000 

2 L-HMDE  1655679.43 1655679.43 1655679.43 1.82·10-4 50000 

3 CQGSO [136] 2012 1655679.43 1655679.43 1655679.43 - 120000 

4 PPSO [90] 2019 1655679.89 1655680.97 1655681.81 1.27 440000 

5 WCA [140] 2017 1655686.57 - - - 1500000 

5.3.10 Test case 13: the system with 160 generators with multiple types of fuels and the valve-point 

effect 

The solution results of L-HMDE and existing algorithms in solving test case 13 are presented in 

Table 31. The best solution obtained by L-HMDE is given in Appendix J.1. Test case 13 is the second 

hardest problem for L-HMDE in our experiments. L-HMDE consumed 150000 NFE to achieve a cost 

close to the minimal cost obtained by FV-ICLPSO. We observed the solution quality of L-HMDE with 

different numbers of NFE. Although L-HMDE consumed more NFE than the following five algorithms, 

it could find solutions with cost less than 10000 with 20000 NFE and solutions with cost less than 9990 

with 30000 NFE in all runs. These observations showed that L-HMDE could offer competitive solution 

quality using the same level of NFE when compared with the algorithms ranked fifth to ninth. 

https://doi.org/10.1016/j.asoc.2023.110891


Economic dispatch using metaheuristics: Algorithms, problems, and solutions, ASC 2024   30 
 

Table 31 Performance comparison for test case 13 

Rank Algorithms Publication 

year 

Min ($/h) Avg ($/h) Max ($/h) Std NFE 

1 FV-ICLPSO [76] 2022 9981.59 9981.78 9981.92 7.16·10-2 200000 

2 HIWO [116] 2019 9981.79 9982.00 9982.19 9.00·10-2 60000 

3 OIWO [112] 2015 9981.98 9982.99 9984.00 - - 

4 L-HMDE  9983.35 9983.69 9983.91 1.20·10-1 150000 

5 CSO [138] 2016 9984.24 9984.92 9986.36 4.00·10-1 100000 

6 CMFA [56] 2018 9985.60 9987.55 9996.94 2.52 25000 

7 ORCSA [119] 2015 9989.94 9992.05 9996.83 1.41 96000 

8 CBA [132] 2016 10002.86 10006.33 10045.23 9.58 20000 

9 BSA [46] 2016 10014.09 10035.40 10060.93 9.04 30000 

5.3.11 Summary of performance comparison 

In Section 5.3 we compared the performance of our L-HMDE with more than 90 existing algorithms 

in solving 22 test cases. We comprehensively collected experimental results in the literature and carefully 

verified their solutions. Then, we compared these algorithms from three aspects: solution quality, stability, 

and computational efficiency. We count the number of test cases each algorithm is ranked among the top 

six algorithms as an overall performance indicator. L-HMDE is among the top six for 20 out of 22 test 

cases. The next four algorithms are MPDE [62], DHS [55], ESSA [144], and CQGSO [136], which are 

among the top six for only eight, five, four, and four test cases, respectively. This result shows that our 

L-HMDE can solve a wide set of ED test cases of different scale and with different model characteristics 

very well. Note that L-HMDE used the same parameter setting (except NFE) to solve all test cases. 

By looking into the design of the above five algorithms, we found two important design concepts in 

common. First, all these algorithms adopted more than one operator to produce new solutions. For 

example, MPDE used three mutation operators, DHS hybridized DE and HS operators, and CQGSO 

applied two kinds of operators for two kinds of sub-populations. Second, most of these algorithms 

adopted some kind of parameter control mechanisms. For example, MPDE used nonlinear decrement 

method to adjust the scaling factor, and ESSA used the exponential function to control the moving 

trajectory of the population. The design of our L-HMDE catches these two important concepts. We adopt 

a hybrid mutation strategy and a linear population size reduction mechanism. They are useful for 

balancing the exploitation and the exploration, which significantly affects the search ability of 

metaheuristics. Through quantitative and qualitative analysis, we suggest that researchers who are 

interested in solving the ED problem may put focus on the research topics of multi-operators and 

parameter control in the future. 

5.4 Performance comparison with general-purpose algorithms 

In the previous section, we verified the good performance of our proposed L-HMDE by comparing 

it with the existing algorithms designed for the ED problem. In this section, we want to compare L-

HMDE with three general-purpose algorithms in solving not only the 22 ED test cases but also the 

benchmark functions of the CEC 2020 competition on single objective bound constrained numerical 

optimization (hereafter called CEC 2020 benchmark functions) [151]. On one hand, performance 

comparison between L-HMDE and general-purpose algorithms using the ED test cases can help us to 

understand whether the ED test cases are really challenging. On the other hand, comparison between 

these algorithms using the CEC benchmark functions can examine the general problem solving ability 

of our L-HMDE. 

The three general-purpose algorithms to be compared are Success-History-based Adaptive DE 

(SHADE) [152], L-SHADE [148], and improved multi-operator DE (IMODE) [153]. SHADE is an 

adaptive DE that controls the values of F and CR based on the history of successfully generating better 

offspring solutions. L-SHADE extends SHADE by the linear population size reduction mechanism. It 

was the winner of the CEC 2014 competition on real-parameter single objective optimization. IMODE 

uses multiple operators to generate new solutions and selects the operator based on the population 

diversity. It was the winner of the CEC 2020 competition on single objective bound constrained 

numerical optimization. We used the implementation of SHADE and L-SHADE in the PlatEMO software 

package [154]. As for IMODE, we used the source code provided by the competition organizers1. 

 
1 https://github.com/P-N-Suganthan/2020-Bound-Constrained-Opt-Benchmark 
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5.4.1 CEC 2020 benchmark functions 

The CEC 2020 benchmark function set consists of 10 test functions. Detailed definitions and 

function characteristics are referred to [151]. In our experiments, we set the problem dimension to 15. 

We ran each algorithm to solve each function for ten times. The performance of each algorithm was 

assessed by the error between the best-found solution and the global optimum. Parameter settings of the 

compared algorithms followed the original papers, as shown in Table 32. Experimental results are 

presented in Table 33. We used the Wilcoxon rank-sum test to check the significance of the difference 

with the significance level of 0.5. 

The experimental result demonstrates that our L-HMDE performs significantly better than SHADE 

and L-SHADE in 7 and 5 out of 10 functions, respectively. It does not perform significantly worse than 

these two algorithms in any function. However, L-HMDE outperforms IMODE only in two functions 

and is outperformed in five functions. Since our L-HMDE is designed specifically to solve the ED 

problems, it is not surprising that L-HMDE does not perform as well as IMODE, which is a top algorithm 

designed for general purpose.  

Table 32 Parameter setting of the four compared algorithms in solving CEC 2020 benchmark functions 

Algorithm Parameter setting 

SHADE [152] NP = 100, |H| = NP, |A |= NP, MCR
initial = 0.5, MF

initial = 0.5, Pi
best = rand[2, 0.2NP], σ=0.1 

L-SHADE [148] NPinitial = 100, NPfinal = 4, |H| = 5, |A|= 2NP, MCR
initial = 0.5, MF

initial = 0.5, Pi
best = rand[2, 0.1NP],σ=0.1, ⊥= 0 

IMODE [153] NPinitial = 6D2, NPfinal = 4, |H| = 20D, |A|= 2.6NP, MCR
initial = 0.2, MF

initial = 0.2, Ø = [1,0.1NP],σ=0.1, FFELS = 0.85FFEmax 

L-HMDE  NPinitial = 100, NPfinal = 4, CR = 0.1, F = 0.5, 𝛿 = 0.7 

Table 33 Fitness errors of four algorithms in solving the CEC 2020 benchmark functions 

  L-HMDE IMODE L-SHADE SHADE 

F01 

Best 0.0000E+00 0.0000E+00 
≈ 

 

0.0000E+00 
≈ 

 

0.0000E+00 
≈ 

 
Mean 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 

Std. 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 

F02 

Best 8.3466E-02 1.6655E-01 
+ 

 

2.1631E+01 

+ 

2.6826E+01 

+ Mean 3.6855E-01 1.5201E+00 1.3273E+02 1.1523E+02 

Std. 6.6883E-01 1.5582E+00 2.2857E+02 5.5339E+01 

F03 

Best 1.5567E+01 1.5646E+01 
+ 

 

1.6877E+01 

+ 

1.6469E+01 

+ Mean 1.5567E+01 1.6179E+01 2.0548E+01 1.8783E+01 

Std. 2.6335E-09 3.4593E-01 5.2264E+00 1.3302E+00 

F04 

 

Best 4.5641E-01 0.0000E+00 
- 

 

4.2913E-01 
≈ 

 

5.4999E-01 

+ Mean 5.1998E-01 0.0000E+00 1.4363E+00 8.0101E-01 

Std. 3.8885E-02 0.0000E+00 9.4091E-01 1.8822E-01 

F05 

Best 1.8462E+01 1.9899E+00 
- 

 

1.4634E+00 
≈ 

 

1.1569E+01 

+ Mean 3.3623E+01 7.9374E+00 4.6097E+01 8.3787E+01 

Std. 1.7117E+01 4.4735E+00 5.7897E+01 5.1084E+01 

F06 

Best 7.2800E-01 2.8711E-01 
- 

 

1.0241E+00 

+ 

7.1795E+00 

+ Mean 2.4889E+00 6.3976E-01 9.8031E+00 2.7904E+01 

Std. 2.8371E+00 3.1415E-01 7.5910E+00 3.3658E+01 

F07 

Best 6.0916E-01 2.3534E-01 
≈ 

 

3.9396E-01 
≈ 

 

2.3203E-01 
≈ 

 
Mean 7.7913E-01 6.5993E-01 1.3896E+01 4.0791E+00 

Std. 9.9590E-02 3.4034E-01 3.9651E+01 5.0802E+00 

F08 

Best 2.4895E+01 0.0000E+00 
- 

 

1.1000E+02 

+ 

1.1000E+02 

+ Mean 6.0700E+01 5.0504E+00 1.1000E+02 1.1000E+02 

Std. 3.3810E+01 1.0843E+01 1.4211E-14 1.4211E-14 

F09 

Best 1.0956E+02 1.0000E+02 
- 

 

3.9065E+02 

+ 

3.9039E+02 

+ Mean 3.5033E+02 1.0000E+02 3.9163E+02 3.9155E+02 

Std. 8.2238E+01 0.0000E+00 5.5792E-01 6.3702E-01 

F10 

Best 4.0000E+02 4.0000E+02 
≈ 

 

4.0000E+02 
≈ 

 

4.0000E+02 
≈ 

 
Mean 4.0000E+02 4.0000E+02 4.0000E+02 4.0000E+02 

Std. 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 

  +/≈/- 2/3/5 5/5/0 7/3/0 

 

Fig. 8 shows the convergence curves of the four compared algorithms in solving functions F2, F3, 

F6, and F7. We can see that SHADE and L-SHADE converge quickly and get stuck at the early stage of 

the search process (note that x-axis is plotted with a logarithmic scale), but L-HMDE and IMODE keep 

improving the solutions for a longer period. 
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Fig 8 Convergence curves of four algorithms in solving CEC 2020 benchmark functions (F2, F3, F6, and F7) 

5.4.2 Test cases of the economic dispatch problem 

In this experiment, we tested the performance of L-HMDE and the three general-purpose 

algorithms in solving the ED test cases. Since the general-purpose algorithms do not consider the problem 

constraints, we incorporated our ISR repair mechanism into these algorithms. All compared algorithms 

used the same parameter setting as they used in solving CEC benchmark, except for the initial population 

size that was set to 15. The (initial) population sizes of all algorithms were set by 15. Each algorithm 

solved each test case for 100 runs. Table 34 presents the results. 

Table 34 Solution cost of four algorithms in solving 22 ED test cases 

Test case L-HMDE IMODE  L-SHADE  SHADE  

 Avg (Std) Avg (Std)  Avg (Std)  Avg (Std)  

1 15449.90 (3.24·10-7) 15449.9 (5.90·10-7)  - 15449.90 (5.68·10-8)  - 15449.90 (4.18·10-7)  - 

2 623.81 (2.00·10-4) 623.81 (1.73·10-3)  ≈ 623.81 (5.49·10-7)  - 623.81 (1.41·10-5)  - 

3 623.83 (6.38·10-4) 623.84 (6.45·10-3)  + 623.83 (7.30·10-3)  + 623.85 (1.13·10-2)  + 

4.1 17964.90 (2.98) 17973.15 (1.77)  + 17973.52 (15.71)  + 18015.43 (47.57)  + 

4.2 24169.96 (0.42) 24185.3 (31.92)  + 24180.97 (33.25)  + 24239.76 (67.79)  + 

4.3 17961.22 (2.44) 17969.98 (6.45)  + 17974.65 (22.59)  + 18011.34 (42.44)  + 

4.2 24164.15 (0.67) 24187.30 (33.87)  + 24180.19 (43.14)  + 24245.70 (57.19)  + 

5.1 24514.88 (1.56·10-4) 24555.52 (54.79)  + 24545.04 (61.55)  + 24623.78 (73.68)  + 

5.2 24516.28 (7.97) 24542.28 (44.93)  ≈ 24539.07 (46.59)  + 24626.51 (76.48)  + 

5.3 24514.82 (7.02·10-5) 24553.05 (52.00)  + 24551.87 (67.25)  + 24622.19 (70.05)  + 

5.4 24513.04 (6.09) 24565.65 (50.00)  + 24552.87 (57.57)  + 24629.84 (72.68)  + 

6.1 32704.45 (1.65·10-5) 32704.45 (1.94·10-4)  + 32704.45 (1.05·10-7)  - 32704.45 (6.77·10-8)  - 

6.2 32588.92 (1.83·10-7) 32588.92 (2.51·10-5)  + 32588.92 (3.31·10-8)  ≈ 32588.92 (2.23·10-8)  ≈ 

7 62456.63 (3.33·10-5) 62456.63 (2.47·10-4)  ≈ 62456.63 (1.18·10-6)  - 62456.63 (2.78·10-6)  - 

8.1 121417.94 (3.81) 121456.90 (32.56)  + 121676.25 (207.54)  + 121657.25 (158.69)  + 

8.2 121409.43 (4.51) 121448.16 (33.82)  + 121689.17 (263.78)  + 121642.19 (158.01)  + 

8.3 121375.89 (4.85) 121412.31 (31.68)  + 121608.81 (232.75)  + 121606.02 (158.21)  + 

9 197988.18 (8.80·10-8) 197988.18 (3.29·10-4)  + 197988.18 (3.11·10-5)  ≈ 197988.18 (7.79·10-6)  + 

10 1657962.73 (1.07·10-3) 1658044.78 (86.05)  + 1658081.42 (120.92)  + 1658048.47 (99.82)  + 

11 1559708.45 (2.69·10-4) 1559805.63 (89.26)  + 1559885.51 (232.47)  + 1559807.34 (108.47)  + 

12 1655679.43 (1.82·10-4) 1655683.95 (4.90)  + 1655680.91 (3.53)  + 1655679.59 (0.92)  + 

13 9983.69 (0.12) 9986.36 (4.50)  + 10000.22 (11.99)  + 9997.85 (9.72)  + 

 +/≈/- 18/3/1 16/2/4 17/1/4 
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The results of Wilcoxon rank-sum test show that our L-HMDE outperforms the three general-

purpose algorithms in at least 16 out of 22 test cases (more than 70%). It is outperformed by IMODE in 

only one test case and is outperformed by L-SHADE and SHADE in four test cases. For some test cases 

such as cases 1, 2, 3, 6, 7, and 9, all algorithms found solutions with almost the same cost. These test 

cases seem to be easy and solvable by general-purpose algorithms. However, there are still many ED test 

cases that need tailored algorithms like our L-HMDE to solve it effectively. 

 

  

  

Fig 9 Convergence curves of four algorithms in solving ED test cases (case 3, 4.1, 8.1, and 10) 

 

  

  

Fig 10 Population diversity of L-HMDE in solving ED test cases (case 3, 4.1, 8.1, and 10) 
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The convergence curves of L-HMDE and three compared algorithms are given in Fig 9. Similar to 

what we observed in Fig. 8, SHADE and L-SHADE converge faster and may get stuck early. In contrast, 

L-HMDE converges slower but keeps the ability of improving solutions, leading to better final solution 

in the end. Fig. 10 shows the population diversity of L-HMDE by the box plots of the objective values 

of solutions in the population at different generations. We can see that the population diversity is high at 

the early stage and gets lower with a smooth trend as the evolutionary process goes. Table 35 presents 

the running time consumed by the four algorithms to solve the ED test cases. Note that in our experiments 

all four algorithms were implemented by Matlab, and thus the impact of the programming language on 

the running time was reduced. According to the results in Table 35, L-HMDE requires similar running 

time as other three do. All of them can solve ED test cases within several seconds.  

Table 35 Running time of L-HMDE and three adaptive algorithms in solving the ED problem 

Test case L-HMDE IMODE L-SHADE SHADE 

 Avg (Std) Avg (Std) Avg (Std) Avg (Std) 

1 1.38e-1 (5.03e-3) 1.83e-1 (2.73e-2) 1.10e-1 (9.62e-3) 1.05e-1 (1.58e-3) 

2 1.10e-1 (1.89e-3) 1.59e-1 (5.98e-3) 8.63e-2 (1.98e-3) 7.76e-2 (1.52e-3) 

3 4.63e-1 (2.12e-3) 6.72e-1 (6.50e-3) 4.11e-1 (6.16e-3) 3.00e-1 (6.82e-3) 

4.1 1.11e+0 (4.89e-2) 1.56e+0 (5.49e-2) 8.11e-1 (2.04e-2) 6.86e-1 (2.33e-2) 

4.2 1.11e+0 (6.18e-3) 1.87e+0 (1.02e-2) 1.01e+0 (2.31e-2) 6.89e-1 (1.01e-2) 

4.3 1.10e+0 (7.64e-3) 1.78e+0 (1.03e-2) 9.85e-1 (2.55e-2) 6.77e-1 (7.81e-3) 

4.2 1.10e+0 (4.56e-3) 1.88e+0 (1.07e-2) 1.00e+0 (2.56e-2) 6.84e-1 (8.74e-3) 

5.1 1.46e+0 (3.07e-2) 2.15e+0 (2.89e-2) 1.30e+0 (1.40e-1) 8.18e-1 (2.88e-2) 

5.2 1.45e+0 (5.70e-2) 2.16e+0 (2.29e-2) 1.31e+0 (1.32e-1) 8.18e-1 (2.97e-2) 

5.3 1.46e+0 (3.07e-2) 2.17e+0 (3.91e-2) 1.29e+0 (1.40e-1) 8.21e-1 (2.77e-2) 

5.4 1.46e+0 (3.46e-2) 2.16e+0 (2.48e-2) 1.32e+0 (1.42e-1) 8.73e-1 (2.11e-2) 

6.1 3.95e-1 (2.91e-3) 5.59e-1 (4.61e-3) 3.26e-1 (4.96e-3) 2.93e-1 (6.15e-3) 

6.2 3.98e-1 (3.78e-3) 5.62e-1 (5.03e-3) 3.33e-1 (5.61e-3) 2.99e-1 (6.92e-3) 

7 3.95e-1 (2.20e-3) 5.45e-1 (3.90e-3) 3.22e-1 (5.70e-3) 2.85e-1 (3.83e-3) 

8.1 2.49e+0 (1.16e-2) 3.89e+0 (7.32e-2) 2.12e+0 (3.42e-2) 1.57e+0 (3.57e-2) 

8.2 2.46e+0 (1.83e-2) 4.24e+0 (7.02e-2) 2.13e+0 (2.85e-2) 1.69e+0 (3.71e-2) 

8.3 3.24e+0 (1.38e-2) 4.42e+0 (3.82e-2) 2.25e+0 (3.44e-2) 1.82e+0 (4.27e-2) 

9 3.62e+0 (1.85e-2) 4.71e+0 (2.49e-2) 2.43e+0 (1.53e-2) 2.00e+0 (7.84e-3) 

10 1.06e+1 (4.92e-1) 6.16e+0 (1.51e-1) 4.00e+0 (3.37e-1) 3.68e+0 (5.92e-2) 

11 4.76e+0 (5.32e-2) 5.81e+0 (3.56e-2) 3.42e+0 (4.35e-2 3.01e+0 (1.40e-2) 

12 4.75e+0 (3.88e-2) 5.84e+0 (5.43e-2) 3.46e+0 (3.21e-2) 3.02e+0 (2.33e-2) 

13 1.43e+1 (8.59e-2) 1.63e+1 (8.46e-2) 9.37e+0 (4.35e-2) 7.74e+0 (3.69e-2) 

 

6. Conclusions 

The objective of this paper is twofold: to serve as a comprehensive reference and to propose an 

effective solver for the economic dispatch problem. In the capacity of a valuable reference, we reviewed 

over 100 papers and extracted the features of various algorithms for further research exploration. 

Moreover, we made a compilation of 22 diverse test cases and carefully checked the details of model 

coefficients and the correctness of solutions. This dataset will serve as a trustful reference for 

experimental benchmarks in this domain. For the problem solver, we proposed L-HMDE, whose 

advantage is simple, effective, robust, and efficient. Based on the framework of DE, we incorporated a 

hybrid mutation strategy, a linear population size reduction mechanism, and an improved repair 

mechanism. The hybrid mutation strategy enhances the solution quality and reduces the sensitivity to the 

parameter setting. The linear population size reduction mechanism prolongs the evolutionary process and 

focuses on the promising areas, leading to better solution quality, especially for medium- and large-scale 

test cases. The improved repair mechanism fixes infeasible solutions more effectively, and thus helps the 

whole algorithm to find high-quality solutions more efficiently. We not only confirmed the positive 

effects of the above algorithmic components through experiments, we also compared the proposed L-

HMDE with more than 90 existing algorithms. L-HMDE is ranked among the top six algorithms for 20 

out of 22 test cases. It also outperforms three general-purpose algorithms in solving at least 16 out of 22 

ED test cases. 

There remains a scope for further refinement to the L-HMDE. First, the current version of L-HMDE 

requires a parameter tuning process. Although it could solve a variety of test cases quite well with a 

single and fixed parameter configuration, we will continue to equip it with adaptive parameter control 
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mechanisms. This research direction also aligns with the insight extracted from the literature review. It 

is worth noting that adaptive control is not a trivial topic and demands careful investigations. While many 

existing algorithms incorporate adaptive control mechanisms, they do not perform better than L-HMDE. 

Second, we want to enhance the search ability of L-HMDE by the niching methods. The linear population 

size reduction mechanism can help to allocate computing resources effectively to promising areas in the 

search space, but it may sometimes overlook potential areas. We expect the use of niching methods to 

improve the performance of L-HMDE further. Third, we will apply L-HMDE to other extended economic 

dispatch problems. These problems will bring new challenges. For example, we need to put in concepts 

such as dominance and Pareto optimality to deal with multiple objectives in the economic emission 

dispatch problems. In summary, adaptive parameter control, niching, and multiobjective optimization are 

the three main topics with which we will continue in our future work. 
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Appendix. Data set and minimum solution obtained by L-HMDE in each test case 

A.1 Cost coefficient and loss coefficient of test case 1 (1263 MW) 

Unit Min Max aj bj cj URj DRj P0 prohibited zones 

1 100 500 240 7 0.007 80 120 440 [210-240] [350-380] 

2 50 200 200 10 0.0095 50 90 170 [90-110] [140-160] 

3 80 300 220 8.5 0.009 65 100 200 [150-170] [210-240] 

4 50 150 200 11 0.009 50 90 150 [80-90] [110-120] 

5 50 200 220 10.5 0.008 50 90 190 [90-110] [140-150] 

6 50 120 190 12 0.0075 50 90 110 [75-85] [100-105] 

 
  0.0017 0.0012 0.0007 -0.0001 -0.0005 -0.0002  

  0.0012 0.0014 0.0009 0.0001 -0.0006 -0.0001  

Bgh (p.u) = 
 0.0007 0.0009 0.0031 0 -0.001 -0.0006  

 -0.0001 0.0001 0 0.0024 -0.0006 -0.0008  

  -0.0005 -0.0006 -0.001 -0.0006 0.0129 -0.0002  

  -0.0002 -0.0001 -0.0006 -0.0008 -0.0002 0.015  

 

B0g (p.u) =  -0.3908 -0.1297 0.7047 0.0591 0.2161 -0.6635  

 

B00 (p.u) = 0.0056 

A.2 Best solution obtained by L-HMDE for test case 1 

Units 
L-HMDE 

Pj (ε=10-8) Pj (ε=8·10-2) 

1 447.49989636 449.69602973 

2 173.31229599 174.84824042 

3 263.47513172 263.88420773 

4 139.07083031 131.26923245 

5 165.46617476 167.17283819 

6 87.13378571 89.16294951 

Total power output (MW) 1275.96 1276.03 

Transmission loss (MW) 12.96 13.11 

Error (MW) 3.42·10-9 7.23·10-2 

Operating Cost ($/h) 15449.90 15449.62 
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B.1 Cost coefficient of test cases 2 and 3 (2700 MW) 

Unit Fuel types Lower bound Upper bound aj bj cj ej fj 

1 
1 100 196 2.697E+01 -3.975E-01 2.176E-03 2.697E-02 -3.975E+00 

2 196 250 2.113E+01 -3.059E-01 1.861E-03 2.113E-02 -3.059E+00 

2 

2 50 114 1.865E+00 -3.988E-02 1.138E-03 1.865E-03 -3.988E-01 

3 114 157 1.365E+01 -1.980E-01 1.620E-03 1.365E-02 -1.980E+00 

1 157 230 1.184E+02 -1.269E+00 4.194E-03 1.184E-01 -1.269E+01 

3 

1 200 332 3.979E+01 -3.116E-01 1.457E-03 3.979E-02 -3.116E+00 

3 332 388 -2.875E+00 3.389E-02 8.035E-04 -2.876E-03 3.389E-01 

2 388 500 -5.914E+01 4.864E-01 1.176E-05 -5.914E-02 4.864E+00 

4 

1 99 138 1.983E+00 -3.114E-02 1.049E-03 1.983E-03 -3.114E-01 

2 138 200 5.285E+01 -6.348E-01 2.758E-03 5.285E-02 -6.348E+00 

3 200 265 2.668E+02 -2.338E+00 5.935E-03 2.668E-01 -2.338E+01 

5 

1 190 338 1.392E+01 -8.733E-02 1.066E-03 1.392E-02 -8.733E-01 

2 338 407 9.976E+01 -5.206E-01 1.597E-03 9.976E-02 -5.206E+00 

3 407 490 -5.399E+01 4.462E-01 1.498E-04 -5.399E-02 4.462E+00 

6 

2 85 138 1.983E+00 -3.114E-02 1.049E-03 1.983E-03 -3.114E-01 

1 138 200 5.285E+01 -6.348E-01 2.758E-03 5.285E-02 -6.348E+00 

3 200 265 2.668E+02 -2.338E+00 5.935E-03 2.668E-01 -2.338E+01 

7 

1 200 331 1.893E+01 -1.325E-01 1.107E-03 1.893E-02 -1.325E+00 

2 331 391 4.377E+01 -2.267E-01 1.165E-03 4.377E-02 -2.267E+00 

3 391 500 -4.335E+01 3.559E-01 2.454E-04 -4.335E-02 3.559E+00 

8 

1 99 138 1.983E+00 -3.114E-02 1.049E-03 1.983E-03 -3.114E-01 

2 138 200 5.285E+01 -6.348E-01 2.758E-03 5.285E-02 -6.348E+00 

3 200 265 2.668E+02 -2.338E+00 5.935E-03 2.668E-01 -2.338E+01 

9 

3 130 213 1.423E+01 -1.817E-02 6.121E-04 1.423E-02 -1.817E-01 

1 213 370 8.853E+01 -5.675E-01 1.554E-03 8.853E-02 -5.675E+00 

3 370 440 1.423E+01 -1.817E-02 6.121E-04 1.423E-02 -1.817E-01 

10 

1 200 362 1.397E+01 -9.938E-02 1.102E-03 1.397E-02 -9.938E-01 

3 362 407 4.671E+01 -2.024E-01 1.137E-03 4.671E-02 -2.024E+00 

2 407 490 -6.113E+01 5.084E-01 4.164E-05 -6.113E-02 5.084E+00 

 

B.2 Best solution obtained by L-HMDE for test cases 2 and 3  

Units 
Test case 2 Test case 3 

Pj Fuel type Pj Fuel type 

1 218.26855296 2 218.59397122 2 

2 211.66085162 1 211.71173943 1 

3 280.74415997 1 280.65707656 1 

4 239.62565815 3 239.63942993 3 

5 278.45951026 1 279.93462813 1 

6 239.65624687 3 239.63942815 3 

7 288.59537752 1 287.72730808 1 

8 239.63664448 3 239.50505679 3 

9 428.54030695 3 426.72348627 3 

10 274.81269122 1 275.86787544 1 

Total Power output (MW) 2700.00 2700.00 

Error (MW) 0.00 0.00 

Operating Cost ($/h) 623.81 623.83 
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C.1 Cost coefficient of test cases 4.1 (1800 MW) and 4.2 (2520 MW) 

Units min max aj bj cj ej fj 

1 0 680 550 8.1 0.00028 300 0.035 

2 0 360 309 8.1 0.00056 200 0.042 

3 0 360 307 8.1 0.00056 200* 0.042 

4 60 180 240 7.74 0.00324 150 0.063 

5 60 180 240 7.74 0.00324 150 0.063 

6 60 180 240 7.74 0.00324 150 0.063 

7 60 180 240 7.74 0.00324 150 0.063 

8 60 180 240 7.74 0.00324 150 0.063 

9 60 180 240 7.74 0.00324 150 0.063 

10 40 120 126 8.6 0.00284 100 0.084 

11 40 120 126 8.6 0.00284 100 0.084 

12 55 120 126 8.6 0.00284 100 0.084 

13 55 120 126 8.6 0.00284 100 0.084 

C.2 Cost coefficient of test cases 4.3 (1800 MW) and 4.4 (2520 MW) 

Units min max aj bj cj ej fj 

1 0 680 550 8.1 0.00028 300 0.035 

2 0 360 309 8.1 0.00056 200 0.042 

3 0 360 307 8.1 0.00056 150* 0.042 

4 60 180 240 7.74 0.00324 150 0.063 

5 60 180 240 7.74 0.00324 150 0.063 

6 60 180 240 7.74 0.00324 150 0.063 

7 60 180 240 7.74 0.00324 150 0.063 

8 60 180 240 7.74 0.00324 150 0.063 

9 60 180 240 7.74 0.00324 150 0.063 

10 40 120 126 8.6 0.00284 100 0.084 

11 40 120 126 8.6 0.00284 100 0.084 

12 55 120 126 8.6 0.00284 100 0.084 

13 55 120 126 8.6 0.00284 100 0.084 

C.3 Best solution obtained by L-HMDE for test case 4 

Units 
Test case 4.1 Test case 4.2 Test case 4.3 Test case 4.4 

Pj Pj Pj Pj 

1 628.31853069 628.31853071 628.31853071 628.31853071 

2 222.74908724 299.19930034 149.59965017 299.19930033 

3 149.59963314 299.19930028 222.74906889 294.48391833 

4 109.86654990 159.73310011 109.86655005 159.73310011 

5 109.86655005 159.73310011 60 159.73310011 

6 109.86654924 159.73310011 109.86655005 159.73310011 

7 109.86654978 159.73310011 109.86655003 159.73310011 

8 60 159.73310011 109.86655005 159.73310011 

9 109.86654996 159.73310010 109.86655005 159.73310011 

10 40 77.39991241 40 77.39991252 

11 40 77.39991235 40 77.39991252 

12 55 92.39990679 55 92.39991247 

13 55 87.68453647 55 92.39991246 

Total power output (MW) 17963.83 24169.92 17960.37 24164.05 

Error (MW) 0.00 0.00 0.00 0.00 

Operating Cost ($/h) 1800.00 2520.00 1800.00 2520.00 

  

https://doi.org/10.1016/j.asoc.2023.110891


Economic dispatch using metaheuristics: Algorithms, problems, and solutions, ASC 2024   44 
 

D.1 Cost coefficient of test cases 5.1 to 5.3 (2520 MW) 

Units min max aj bj cj ej fj 

1 0 680 550 8.1 0.00028 300 0.035 

2 0 360 309 8.1 0.00056 200 0.042 

3 0 360 307 8.1 0.00056 200* 0.042 

4 60 180 240 7.74 0.00324 150 0.063 

5 60 180 240 7.74 0.00324 150 0.063 

6 60 180 240 7.74 0.00324 150 0.063 

7 60 180 240 7.74 0.00324 150 0.063 

8 60 180 240 7.74 0.00324 150 0.063 

9 60 180 240 7.74 0.00324 150 0.063 

10 40 120 126 8.6 0.00284 100 0.084 

11 40 120 126 8.6 0.00284 100 0.084 

12 55 120 126 8.6 0.00284 100 0.084 

13 55 120 126 8.6 0.00284 100 0.084 

D.2 Cost coefficient of test case 5.4 (2520 MW) 

Units min max aj bj cj ej fj 

1 0 680 550 8.1 0.00028 300 0.035 

2 0 360 309 8.1 0.00056 200 0.042 

3 0 360 307 8.1 0.00056 150* 0.042 

4 60 180 240 7.74 0.00324 150 0.063 

5 60 180 240 7.74 0.00324 150 0.063 

6 60 180 240 7.74 0.00324 150 0.063 

7 60 180 240 7.74 0.00324 150 0.063 

8 60 180 240 7.74 0.00324 150 0.063 

9 60 180 240 7.74 0.00324 150 0.063 

10 40 120 126 8.6 0.00284 100 0.084 

11 40 120 126 8.6 0.00284 100 0.084 

12 55 120 126 8.6 0.00284 100 0.084 

13 55 120 126 8.6 0.00284 100 0.084 

D.3 loss coefficient of test case 5.1 

  0.0014 0.0012 0.0007 -0.0001 -0.0003 -0.0001 -0.0001 -0.0001 -0.0003 -0.0005 -0.0003 -0.0002 0.0004  

  0.0012 0.0015 0.0013 0 -0.0005 -0.0002 0 0.0001 -0.0002 -0.0004 -0.0004 0 0.0004  

  0.0007 0.0013 0.0076 -0.0001 -0.0013 -0.0009 -0.0001 0 -0.0008 -0.0012 -0.0017 0 -0.0026  

  -0.0001 0 -0.0001 0.0034 -0.0007 -0.0004 0.0011 0.005 0.0029 0.0032 -0.0011 0 0.0001  

  -0.0003 -0.0005 -0.0013 -0.0007 0.009 0.0014 -0.0003 -0.0012 -0.001 -0.0013 0.0007 -0.0002 -0.0002  

Bgh (p.u) = 
 -0.0001 -0.0002 -0.0009 -0.0004 0.0014 0.0016 0 -0.0006 -0.0005 -0.0008 0.0011 -0.0001 -0.0002  

 -0.0001 0 -0.0001 0.0011 -0.0003 0 0.0015 0.0017 0.0015 0.0009 -0.0005 0.0007 0  

  -0.0001 0.0001 0 0.005 -0.0012 -0.0006 0.0017 0.0168 0.0082 0.0079 -0.0023 -0.0036 0.0001  

  -0.0003 -0.0002 -0.0008 0.0029 -0.001 -0.0005 0.0015 0.0082 0.0129 0.0116 -0.0021 -0.0025 0.0007  

  -0.0005 -0.0004 -0.0012 0.0032 -0.0013 -0.0008 0.0009 0.0079 0.0116 0.02 -0.0027 -0.0034 0.0009  

  -0.0003 -0.0004 -0.0017 -0.0011 0.0007 0.0011 -0.0005 -0.0023 -0.0021 -0.0027 0.014 0.0001 0.0004  

  -0.0002 0 0 0 -0.0002 -0.0001 0.0007 -0.0036 -0.0025 -0.0034 0.0001 0.0054 -0.0001  

  0.0004 0.0004 -0.0026 0.0001 -0.0002 -0.0002 0 0.0001 0.0007 0.0009 0.0004 -0.0001 0.0103  

 

B0g (p.u) =  -0.0001 -0.0002 0.0028 -0.0001 0.0001 -0.0003 -0.0002 -0.0002 0.0006 0.0039 -0.0017 0 -0.0032  

 

B00 (p.u) = 0.0055 

D.4 loss coefficient of test case 5.2 

  0.0014 0.0012 0.0007 -0.0001 -0.0003 -0.0001 -0.0001 -0.0001 -0.0003 -0.0005 -0.0003 -0.0002 0.0004  

  0.0012 0.0015 0.0013 0 -0.0005 -0.0002 0 0.0001 -0.0002 -0.0004 -0.0004 0 0.0004  

  0.0007 0.0013 0.0076 -0.0001 -0.0013 -0.0009 -0.0001 0 -0.0008 -0.0012 -0.0017 0 -0.0026  

  -0.0001 0 -0.0001 0.0034 -0.0007 -0.0004 0.0011 0.005 0.0029 0.0032 -0.0011 0 0.0001  

  -0.0003 -0.0005 -0.0013 -0.0007 0.009 0.0014 -0.0003 -0.0012 -0.001 -0.0013 0.0007 -0.0002 -0.0002  

Bgh (p.u) = 
 -0.0001 -0.0002 -0.0009 -0.0004 0.0014 0.0016 0 -0.0006 -0.0005 -0.0008 0.0011 -0.0001 -0.0002  

 -0.0001 0 -0.0001 0.0011 -0.0003 0 0.0015 0.0017 0.0015 0.0009 -0.0005 0.0007 0  

  -0.0001 0.0001 0 0.005 -0.0012 -0.0006 0.0017 0.0168 0.0082 0.0079 -0.0023 -0.0036 0.0001  

  -0.0003 -0.0002 -0.0008 0.0029 -0.001 -0.0005 0.0015 0.0082 0.0129 0.0116 -0.0021 -0.0025 0.0007  

  -0.0005 -0.0004 -0.0012 0.0032 -0.0013 -0.0008 0.0009 0.0079 0.0116 0.02 -0.0027 -0.0034 0.0009  

  -0.0003 -0.0004 -0.0017 -0.0011 0.0007 0.0011 -0.0005 -0.0023 -0.0021 -0.0027 0.014 0.0001 0.0004  

  -0.0002 0 0 0 -0.0002 -0.0001 0.0007 -0.0036 -0.0025 -0.0034 0.0001 0.0054 -0.0001  

  0.0004 0.0004 -0.0026 0.0001 -0.0002 -0.0002 0 0.0001 0.0007 0.0009 0.0004 -0.0001 0.0103  
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B0g (p.u) =  -0.0001 -0.0002 0.0028 -0.0001 0.0001 -0.0003 -0.0002 -0.0002 0.0006 0.0039 0.0017* 0 -0.0032  

 

B00 (p.u) = 0.0055 

D.5 loss coefficient of test case 5.3 to 5.4 

  0.0014 0.0012 0.0007 -0.0001 -0.0003 -0.0001 -0.0001 -0.0001 -0.0003 0.0005* -0.0003 -0.0002 0.0004  

  0.0012 0.0015 0.0013 0 -0.0005 -0.0002 0 0.0001 -0.0002 -0.0004 -0.0004 0 0.0004  

  0.0007 0.0013 0.0076 -0.0001 -0.0013 -0.0009 -0.0001 0 -0.0008 -0.0012 -0.0017 0 -0.0026  

  -0.0001 0 -0.0001 0.0034 -0.0007 -0.0004 0.0011 0.005 0.0029 0.0032 -0.0011 0 0.0001  

  -0.0003 -0.0005 -0.0013 -0.0007 0.009 0.0014 -0.0003 -0.0012 -0.001 -0.0013 0.0007 -0.0002 -0.0002  

Bgh (p.u) = 
 -0.0001 -0.0002 -0.0009 -0.0004 0.0014 0.0016 0 -0.0006 -0.0005 -0.0008 0.0011 -0.0001 -0.0002  

 -0.0001 0 -0.0001 0.0011 -0.0003 0 0.0015 0.0017 0.0015 0.0009 -0.0005 0.0007 0  

  -0.0001 0.0001 0 0.005 -0.0012 -0.0006 0.0017 0.0168 0.0082 0.0079 -0.0023 -0.0036 0.0001  

  -0.0003 -0.0002 -0.0008 0.0029 -0.001 -0.0005 0.0015 0.0082 0.0129 0.0116 -0.0021 -0.0025 0.0007  

  -0.0005 -0.0004 -0.0012 0.0032 -0.0013 -0.0008 0.0009 0.0079 0.0116 0.02 -0.0027 -0.0034 0.0009  

  -0.0003 -0.0004 -0.0017 -0.0011 0.0007 0.0011 -0.0005 -0.0023 -0.0021 -0.0027 0.014 0.0001 0.0004  

  -0.0002 0 0 0 -0.0002 -0.0001 0.0007 -0.0036 -0.0025 -0.0034 0.0001 0.0054 -0.0001  

  0.0004 0.0004 -0.0026 0.0001 -0.0002 -0.0002 0 0.0001 0.0007 0.0009 0.0004 -0.0001 0.0103  

 

B0g (p.u) =  -0.0001 -0.0002 0.0028 -0.0001 0.0001 -0.0003 -0.0002 -0.0002 0.0006 0.0039 -0.0017 0 -0.0032  

 

B00 (p.u) = 0.000055* 

D.6 Best solution obtained by L-HMDE for test cases 5 

Units 
Test case 5.1 Test case 5.2 Test case 5.3 Test case 5.4 

Pj Pj Pj Pj 

1 628.31853071 628.31853071 628.31853071 628.31853071 

2 299.19930034 299.19930034 299.19930034 299.19930034 

3 299.19930031 299.19930034 299.19930034 297.36723637 

4 159.73310011 159.73310011 159.73310011 159.73310011 

5 159.73310011 159.73310011 159.73310011 159.73310011 

6 159.73310011 159.73310011 159.73310011 159.73310011 

7 159.73310011 159.73310011 159.73310011 159.73310011 

8 159.73310011 159.73310011 159.73310011 159.73310011 

9 159.73310011 159.73310011 159.73310011 159.73310011 

10 77.39991254 77.39991230 77.39991246 77.39991254 

11 113.11115204 113.49588879 113.05314527 114.79982508 

12 92.39991240 92.39991220 92.39991243 92.39991254 

13 92.39991089 92.39991234 92.39991240 92.39991254 

Total power output (MW) 2560.43 2560.81 2560.37 2560.28 

Transmission loss (MW) 40.43 40.81 40.37 40.28 

Error (MW) 2.67·10-9 8.46·10-10 2.44E·10-9 3.25E·10-10 

Operating Cost ($/h) 24514.88 24515.23 24514.82 24512.43 
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E.1 Cost coefficient of test case 6.1 (2630 MW) 

Unit Min Max aj bj cj URj DRj P0 prohibited zones 

1 150 455 671 10.1 0.000299 80 120 400  

2 150 455 574 10.2 0.000183 80 120 300* [185, 225] [305, 335] [420, 450] 

3 20 130 374 8.8 0.001126 130 130 105  

4 20 130 374 8.8 0.001126 130 130 100  

5 150 470 461 10.4 0.000205 80 120 90* [180, 200] [305, 335] [390, 420] 

6 135 460 630 10.1 0.000301 80 120 400 [230, 255] [365, 395] [430, 455] 

7 135 465 548 9.8 0.000364 80 120 350  

8 60 300 227 11.2 0.000338 65 100 95  

9 25 162 173 11.2 0.000807 60 100 105  

10 25 160 175 10.7 0.001203 60 100 110  

11 20 80 186 10.2 0.003586 80 80 60  

12 20 80 230 9.9 0.005513 80 80 40 [30, 40] [55, 65] 

13 25 85 225 13.1 0.000371 80 80 30  

14 15 55 309 12.1 0.001929 55 55 20  

15 15 55 323 12.4 0.004447 55 55 20  

E.2 Cost coefficient of test case 6.2 (2630 MW) 

Unit Min Max aj bj cj URj DRj P0 prohibited zones 

1 150 455 671 10.1 0.000299 80 120 400  

2 150 455 574 10.2 0.000183 80 120 360* [185, 225] [305, 335] [420, 450] 

3 20 130 374 8.8 0.001126 130 130 105  

4 20 130 374 8.8 0.001126 130 130 100  

5 150 470 461 10.4 0.000205 80 120 190* [180, 200] [305, 335] [390, 420] 

6 135 460 630 10.1 0.000301 80 120 400 [230, 255] [365, 395] [430, 455] 

7 135 465 548 9.8 0.000364 80 120 350  

8 60 300 227 11.2 0.000338 65 100 95  

9 25 162 173 11.2 0.000807 60 100 105  

10 25 160 175 10.7 0.001203 60 100 110  

11 20 80 186 10.2 0.003586 80 80 60  

12 20 80 230 9.9 0.005513 80 80 40 [30, 40] [55, 65] 

13 25 85 225 13.1 0.000371 80 80 30  

14 15 55 309 12.1 0.001929 55 55 20  

15 15 55 323 12.4 0.004447 55 55 20  

E.3 loss coefficient of test cases 6 

  0.0014 0.0012 0.0007 -0.0001 -0.0003 -0.0001 -0.0001 -0.0001 -0.0003 -0.0005 -0.0003 -0.0002 0.0004 0.0003 -0.0001  

  0.0012 0.0015 0.0013 0 -0.0005 -0.0002 0 0.0001 -0.0002 -0.0004 -0.0004 0 0.0004 0.001 -0.0002  

  0.0007 0.0013 0.0076 -0.0001 -0.0013 -0.0009 -0.0001 0 -0.0008 -0.0012 -0.0017 0 -0.0026 0.0111 -0.0028  

  -0.0001 0 -0.0001 0.0034 -0.0007 -0.0004 0.0011 0.005 0.0029 0.0032 -0.0011 0 0.0001 0.0001 -0.0026  

  -0.0003 -0.0005 -0.0013 -0.0007 0.009 0.0014 -0.0003 -0.0012 -0.001 -0.0013 0.0007 -0.0002 -0.0002 -0.0024 -0.0003  

  -0.0001 -0.0002 -0.0009 -0.0004 0.0014 0.0016 0 -0.0006 -0.0005 -0.0008 0.0011 -0.0001 -0.0002 -0.0017 0.0003  

Bgh (p.u) = 
 -0.0001 0 -0.0001 0.0011 -0.0003 0 0.0015 0.0017 0.0015 0.0009 -0.0005 0.0007 0 -0.0002 -0.0008  

 -0.0001 0.0001 0 0.005 -0.0012 -0.0006 0.0017 0.0168 0.0082 0.0079 -0.0023 -0.0036 0.0001 0.0005 -0.0078  

  -0.0003 -0.0002 -0.0008 0.0029 -0.001 -0.0005 0.0015 0.0082 0.0129 0.0116 -0.0021 -0.0025 0.0007 -0.0012 -0.0072  

  -0.0005 -0.0004 -0.0012 0.0032 -0.0013 -0.0008 0.0009 0.0079 0.0116 0.02 -0.0027 -0.0034 0.0009 -0.0011 -0.0088  

  -0.0003 -0.0004 -0.0017 -0.0011 0.0007 0.0011 -0.0005 -0.0023 -0.0021 -0.0027 0.014 0.0001 0.0004 -0.0038 0.0168  

  -0.0002 0 0 0 -0.0002 -0.0001 0.0007 -0.0036 -0.0025 -0.0034 0.0001 0.0054 -0.0001 -0.0004 0.0028  

  0.0004 0.0004 -0.0026 0.0001 -0.0002 -0.0002 0 0.0001 0.0007 0.0009 0.0004 -0.0001 0.0103 -0.0101 0.0028  

  0.0003 0.001 0.0111 0.0001 -0.0024 -0.0017 -0.0002 0.0005 -0.0012 -0.0011 -0.0038 -0.0004 -0.0101 0.0578 -0.0094  

  -0.0001 -0.0002 -0.0028 -0.0026 -0.0003 0.0003 -0.0008 -0.0078 -0.0072 -0.0088 0.0168 0.0028 0.0028 -0.0094 0.1283  

 

B0g (p.u) =  -0.0001 -0.0002 0.0028 -0.0001 0.0001 -0.0003 -0.0002 -0.0002 0.0006 0.0039 -0.0017 0 -0.0032 0.0067 -0.0064  

 

B00 (p.u) = 0.0055 
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E.4 Best solution obtained by L-HMDE for test case 6 

Units 
Test case 6.1 Test case 6.2 

Pj Pj 

1 455 455 

2 380 420 

3 130 130 

4 130 130 

5 170 269.99999981 

6 460 460 

7 430 430 

8 71.74668697 60 

9 58.91474709 25.00000001 

10 160 62.97623465 

11 80 79.99999997 

12 80 80 

13 25 25 

14 15 15 

15 15 15 

Total power output (MW) 2660.66 2657.98 

Transmission loss (MW) 30.66 27.98 

Error (MW) 2.99·10-9 2.88·10-9 

Operating Cost ($/h) 32704.45 32588.92 
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F.1 Cost coefficient and loss coefficient of test case 7 (2500 MW) 

Unit Min Max aj bj cj 

1 150 600 1000 18.19 0.00068 

2 50 200 970 19.26 0.00071 

3 50 200 600 19.8 0.0065 

4 50 200 700 19.1 0.005 

5 50 160 420 18.1 0.00738 

6 20 100 360 19.26 0.00612 

7 25 125 490 17.14 0.0079 

8 50 150 660 18.92 0.00813 

9 50 200 765 18.27 0.00522 

10 30 150 770 18.92 0.00573 

11 100 300 800 16.69 0.0048 

12 150 500 970 16.76 0.0031 

13 40 160 900 17.36 0.0085 

14 20 130 700 18.7 0.00511 

15 25 185 450 18.7 0.00398 

16 20 80 370 14.26 0.0712 

17 30 85 480 19.14 0.0089 

18 30 120 680 18.92 0.00713 

19 40 120 700 18.47 0.00622 

20 30 100 850 19.79 0.00773 

 

  0.00870 0.00043 -0.00461 0.00036 0.00032 -0.00066 0.00096 -0.00160 0.00080 -0.00010 0.00360 0.00064 0.00079 0.00210 0.00170 0.00080 -0.00320 0.00070 0.00048 -0.00070  

  0.00043 0.00830 -0.00097 0.00022 0.00075 -0.00028 0.00504 0.00170 0.00054 0.00720 -0.00028 0.00098 -0.00046 0.00130 0.00080 -0.00020 0.00052 -0.00170 0.00080 0.00020  

  -0.00461 -0.00097 0.00900 -0.00200 0.00063 0.00300 0.00170 -0.00430 0.00310 -0.00200 0.00070 -0.00077 0.00093 0.00460 -0.00030 0.00420 0.00038 0.00070 -0.00200 0.00360  

  0.00036 0.00022 -0.00200 0.00530 0.00047 0.00262 -0.00196 0.00210 0.00067 0.00180 -0.00045 0.00092 0.00240 0.00760 -0.00020 0.00070 -0.00100 0.00086 0.00160 0.00087  

  0.00032 0.00075 0.00063 0.00047 0.00860 -0.00080 0.00037 0.00072 -0.00090 0.00069 0.00180 0.00430 -0.00280 -0.00070 0.00230 0.00360 0.00080 0.00020 -0.00300 0.00050  

  -0.00066 -0.00028 0.00300 0.00262 -0.00080 0.01180 -0.00490 0.00030 0.00300 -0.00300 0.00040 0.00078 0.00640 0.00260 -0.00020 0.00210 -0.00040 0.00230 0.00160 -0.00210  

  0.00096 0.00504 0.00170 -0.00196 0.00037 -0.00490 0.00824 -0.00090 0.00590 -0.00060 0.00850 -0.00083 0.00720 0.00480 -0.00090 -0.00010 0.00130 0.00076 0.00190 0.00130  

  -0.00160 0.00170 -0.00430 0.00210 0.00072 0.00030 -0.00090 0.00120 -0.00096 0.00056 0.00160 0.00080 -0.00040 0.00023 0.00075 -0.00056 0.00080 -0.00030 0.00530 0.00080  

  0.00080 0.00054 0.00310 0.00067 -0.00090 0.00300 0.00590 -0.00096 0.00093 -0.00030 0.00650 0.00230 0.00260 0.00058 -0.00010 0.00023 -0.00030 0.00150 0.00074 0.00070  

Bgh= 
 -0.00010 0.00720 -0.00200 0.00180 0.00069 -0.00300 -0.00060 0.00056 -0.00030 0.00099 -0.00660 0.00390 0.00230 -0.00030 0.00280 -0.00080 0.00038 0.00190 0.00047 -0.00026  

 0.00360 -0.00028 0.00070 -0.00045 0.00180 0.00040 0.00850 0.00160 0.00650 -0.00660 0.01070 0.00530 -0.00060 0.00070 0.00190 -0.00260 0.00093 -0.00060 0.00380 -0.00150  

  0.00064 0.00098 -0.00077 0.00092 0.00430 0.00078 -0.00083 0.00080 0.00230 0.00390 0.00530 0.00800 0.00090 0.00210 -0.00070 0.00570 0.00540 0.00150 0.00070 0.00010  

  0.00079 -0.00046 0.00093 0.00240 -0.00280 0.00640 0.00720 -0.00040 0.00260 0.00230 -0.00060 0.00090 0.01100 0.00087 -0.00100 0.00360 0.00046 -0.00090 0.00060 0.00150  

  0.00210 0.00130 0.00460 0.00760 -0.00070 0.00260 0.00480 0.00023 0.00058 -0.00030 0.00070 0.00210 0.00087 0.00380 0.00050 -0.00070 0.00190 0.00230 -0.00097 0.00090  

  0.00170 0.00080 -0.00030 -0.00020 0.00230 -0.00020 -0.00090 0.00075 -0.00010 0.00280 0.00190 -0.00070 -0.00100 0.00050 0.01100 0.00190 -0.00080 0.00260 0.00230 -0.00010  

  0.00080 -0.00020 0.00420 0.00070 0.00360 0.00210 -0.00010 -0.00056 0.00023 -0.00080 -0.00260 0.00570 0.00360 -0.00070 0.00190 0.01080 0.00250 -0.00180 0.00090 -0.00260  

  -0.00320 0.00052 0.00038 -0.00100 0.00080 -0.00040 0.00130 0.00080 -0.00030 0.00038 0.00093 0.00540 0.00046 0.00190 -0.00080 0.00250 0.00870 0.00420 -0.00030 0.00068  

  0.00070 -0.00170 0.00070 0.00086 0.00020 0.00230 0.00076 -0.00030 0.00150 0.00190 -0.00060 0.00150 -0.00090 0.00230 0.00260 -0.00180 0.00420 0.00220 0.00016 -0.00030  

  0.00048 0.00080 -0.00200 0.00160 -0.00300 0.00160 0.00190 0.00530 0.00074 0.00047 0.00380 0.00070 0.00060 -0.00097 0.00230 0.00090 -0.00030 0.00016 0.00760 0.00069  

  -0.00070 0.00020 0.00360 0.00087 0.00050 -0.00210 0.00130 0.00080 0.00070 -0.00026 -0.00150 0.00010 0.00150 0.00090 -0.00010 -0.00260 0.00068 -0.00030 0.00069 0.00700  

 

B0g=  0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000  

 

B00 = 0 

F.2 Best solution obtained by L-HMDE for test case 7  

Units Pj Units Pj 

1 512.79388086 11 150.23692195 

2 169.09254956 12 292.76503676 

3 126.88055794 13 119.11325013 

4 102.88511492 14 30.82309280 

5 113.69343302 15 115.80670089 

6 73.56109941 16 36.25350691 

7 115.28727588 17 66.85580240 

8 116.40621683 18 87.97706880 

9 100.41370515 19 100.78890765 

10 106.02272829 20 54.31001287 

 Total power output (MW) 2591.97 
 Transmission loss (MW) 91.97 
 Error (MW) 1.08·10-9 

 Operating Cost ($/h) 62456.63 
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G.1 Cost coefficient of test case 8.1 (10500 MW) 

Unit Min Max aj bj cj ej fj 

1 36 114 94.705 6.73 0.0069 100 0.084 

2 36 114 94.705 6.73 0.0069 100 0.084 

3 60 120 309.54 7.07 0.02028 100 0.084 

4 80 190 369.03 8.18 0.00942 150 0.063 

5 47 97 148.89 5.35 0.0114 120 0.077 

6 68 140 222.33 8.05 0.01142 100 0.084 

7 110 300 287.71 8.03 0.00357 200 0.042 

8 135 300 391.98 6.99 0.00492 200 0.042 

9 135 300 455.76 6.6 0.00573 200 0.042 

10 130 300 722.82 12.9 0.00605 200 0.042 

11 94 375 635.2 12.9 0.00515 200 0.042 

12 94 375 654.69 12.8 0.00569 200 0.042 

13 125 500 913.4 12.5 0.00421 300 0.035 

14 125 500 1760.4 8.84 0.00752 300 0.035 

15 125 500 1728.3 9.15 0.00708 300 0.035 

16 125 500 1728.3 9.15 0.00708 300 0.035 

17 220 500 647.85 7.97 0.00313 300 0.035 

18 220 500 649.69 7.95 0.00313 300 0.035 

19 242 550 647.83 7.97 0.00313 300 0.035 

20 242 550 647.81 7.97 0.00313 300 0.035 

21 254 550 785.96 6.63 0.00298 300 0.035 

22 254 550 785.96 6.63 0.00298 300 0.035 

23 254 550 794.53 6.66 0.00284 300 0.035 

24 254 550 794.53 6.66 0.00284 300 0.035 

25 254 550 801.32 7.1 0.00277 300 0.035 

26 254 550 801.32 7.1 0.00277 300 0.035 

27 10 150 1055.1 3.33 0.52124 120 0.077 

28 10 150 1055.1 3.33 0.52124 120 0.077 

29 10 150 1055.1 3.33 0.52124 120 0.077 

30 47 97 148.89 5.35 0.0114 120 0.077 

31 60 190 222.92 6.43 0.0016 150 0.063 

32 60 190 222.92 6.43 0.0016 150 0.063 

33 60 190 222.92 6.43 0.0016 150 0.063 

34 90 200 107.87 8.95 0.0001 200 0.042 

35 90 200 116.58 8.62 0.0001 200 0.042 

36 90 200 116.58 8.62 0.0001 200 0.042 

37 25 110 307.45 5.88 0.0161 80 0.098 

38 25 110 307.45 5.88 0.0161 80 0.098 

39 25 110 307.45 5.88 0.0161 80 0.098 

40 242 550 647.83 7.97 0.00313 300 0.035 

G.2 Cost coefficient of test case 8.2 (10500 MW) 

Unit Min Max aj bj cj ej fj 

1 36 114 94.705 6.73 0.0069 100 0.084 

2 36 114 94.705 6.73 0.0069 100 0.084 

3 60 120 309.54 7.07 0.02028 100 0.084 

4 80 190 369.03 8.18 0.00942 150 0.063 

5 47 97 148.89 5.35 0.0114 120 0.077 

6 68 140 222.33 8.05 0.01142 100 0.084 

7 110 300 278.71* 8.03 0.00357 200 0.042 

8 135 300 391.98 6.99 0.00492 200 0.042 

9 135 300 455.76 6.6 0.00573 200 0.042 

10 130 300 722.82 12.9 0.00605 200 0.042 

11 94 375 635.2 12.9 0.00515 200 0.042 

12 94 375 654.69 12.8 0.00569 200 0.042 

13 125 500 913.4 12.5 0.00421 300 0.035 

14 125 500 1760.4 8.84 0.00752 300 0.035 

15 125 500 1728.3 9.15 0.00708 300 0.035 

16 125 500 1728.3 9.15 0.00708 300 0.035 

17 220 500 647.85 7.97 0.00313 300 0.035 

18 220 500 649.69 7.95 0.00313 300 0.035 

19 242 550 647.83 7.97 0.00313 300 0.035 

20 242 550 647.81 7.97 0.00313 300 0.035 

21 254 550 785.96 6.63 0.00298 300 0.035 

22 254 550 785.96 6.63 0.00298 300 0.035 

23 254 550 794.53 6.66 0.00284 300 0.035 

24 254 550 794.53 6.66 0.00284 300 0.035 

25 254 550 801.32 7.1 0.00277 300 0.035 

26 254 550 801.32 7.1 0.00277 300 0.035 

27 10 150 1055.1 3.33 0.52124 120 0.077 

28 10 150 1055.1 3.33 0.52124 120 0.077 

29 10 150 1055.1 3.33 0.52124 120 0.077 

30 47 97 148.89 5.35 0.0114 120 0.077 

31 60 190 222.92 6.43 0.0016 150 0.063 

32 60 190 222.92 6.43 0.0016 150 0.063 

33 60 190 222.92 6.43 0.0016 150 0.063 

34 90 200 107.87 8.95 0.0001 200 0.042 

35 90 200 116.58 8.62 0.0001 200 0.042 

36 90 200 116.58 8.62 0.0001 200 0.042 

37 25 110 307.45 5.88 0.0161 80 0.098 

38 25 110 307.45 5.88 0.0161 80 0.098 

39 25 110 307.45 5.88 0.0161 80 0.098 

40 242 550 647.83 7.97 0.00313 300 0.035 

 

 

 

 

https://doi.org/10.1016/j.asoc.2023.110891


Economic dispatch using metaheuristics: Algorithms, problems, and solutions, ASC 2024   50 
 

G.3 Cost coefficient of test case 8.3 (10500 MW) 

Unit Min Max aj bj cj ej fj 

1 36 114 94.705 6.73 0.0069 100 0.084 

2 36 114 94.705 6.73 0.0069 100 0.084 

3 60 120 309.54 7.07 0.02028 100 0.084 

4 80 190 369.03 8.18 0.00942 150 0.063 

5 47 97 148.89 5.35 0.0114 120 0.077 

6 68 140 222.33 8.05 0.01142 100 0.084 

7 110 300 287.71 8.03 0.00357 200 0.042 

8 135 300 391.98 6.99 0.00492 200 0.042 

9 135 300 455.76 6.6 0.00573 200 0.042 

10 130 300 722.82 12.9 0.00605 200 0.042 

11 94 375 635.2 12.9 0.00515 200 0.042 

12 94 375 654.69 12.8 0.00569 200 0.042 

13 125 500 913.4 12.5 0.00421 300 0.035 

14 125 500 1760.4 8.84 0.00752 300 0.035 

15 125 500 1760.4* 8.84* 0.00752* 300 0.035 

16 125 500 1760.4* 8.84* 0.00752* 300 0.035 

17 220 500 647.85 7.97 0.00313 300 0.035 

18 220 500 649.69 7.95 0.00313 300 0.035 

19 242 550 647.83 7.97 0.00313 300 0.035 

20 242 550 647.81 7.97 0.00313 300 0.035 

21 254 550 785.96 6.63 0.00298 300 0.035 

22 254 550 785.96 6.63 0.00298 300 0.035 

23 254 550 794.53 6.66 0.00284 300 0.035 

24 254 550 794.53 6.66 0.00284 300 0.035 

25 254 550 801.32 7.1 0.00277 300 0.035 

26 254 550 801.32 7.1 0.00277 300 0.035 

27 10 150 1055.1 3.33 0.52124 120 0.077 

28 10 150 1055.1 3.33 0.52124 120 0.077 

29 10 150 1055.1 3.33 0.52124 120 0.077 

30 47 97 148.89 5.35 0.0114 120 0.077 

31 60 190 222.92 6.43 0.0016 150 0.063 

32 60 190 222.92 6.43 0.0016 150 0.063 

33 60 190 222.92 6.43 0.0016 150 0.063 

34 90 200 107.87 8.95 0.0001 200 0.042 

35 90 200 116.58 8.62 0.0001 200 0.042 

36 90 200 116.58 8.62 0.0001 200 0.042 

37 25 110 307.45 5.88 0.0161 80 0.098 

38 25 110 307.45 5.88 0.0161 80 0.098 

39 25 110 307.45 5.88 0.0161 80 0.098 

40 242 550 647.83 7.97 0.00313 300 0.035 

G.4 Best solution obtained by L-HMDE for test case 8  

Units 
Test case 8.1 Test case 8.2 Test case 8.3 

Units 
Test case 8.1 Test case 8.2 Test case 8.3 

Pj Pj Pj Pj Pj Pj 

1 110.79982538 110.79982705 110.79982513 21 523.27937032 523.27937036 523.27937022 

2 110.79982538 110.79982633 110.79982434 22 523.27937036 523.27937032 523.27937029 

3 97.39991259 97.39991258 97.39991252 23 523.27937033 523.27937056 523.27937045 

4 179.73310014 179.73310021 179.73310005 24 523.27937032 523.27937059 523.27937068 

5 87.79990442 87.79990610 87.79990471 25 523.27937041 523.27937055 523.27937033 

6 140 140.00000000 140 26 523.27937030 523.27937062 523.27937029 

7 259.59965029 259.59965024 259.59965009 27 10 10.00000000 10 

8 284.59965030 284.59965083 284.59964982 28 10.00000001 10.00000000 10.00000001 

9 284.59965023 284.59965118 284.59965071 29 10.00000001 10.00000000 10 

10 130 130.00000003 130.00000002 30 87.79990475 87.79990486 87.79990617 

11 94 94.00000000 94.00000025 31 190 190.00000000 190 

12 94.00000001 94.00000000 94 32 190 190.00000000 189.99999911 

13 214.75979011 214.75979012 214.75978952 33 190 190.00000000 190 

14 394.27937031 394.27937031 394.27937021 34 164.79982528 164.79982711 164.79982529 

15 394.27937031 394.27937029 394.27937023 35 194.39777649 194.39776735 194.39777880 

16 394.27937031 394.27937031 394.27936974 36 200 199.99999996 200 

17 489.27937034 489.27937080 489.27937049 37 110 110.00000000 109.99999928 

18 489.27937032 489.27937031 489.27937023 38 110 109.99999998 110 

19 511.27937034 511.27937032 511.27937029 39 110 110.00000000 110 

20 511.27937033 511.27937038 511.27937040 40 511.27937031 511.27937035 511.27937033 

  Total power output (MW) 10500.00 10500.00 10500.00 
  Error (MW) 1.82·10-12 0.00 1.82·10-12 

  Operating Cost ($/h) 121412.54 121403.54 121369.08 
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H.1 Cost coefficient of test case 9 (15000 MW) 

Unit Min Max aj bj cj  Unit Min Max aj bj cj 

1 2.4 12 24.389 25.547 0.0253  56 25.2 96 82.136 14.327 0.0098 

2 2.4 12 24.411 25.675 0.0265  57 25.2 96 82.298 14.354 0.0099 

3 2.4 12 24.638 25.803 0.028  58 35 100 82.464 14.38 0.0092 

4 2.4 12 24.76 25.932 0.0284  59 35 100 82.626 14.407 0.0094 

5 2.4 12 24.888 26.061 0.0286  60 45 120 218.895 19 0.0072 

6 4 20 117.755 37.551 0.012  61 45 120 219.335 19.1 0.0071 

7 4 20 118.108 37.664 0.0126  62 45 120 219.775 19.2 0.007 

8 4 20 118.458 37.777 0.0136  63 54.3 185 143.735 11.694 0.0066 

9 4 20 118.821 37.89 0.0143  64 54.3 185 144.029 11.715 0.0057 

10 15.2 76 81.136 13.327 0.0088  65 54.3 185 144.318 11.737 0.0058 

11 15.2 76 81.298 13.354 0.0089  66 54.3 185 144.597 11.758 0.0059 

12 15.2 76 81.464 13.8 0.0091  67 70 197 269.131 24 0.0036 

13 15.2 76 81.626 13.407 0.0093  68 70 197 269.649 24.1 0.0036 

14 25 100 217.895 18 0.0062  69 70 197 270.176 24.2 0.0036 

15 25 100 218.335 18.1 0.0061  70 150 360 187.057 11.862 0.0025 

16 25 100 218.775 18.2 0.006  71 160 400 320.002 8.492 0.0029 

17 54.3 155 142.735 10.694 0.0046  72 160 400 321.91 8.503 0.003 

18 54.3 155 143.029 10.715 0.0047  73 60 300 52.136 13.327 0.0054 

19 54.3 155 143.318 10.737 0.0048  74 50 250 42.298 12.354 0.0055 

20 54.3 155 143.597 10.758 0.0049  75 30 90 32.464 11.38 0.0099 

21 68.9 197 259.131 23 0.0026  76 12 50 23.626 9.407 0.0031 

22 68.9 197 259.649 23.1 0.0026  77 160 450 220 14 0.0024 

23 68.9 197 260.176 23.2 0.0026  78 150 600 190 13.1 0.0023 

24 140 350 177.057 10.862 0.0015  79 50 200 250 13.2 0.0036 

25 100 400 210.002 7.492 0.0019  80 20 120 230 13.5 0.0049 

26 100 400 211.91 7.503 0.0019  81 10 55 70 24 0.0061 

27 140 500 210 12 0.0014  82 12 40 60 14.5 0.007 

28 140 500 180 12.1 0.0013  83 20 80 210 14.2 0.0088 

29 50 200 240 12.2 0.0026  84 50 200 150 13.4 0.0022 

30 25 100 220 12.5 0.0039  85 80 325 130 11.3 0.0048 

31 10 50 60 23 0.0051  86 120 440 80 8.9 0.0053 

32 5 20 50 13.5 0.005  87 10 35 90 14.4 0.0021 

33 20 80 200 13.2 0.0078  88 20 55 80 14.3 0.0033 

34 75 250 140 12.4 0.0012  89 20 100 125 13.9 0.0034 

35 110 360 120 10.3 0.0038  90 40 220 160 13.8 0.0037 

36 130 400 90 9.9 0.0043  91 30 140 50 13.7 0.0066 

37 10 40 80 13.4 0.0011  92 40 100 400 13.6 0.0043 

38 20 70 70 13.3 0.0023  93 100 440 260 8.4 0.0022 

39 25 100 115 12.9 0.0034  94 100 500 110 7.6 0.0055 

40 20 120 150 12.8 0.0067  95 100 600 170 7.5 0.0032 

41 40 180 40 12.7 0.0056  96 200 700 140 7.2 0.0077 

42 50 220 300 12.6 0.0023  97 3.6 15 26.389 26.547 0.0353 

43 120 440 250 7.4 0.0012  98 3.6 15 25.411 26.675 0.0365 

44 160 560 100 6.6 0.0045  99 4.4 22 25.638 26.803 0.038 

45 150 660 160 6.5 0.0022  100 4.4 22 25.76 26.932 0.0384 

46 200 700 130 6.2 0.0067  101 10 60 65 15.3 0.021 

47 5.4 32 34.389 26.547 0.0353  102 10 80 82 16 0.023 

48 5.4 32 34.411 26.675 0.0365  103 20 100 86 20.2 0.024 

49 8.4 52 34.638 26.803 0.038  104 20 120 84 20.2 0.035 

50 8.4 52 34.761 26.932 0.0384  105 40 150 75 25.6 0.034 

51 8.4 52 34.888 17.061 0.0386  106 40 280 56 30.5 0.037 

52 12 60 127.755 38.551 0.032  107 50 520 67 32.5 0.039 

53 12 60 128.108 36.664 0.0326  108 30 150 68 26 0.035 

54 12 60 128.458 38.777 0.0236  109 40 320 69 25.8 0.028 

55 12 60 128.821 38.89 0.0243  110 20 200 72 27 0.026 

H.2 Best solution obtained by L-HMDE for test cases 9 

Units Pj Units Pj Units Pj Units Pj Units Pj 

1 2.4 23 68.9 45 660 67 70 89 82.42490232 

2 2.4 24 350 46 616.45382762 68 70 90 89.25591921 

3 2.4 25 400 47 5.4 69 70 91 57.61102329 

4 2.4 26 400 48 5.4 70 360 92 100 

5 2.4 27 500 49 8.4 71 400 93 440 

6 4 28 500 50 8.4 72 400 94 500 

7 4 29 200 51 8.4 73 104.95347226 95 600 

8 4 30 100 52 12 74 191.49810138 96 471.45972504 

9 4 31 10 53 12 75 90 97 3.6 

10 64.40368790 32 20 54 12 76 50 98 3.6 

11 62.16272511 33 80 55 12 77 160 99 4.4 

12 36.28933659 34 250 56 25.2 78 295.75788666 100 4.4 

13 56.63872123 35 360 57 25.2 79 175.06917239 101 10 

14 25 36 400 58 35 80 98.01263890 102 10 

15 25 37 40 59 35 81 10 103 20 

16 25 38 70 60 45 82 12 104 20 

17 155 39 100 61 45 83 20 105 40 

18 155 40 120 62 45 84 200 106 40 

19 155 41 157.18535542 63 184.99999997 85 324.99999999 107 50 

20 155 42 220 64 185 86 440 108 30 

21 68.9 43 440 65 185 87 14.40761971 109 40 

22 68.9 44 560 66 185 88 24.31588500 110 20 

      Total power output (MW) 15000.00 
      Error (MW) 1.00·10-8 

      Operating Cost ($/h) 197988.18 
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I.1 Cost coefficient of test cases 10 to 12 (49342 MW) 

 

Unit aj bj cj Min Max URj DRj P0 ej fj prohibited zones 

1 1220.645 61.242 0.032888 71 119 30 120 98.4 - - - 

2 1315.118 41.095 0.008280 120 189 30 120 134.0 - - - 

3 874.288 46.310 0.003849 125 190 60 60 141.5 - - - 

4 874.288 46.310 0.003849 125 190 60 60 183.3 - - - 

5 1976.469 54.242 0.042468 90 190 150 150 125.0 700 0.080 - 

6 1338.087 61.215 0.014992 90 190 150 150 91.3 - - - 

7 1818.299 11.791 0.007039 280 490 180 300 401.1 - - - 

8 1133.978 15.055 0.003079 280 490 180 300 329.5 - - [250, 280] [305, 335] [420, 450] 

9 1320.636 13.226 0.005063 260 496 300 510 386.1 - - - 

10 1320.636 13.226 0.005063 260 496 300 510 427.3 600 0.055 - 

11 1320.636 13.226 0.005063 260 496 300 510 412.2 - - - 

12 1106.539 14.498 0.003552 260 496 300 510 370.1 - - - 

13 1176.504 14.651 0.003901 260 506 600 600 301.8 - - - 

14 1176.504 14.651 0.003901 260 509 600 600 368.0 - - - 

15 1176.504 14.651 0.003901 260 506 600 600 301.9 800 0.060 - 

16 1176.504 14.651 0.003901 260 505 600 600 476.4 - - - 

17 1017.406 15.669 0.002393 260 506 600 600 283.1 - - - 

18 1017.406 15.669 0.002393 260 506 600 600 414.1 - - - 

19 1229.131 14.656 0.003684 260 505 600 600 328.0 - - - 

20 1229.131 14.656 0.003684 260 505 600 600 389.4 - - - 

21 1229.131 14.656 0.003684 260 505 600 600 354.7 - - - 

22 1229.131 14.656 0.003684 260 505 600 600 262.0 600 0.050 - 

23 1267.894 14.378 0.004004 260 505 600 600 461.5 - - - 

24 1229.131 14.656 0.003684 260 505 600 600 371.6 - - - 

25 975.926 16.261 0.001619 280 537 300 300 462.6 - - - 

26 1532.093 13.362 0.005093 280 537 300 300 379.2 - - - 

27 641.989 17.203 0.000993 280 549 360 360 530.8 - - - 

28 641.989 17.203 0.000993 280 549 360 360 391.9 - - - 

29 911.533 15.274 0.002473 260 501 180 180 480.1 - - - 

30 910.533 15.212 0.002547 260 501 180 180 319.0 - - - 

31 1074.810 15.033 0.003542 260 506 600 600 329.5 - - - 

32 1074.810 15.033 0.003542 260 506 600 600 333.8 - - [220, 250] [320, 350] [390, 420] 

33 1074.810 15.033 0.003542 260 506 600 600 390.0 600 0.043 - 

34 1074.810 15.033 0.003542 260 506 600 600 432.0 - - - 

35 1278.460 13.992 0.003132 260 500 660 660 402.0 - - - 

36 861.742 15.679 0.001323 260 500 900 900 428.0 - - - 

37 408.834 16.542 0.002950 120 241 180 180 178.4 - - - 

38 408.834 16.542 0.002950 120 241 180 180 194.1 - - - 

39 1288.815 16.518 0.000991 423 774 600 600 474.0 - - - 

40 1436.251 15.815 0.001581 423 769 600 600 609.8 600 0.043 - 

41 669.988 75.464 0.902360 3 19 210 210 17.8 - - - 

42 134.544 129.544 0.110295 3 28 366 366 6.9 - - - 

43 3427.912 56.613 0.024493 160 250 702 702 224.3 - - - 

44 3751.772 54.451 0.029156 160 250 702 702 210.0 - - - 

45 3918.780 54.736 0.024667 160 250 702 702 212.0 - - - 

46 3379.580 58.034 0.016517 160 250 702 702 200.8 - - - 

47 3345.296 55.981 0.026584 160 250 702 702 220.0 - - - 

48 3138.754 61.520 0.007540 160 250 702 702 232.9 - - - 

49 3453.050 58.635 0.016430 160 250 702 702 168.0 - - - 

50 5119.300 44.647 0.045934 160 250 702 702 208.4 - - - 

51 1898.415 71.584 0.000044 165 504 1350 1350 443.9 - - - 

52 1898.415 71.584 0.000044 165 504 1350 1350 426.0 1100 0.043 - 

53 1898.415 71.584 0.000044 165 504 1350 1350 434.1 - - - 

54 1898.415 71.584 0.000044 165 504 1350 1350 402.5 - - - 

55 2473.390 85.120 0.002528 180 471 1350 1350 357.4 - - - 

56 2781.705 87.682 0.000131 180 561 720 720 423.0 - - - 

57 5515.508 69.532 0.010372 103 341 720 720 220.0 - - - 

58 3478.300 78.339 0.007627 198 617 2700 2700 369.4 - - - 

59 6240.909 58.172 0.012464 100 312 1500 1500 273.5 - - - 

60 9960.110 46.636 0.039441 153 471 1656 1656 336.0 - - - 

61 3671.997 76.947 0.007278 163 500 2160 2160 432.0 - - - 

62 1837.383 80.761 0.000044 95 302 900 900 220.0 - - - 

63 3108.395 70.136 0.000044 160 511 1200 1200 410.6 - - - 

64 3108.395 70.136 0.000044 160 511 1200 1200 422.7 - - - 

65 7095.484 49.840 0.018827 196 490 1014 1014 351.0 - - - 

66 3392.732 65.404 0.010852 196 490 1014 1014 296.0 - - - 

67 7095.484 49.840 0.018827 196 490 1014 1014 411.1 - - - 

68 7095.484 49.840 0.018827 196 490 1014 1014 263.2 - - - 

69 4288.320 66.465 0.034560 130 432 1350 1350 370.3 - - - 

70 13813.001 22.941 0.081540 130 432 1350 1350 418.7 1200 0.030 - 

71 4435.493 64.314 0.023534 137 455 1350 1350 409.6 - - - 

72 9750.750 45.017 0.035475 137 455 1350 1350 412.0 1000 0.050 - 

73 1042.366 70.644 0.000915 195 541 780 780 423.2 - - - 

74 1159.895 70.959 0.000044 175 536 1650 1650 428.0 - - [230, 255] [365, 395] [430, 455] 

75 1159.895 70.959 0.000044 175 540 1650 1650 436.0 - - - 

76 1303.990 70.302 0.001307 175 538 1650 1650 428.0 - - - 

77 1156.193 70.662 0.000392 175 540 1650 1650 425.0 - - - 

78 2118.968 71.101 0.000087 330 574 1620 1620 497.2 - - - 

79 779.519 37.854 0.000521 160 531 1482 1482 510.0 - - - 

80 829.888 37.768 0.000498 160 531 1482 1482 470.0 - - - 

81 2333.690 67.983 0.001046 200 542 1668 1668 464.1 - - - 

82 2028.954 77.838 0.132050 56 132 120 120 118.1 - - - 

83 4412.017 63.671 0.096968 115 245 180 180 141.3 - - - 

84 2982.219 79.458 0.054868 115 245 120 180 132.0 1000 0.050 - 

85 2982.219 79.458 0.054868 115 245 120 180 135.0 - - - 

86 3174.939 93.966 0.014382 207 307 120 180 252.0 - - - 

87 3218.359 94.723 0.013161 207 307 120 180 221.0 - - - 

88 3723.822 66.919 0.016033 175 345 318 318 245.9 - - - 

89 3551.405 68.185 0.013653 175 345 318 318 247.9 - - - 

90 4322.615 60.821 0.028148 175 345 318 318 183.6 - - - 

91 3493.739 68.551 0.013470 175 345 318 318 288.0 - - - 

92 226.799 2.842 0.000064 360 580 18 18 557.4 - - - 

93 382.932 2.946 0.000252 415 645 18 18 529.5 - - - 

94 156.987 3.096 0.000022 795 984 36 36 800.8 - - - 
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I.1 Cost coefficient of test cases 10 to 12 (continue) 

Unit aj bj cj Min Max URj DRj P0 ej fj prohibited zones 

95 154.484 3.040 0.000022 795 978 36 36 801.5 - - - 

96 332.834 1.709 0.000203 578 682 138 204 582.7 - - - 

97 326.599 1.668 0.000198 615 720 144 216 680.7 - - - 

98 345.306 1.789 0.000215 612 718 144 216 670.7 - - - 

99 350.372 1.815 0.000218 612 720 144 216 651.7 - - - 

100 370.377 2.726 0.000193 758 964 48 48 921.0 - - - 

101 367.067 2.732 0.000197 755 958 48 48 916.8 - - - 

102 124.875 2.651 0.000324 750 1007 36 54 911.9 - - - 

103 130.785 2.798 0.000344 750 1006 36 54 898.0 - - - 

104 878.746 1.595 0.000690 713 1013 30 30 905.0 - - - 

105 827.959 1.503 0.000650 718 1020 30 30 846.5 - - - 

106 432.007 2.425 0.000233 791 954 30 30 850.9 - - - 

107 445.606 2.499 0.000239 786 952 30 30 843.7 - - - 

108 467.223 2.674 0.000261 795 1006 36 36 841.4 - - - 

109 475.940 2.692 0.000259 795 1013 36 36 835.7 - - - 

110 899.462 1.633 0.000707 795 1021 36 36 828.8 - - - 

111 1000.367 1.816 0.000786 795 1015 36 36 846.0 - - - 

112 1269.132 89.830 0.014355 94 203 120 120 179.0 - - - 

113 1269.132 89.830 0.014355 94 203 120 120 120.8 - - - 

114 1269.132 89.830 0.014355 94 203 120 120 121.0 - - - 

115 4965.124 64.125 0.030266 244 379 480 480 317.4 - - - 

116 4965.124 64.125 0.030266 244 379 480 480 318.4 - - - 

117 4965.124 64.125 0.030266 244 379 480 480 335.8 - - - 

118 2243.185 76.129 0.024027 95 190 240 240 151.0 - - - 

119 2290.381 81.805 0.001580 95 189 240 240 129.5 600 0.070 - 

120 1681.533 81.140 0.022095 116 194 120 120 130.0 - - - 

121 6743.302 46.665 0.076810 175 321 180 180 218.9 1200 0.043 - 

122 394.398 78.412 0.953443 2 19 90 90 5.4 - - - 

123 1243.165 112.088 0.000044 4 59 90 90 45.0 - - - 

124 1454.740 90.871 0.072468 15 83 300 300 20.0 - - - 

125 1011.051 97.116 0.000448 9 53 162 162 16.3 - - - 

126 909.269 83.244 0.599112 12 37 114 114 20.0 - - - 

127 689.378 95.665 0.244706 10 34 120 120 22.1 - - - 

128 1443.792 91.202 0.000042 112 373 1080 1080 125.0 - - - 

129 535.553 104.501 0.085145 4 20 60 60 10.0 - - - 

130 617.734 83.015 0.524718 5 38 66 66 13.0 - - - 

131 90.966 127.795 0.176515 5 19 12 6 7.5 - - - 

132 974.447 77.929 0.063414 50 98 300 300 53.2 - - - 

133 263.810 92.779 2.740485 5 10 6 6 6.4 - - - 

134 1335.594 80.950 0.112438 42 74 60 60 69.1 - - - 

135 1033.871 89.073 0.041529 42 74 60 60 49.9 - - - 

136 1391.325 161.288 0.000911 41 105 528 528 91.0 - - [50, 75] [85, 95] 

137 4477.110 161.829 0.005245 17 51 300 300 41.0 - - - 

138 57.794 84.972 0.234787 7 19 18 30 13.7 - - - 

139 57.794 84.972 0.234787 7 19 18 30 7.4 - - - 

140 1258.437 16.087 1.111878 26 40 72 120 28.6 - - - 
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I.2 Best solution obtained by L-HMDE for test cases 10 to 12 

Units 
Test case 10 Test case 11 Test case 12 

Units 
Test case 10 Test case 11 Test case 12 

Pj Pj Pj Pj Pj Pj 

1 118.99999989 115.14972113 119 71 141.53455011 137 141.58735214 

2 164 189 164 72 388.32741228 325.49555919 365.91162972 

3 190 190 190 73 195.00003202 195 195.00000093 

4 190 190 190 74 196.39681466 175 217.69222848 

5 168.53981636 168.53981634 189.9999999 75 196.16845947 175.00000169 217.33482512 

6 190 190 190 76 257.95272338 175 258.68449517 

7 490 490 490 77 400.84087678 175 403.28753976 

8 490 490 490 78 330.00000028 330 330.00000309 

9 496 496 496 79 531 531 531 

10 495.99999996 496 496 80 531 531 531 

11 496 496 496 81 541.99999997 398.04628436 542 

12 496 496 496 82 56 56 56 

13 506 506 506 83 115 115 115 

14 509 509 508.99999999 84 115 115 115 

15 506 506 506 85 115 115 115 

16 505 505 505 86 207.0000001 207 207 

17 506 506 506 87 207 207 207 

18 506 506 506 88 175.00000062 175 175 

19 505 505 505 89 175.00000001 175 175 

20 505 505 505 90 180.38665746 175.00000524 180.42194708 

21 505 505 505 91 175 175 175 

22 505 505 505 92 575.4 580 575.4 

23 505 505 505 93 547.5 645 547.5 

24 505 505 505 94 836.8 984 836.8 

25 537 537 537 95 837.5 978 837.5 

26 537 537 537 96 682 682 682 

27 549 549 549 97 720 720 720 

28 549 549 549 98 718 718 718 

29 501 501 501 99 720 720 720 

30 498.99999997 501 499 100 964 964 964 

31 506 506 506 101 958 957.99999999 958 

32 506 505.99999997 506 102 947.89999999 1007 947.9 

33 506 506 506 103 934 1006 934 

34 506 506 506 104 935 1013 935 

35 500 500 500 105 876.5 1020 876.5 

36 500 500 500 106 880.9 954 880.9 

37 241 241 241 107 873.7 952 873.7 

38 241 241 241 108 877.4 1006 877.4 

39 774 774 774 109 871.7 1013 871.7 

40 769 769 768.99999999 110 864.8 1021 864.8 

41 3.00000001 3 3 111 882 1015 882 

42 3 3 3 112 94 94 94 

43 250 249.10439642 250 113 94 94 94 

44 250 246.36018119 250 114 94 94 94 

45 249.99999992 250 250 115 244 244 244 

46 250 250 250 116 244 244 244 

47 250 241.40764330 249.99999998 117 244 244 244 

48 250 249.99999989 250 118 95 95 95.00000002 

49 250 250 250 119 95 95 95 

50 249.9999997 249.99999976 249.99999997 120 116 116 116 

51 165.00000032 165.00000001 165.00000006 121 175 175 175 

52 165.00000001 165.00000001 165 122 2 2 2 

53 165.00000011 165.00000001 165 123 4 4 4 

54 165.00000017 165.00000022 165.00000196 124 15 15 15 

55 180 180 180 125 9 9 9 

56 180 180 180 126 12 12 12 

57 103.00000036 103 103 127 10 10 10 

58 198 198 198 128 112.0000000500 112 112 

59 312 312 312 129 4 4 4 

60 308.56994756 281.17663849 308.59076625 130 5 5.00000002 5 

61 163 163 163 131 5 5 5 

62 95 95 95 132 50 50 50 

63 511 160.00000056 510.99999997 133 5 5 5 

64 511 160 510.99999997 134 42 42 42 

65 490 489.99999926 490 135 42.00000001 42 42 

66 256.74320067 196 256.827941 136 41 41 41 

67 489.99999729 490 489.99999999 137 17 17 17 

68 490 489.9999978 490 138 7 7 7 

69 130 130 130 139 7 7 7 

70 339.43951027 234.71975515 294.56126946 140 26.00000024 26 26 

   Total power output (MW) 49342.00 49342.00 49342.00 
   Error (MW) 0.00 0.00 0.00 

   Operating Cost ($/h) 1657962.73 1559708.45 1655679.43 
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J.1 Best solution obtained by L-HMDE for test cases 13 (43200 MW) 

Units Pj Units Pj Units Pj Units Pj Units Pj 

1 217.44689923 33 278.71598059 65 278.83944863 97 287.89776782 129 424.24659375 

2 212.19787520 34 240.44970827 66 240.31301064 98 240.44464970 130 272.43674026 

3 281.61086120 35 279.06289000 67 286.66232663 99 431.63179954 131 216.36034759 

4 237.89270764 36 240.17776566 68 240.04635432 100 274.60740859 132 210.96202226 

5 275.84755977 37 288.81313400 69 423.12461093 101 219.62385488 133 281.55035117 

6 240.44087023 38 241.39149546 70 273.68671573 102 211.22601586 134 239.50570195 

7 292.95451782 39 421.56673093 71 216.56724320 103 282.73793258 135 276.46780292 

8 239.64184145 40 272.72158598 72 211.71059590 104 239.37098223 136 240.44408821 

9 423.70206593 41 218.16860851 73 282.64302347 105 277.30010716 137 289.83913000 

10 276.12974354 42 211.96764349 74 238.96744012 106 239.50629559 138 238.83235014 

11 217.30979861 43 280.63730121 75 280.45091069 107 291.81524379 139 426.57917727 

12 212.71785352 44 239.50641501 76 240.17759150 108 240.44182133 140 275.68946229 

13 279.69865195 45 279.14819642 77 291.71573687 109 430.56977057 141 218.30889440 

14 239.23867833 46 239.23356552 78 239.90777301 110 275.55311062 142 212.94446692 

15 280.68648543 47 290.34777988 79 428.34924504 111 217.92749486 143 280.74032226 

16 239.50462259 48 238.69180339 80 273.97292630 112 212.44341410 144 238.83151132 

17 289.97301302 49 429.42489574 81 219.86910612 113 279.40061515 145 275.41956341 

18 239.49725913 50 276.03807548 82 211.97530416 114 239.90856985 146 239.10205401 

19 425.70340400 51 216.90563265 83 278.64666111 115 280.47084245 147 287.86144619 

20 272.96740311 52 211.21483416 84 239.64107650 116 240.04487080 148 239.76989910 

21 217.79845618 53 279.57469032 85 279.83458853 117 291.39553705 149 426.43086397 

22 213.44637109 54 239.50408513 86 240.58129403 118 240.30874489 150 275.90337025 

23 279.51328894 55 275.39545274 87 291.33188596 119 428.60272236 151 218.69082106 

24 237.62139836 56 240.18062648 88 240.17807651 120 275.85572629 152 211.71270250 

25 277.38925496 57 288.03323509 89 427.34995080 121 215.58581251 153 283.85981539 

26 239.23996369 58 239.77483265 90 276.48278217 122 212.69596702 154 237.89348052 

27 292.07263888 59 428.53354902 91 217.76282024 123 281.43329434 155 279.25855927 

28 240.57889774 60 274.65843570 92 210.71987710 124 239.77499383 156 238.96620093 

29 432.22246834 61 217.21963369 93 283.68525408 125 274.96759583 157 288.42020655 

30 273.97545602 62 212.22241714 94 239.91253332 126 238.69835538 158 240.85010960 

31 220.77753775 63 279.57012561 95 278.85545055 127 292.79185733 159 430.35166766 

32 210.20589036 64 239.77529777 96 240.44907093 128 239.36839768 160 274.32786211 

      Total power output (MW) 9983.35 
      Error (MW) 0.00 

      Operating Cost ($/h) 43200.00 
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