
Introduction to Computer Science, Fall, 2010

Data Structures

Instructor: Tsung-Che Chiang
tcchiang@ieee.org

Department of Computer Science and Information Engineering
National Taiwan Normal University

Introduction to Computer Science, Fall, 2010
2

Introduction

A data structure uses a collection of
related variables that can be accessed
individually or as a whole.

We discuss three data structures here:
Arrays
 Records
 Linked lists

Introduction to Computer Science, Fall, 2010
3

Arrays

 Imagine that we have 100 scores.

We need to read them, process them and print
them. We must also keep these 100 scores in
memory for the duration of the program. We can
define a hundred variables, each with a different
name.

B. Forouzan and F. Mosharraf, Foundations of Computer Science, 2nd ed., 2008.

Introduction to Computer Science, Fall, 2010
4

Arrays

 But having 100 different names creates other problems. We
need 100 references to read them, 100 references to
process them and 100 references to write them.

B. Forouzan and F. Mosharraf, Foundations of Computer Science, 2nd ed., 2008.

Introduction to Computer Science, Fall, 2010
5

Arrays

An array is a sequenced collection of elements,
normally of the same data type, although some
programming languages accept arrays in which elements are of
different types.

We can refer to the elements in the array as the
first element, the second element and so forth,
until we get to the last element.

B. Forouzan and F. Mosharraf, Foundations of Computer Science, 2nd ed., 2008.

Note.
In C/C++, the index starts from 0.
(But, do you know why?)

Introduction to Computer Science, Fall, 2010
6

Arrays

We can use loops to read, write, and process the
elements in an array.

Now it does not matter if there are 100, 1000 or
10,000 elements to be processed—loops make it
easy to handle them all.

Introduction to Computer Science, Fall, 2010
7

Arrays

We have used indexes that start from 1; some modern languages
such as C, C++ and Java start indexes from 0.

B. Forouzan and F. Mosharraf, Foundations of Computer Science, 2nd ed., 2008.

Introduction to Computer Science, Fall, 2010
8

Arrays

 Compare the number of instructions we need to
write to handle 100 scores without and with the
use of an array.
 Assume that processing each score needs only one

instruction.

Without the use of an array:
 100 instructions for reading, 100 instructions for writing,

and 100 instructions for processing. 300 instructions.

With the use of an array:
 4 instructions in each loop, 3 loops 12 instructions

Introduction to Computer Science, Fall, 2010
9

Arrays

 The number of cycles (fetch, decode, and execute
phases) the computer needs to perform is not
reduced if we use an array.

 The number of cycles is actually increased,
because we have the extra overhead of initializing,
incrementing and testing the value of the index.

 But our concern is not the number of cycles: it is
the number of lines we need to write the program.

Introduction to Computer Science, Fall, 2010
10

Arrays

 In computer science, one of the big issues is the
reusability of programs.

Assume we have written two programs to process
the scores without and with the use of an array.
If the number of scores changes from 100 to 1000,
how many changes do we need to make in each
program?
 In the first program we need to add 3 × 900 = 2700

instructions.
 In the second program, we only need to change three

conditions
(I > 100 to I > 1000). If you define a named constant, you only

have to modify one place.

Introduction to Computer Science, Fall, 2010
11

Arrays

Array name vs. element name

B. Forouzan and F. Mosharraf, Foundations of
Computer Science, 2nd ed., 2008.

Make sure that you know the meaning of all
expressions on the left-hand side.

Introduction to Computer Science, Fall, 2010
12

Arrays

Multidimensional arrays
The arrays discussed so far are known as one-

dimensional arrays because the data is
organized linearly in only one direction.

Many applications require that data be stored
in more than one dimension.

B. Forouzan and F. Mosharraf, Foundations of
Computer Science, 2nd ed., 2008.

Introduction to Computer Science, Fall, 2010
13

Arrays

Memory layout
The indices in a one-dimensional array directly

define the relative positions of the element in
actual memory.

E0

E4

E8

score[0]

score[1]

score[2]

Introduction to Computer Science, Fall, 2010
14

Arrays

Memory layout
The following figure shows a two-dimensional

array and how it is stored in memory using row-
major or column-major storage.
 Row-major storage is more common.

B. Forouzan and F. Mosharraf, Foundations of
Computer Science, 2nd ed., 2008.

Introduction to Computer Science, Fall, 2010
15

Arrays

We have stored the two-dimensional array
students in memory.
 The array is 100 × 4 (100 rows and 4 columns).
 Assuming that the element student[1][1] is stored in

the memory location with address 1000.
 Each element occupies only one memory location
 The computer uses row-major storage.

Show the address of the element students[5][3].

 1018x: start address
y: target address

Introduction to Computer Science, Fall, 2010
16

Arrays

score[0]

Make sure that you know how to pass 1-D and 2-D
arrays to functions in C/C++.

Introduction to Computer Science, Fall, 2010
17

Arrays

Operations on array
There are some operations that we can define

on an array as a data structure.
The common operations on arrays as structures

are
 searching
 insertion
 deletion
 retrieval
 traversal

Many move operations are required and
thus inefficient.

Very efficient due to its ability of random access.

Introduction to Computer Science, Fall, 2010
18

Arrays

Insertion

Deletion

In fact, the data is often left untouched here.

Introduction to Computer Science, Fall, 2010
19

Arrays

Delete efficiently but cause cost for other
operations

Cost:
 When doing search, we should check if the element is

marked by ‘D’.
 We cannot do random access anymore.

D

We do not move the succeeding elements. We just mark it as deleted.

Introduction to Computer Science, Fall, 2010
20

Arrays

Applications
 If we have a list in which a lot of insertions and

deletions are expected after the original list
has been created, we should not use an array.

An array is more suitable when the number of
deletions and insertions is small, but a lot of
searching and retrieval activities are expected.

Introduction to Computer Science, Fall, 2010
21

Records

A record is a collection of related elements,
possibly of different types, having a single name.

 Each element in a record is called a field.
 A field is the smallest element of named data that has

meaning. It has a type and exists in memory.
 Fields can be assigned values, which in turn can be

accessed for selection or manipulation.
 A field differs from a variable primarily in that it is part

of a record.

B. Forouzan and F. Mosharraf, Foundations of
Computer Science, 2nd ed., 2008.

Introduction to Computer Science, Fall, 2010
22

Records

Without records With records

Introduction to Computer Science, Fall, 2010
23

Records

Record name
Just like in an array, we have two types of

identifier in a record:
 the name of the record
 the name of each individual

field inside the record

 Most programming languages use
a period (.) to separate the name
of the structure (record) from
the name of its components (fields).

Introduction to Computer Science, Fall, 2010
24

Records

Arrays vs. Records

An array defines a collection of elements (of
the same type), while a record defines the
identifiable parts of an element.

 For example, an array can define a class of
students (40 students), but a record defines
different attributes of a student, such as id,
name or grade.

Introduction to Computer Science, Fall, 2010
25

Records

Array of records
 For example, in a class of 30 students, we can have an

array of 30 records, each record representing a student.

B. Forouzan and F. Mosharraf, Foundations of
Computer Science, 2nd ed., 2008.

Introduction to Computer Science, Fall, 2010
26

Records

Using a loop to read the data into an array of
records

B. Forouzan and F. Mosharraf, Foundations of Computer Science, 2nd ed., 2008.

Introduction to Computer Science, Fall, 2010
27

Linked Lists

A linked list is a collection of data in which each
element contains the location of the next element.

 The elements in a linked list are traditionally
called node.

 Each node contains two parts: data and link.
 The data hold the value information.
 The link is used to chain the data together, and contains

a pointer (an address) that identifies the next element in
the list.

B. Forouzan and F. Mosharraf, Foundations of Computer Science, 2nd ed., 2008.

Introduction to Computer Science, Fall, 2010
28

Linked Lists

B. Forouzan and F. Mosharraf, Foundations of Computer Science, 2nd ed., 2008.

In linked lists, nodes are usually created
through dynamic memory allocation.

(malloc() in C or new in C++)

Introduction to Computer Science, Fall, 2010

Linked Lists

 It does not mean that there is only one way to
implement the linked list.

We can use array to implement the linked list, but
this is less common.

29

4

5

0

2

6

3

data link

1

head

Introduction to Computer Science, Fall, 2010
30

Linked Lists

A pointer variable identifies the first element in
the list. The name of the list is the same as the
name of this pointer variable.

We define an empty linked list to be only a null
pointer.

B. Forouzan and F. Mosharraf, Foundations of Computer Science, 2nd ed., 2008.

The value of a null pointer is 0 in C/C++.

Introduction to Computer Science, Fall, 2010
31

Linked Lists

You can also write node1.link->data.id.

Introduction to Computer Science, Fall, 2010
32

Linked Lists

 The arrowhead represents the address of the node to which the
arrow head is pointed.

 The solid circle shows where this copy of the address is stored.
 A copy of the address can be stored in more than one place.

B. Forouzan and F. Mosharraf, Foundations of Computer Science, 2nd ed., 2008.

Introduction to Computer Science, Fall, 2010
33

Linked Lists

Arrays vs. Linked lists

B. Forouzan and F. Mosharraf, Foundations of Computer Science, 2nd ed., 2008.

Nodes are not guaranteed to be
contiguous in memory.

Introduction to Computer Science, Fall, 2010
34

Linked Lists

List name vs. node name
The name of a linked list is the name of the

head pointer that points to the first node of
the list.

Nodes, on the other hand, do not have an
explicit names in a linked list, just implicit ones.

B. Forouzan and F. Mosharraf, Foundations of Computer Science, 2nd ed., 2008.

Introduction to Computer Science, Fall, 2010
35

Operations on Linked Lists

Searching a linked list
 Since nodes in a linked list have no names, we use

two pointers, pre (for previous) and cur (for
current).
 At the beginning of the search, the pre pointer is null

and the cur pointer points to the first node.
 The search algorithm moves the two pointers together

towards the end of the list.

Introduction to Computer Science, Fall, 2010
36

Operations on Linked Lists

Searching a linked list

B. Forouzan and F. Mosharraf, Foundations of Computer Science, 2nd ed., 2008.

Introduction to Computer Science, Fall, 2010
37

Operations on Linked Lists

B. Forouzan and F. Mosharraf, Foundations of Computer Science, 2nd ed., 2008.

(cur != null && target < (*cur).data)

(cur != null && (*cur).data = target) flag true

Introduction to Computer Science, Fall, 2010
38

Operations on Linked Lists

Inserting a node
 Before insertion into a linked list, we first apply

the searching algorithm.
 Note that we do not allow data with duplicate values.

 Two cases can arise:
 Insertion at the beginning of the list. (Inserting into an

empty list.)
 Insertion in the middle of the list. (Insertion at the end

of the list.)

Introduction to Computer Science, Fall, 2010
39

Operations on Linked Lists

Inserting a node at the beginning

B. Forouzan and F. Mosharraf, Foundations of Computer Science, 2nd ed., 2008.

(*new).link cur

Introduction to Computer Science, Fall, 2010
40

Operations on Linked Lists

Inserting a node in the middle

B. Forouzan and F. Mosharraf, Foundations of Computer Science, 2nd ed., 2008.

Introduction to Computer Science, Fall, 2010
42

Operations on Linked Lists

B. Forouzan and F. Mosharraf, Foundations of Computer Science, 2nd ed., 2008.

Introduction to Computer Science, Fall, 2010
43

Operations on Linked Lists

Deleting a node
 Before deleting a node in a linked list, we apply the

search algorithm.
 If the flag returned from the search algorithm is true

(the node is found), we can delete the node from the
linked list.

We also have two cases:
 deleting the first node
 deleting any other node.

Introduction to Computer Science, Fall, 2010
44

Operations on Linked Lists

Deleting the first node

B. Forouzan and F. Mosharraf, Foundations of Computer Science, 2nd ed., 2008.

If you allocate the memory dynamically, remember to release the memory.
free() for malloc() and delete for new.

Introduction to Computer Science, Fall, 2010
45

Operations on Linked Lists

Deleting other nodes

B. Forouzan and F. Mosharraf, Foundations of Computer Science, 2nd ed., 2008.

If you allocate the memory dynamically, remember to release the memory.
free() for malloc() and delete for new.

Introduction to Computer Science, Fall, 2010
46

Operations on Linked Lists

Deleting other nodes

B. Forouzan and F. Mosharraf, Foundations of Computer Science, 2nd ed., 2008.

Introduction to Computer Science, Fall, 2010
47

Operations on Linked Lists

Retrieving a node
 Retrieving means randomly accessing a node for

the purpose of inspecting or copying the data
contained in the node.

 Before retrieving, the linked list needs to be
searched.

Introduction to Computer Science, Fall, 2010
48

Operations on Linked Lists

B. Forouzan and F. Mosharraf, Foundations of Computer Science, 2nd ed., 2008.

Introduction to Computer Science, Fall, 2010
49

Operations on Linked Lists

Traversing a linked list
 To traverse the list, we need a “walking”pointer,

 which is a pointer that moves from node to node as each
element is processed.

We start traversing by setting the walking pointer
to the first node in the list.

 Then, using a loop, we continue until all of the data
has been processed.

 Each iteration of the loop processes the current
node, then advances the walking pointer to the
next node.

Introduction to Computer Science, Fall, 2010
50

Operations on Linked Lists

Traversing a linked list

B. Forouzan and F. Mosharraf, Foundations of Computer Science, 2nd ed., 2008.

Introduction to Computer Science, Fall, 2010
51

Operations on Linked Lists

Traversing a linked list

B. Forouzan and F. Mosharraf, Foundations of Computer Science, 2nd ed., 2008.

Introduction to Computer Science, Fall, 2010
52

Linked Lists

Applications
A linked list is a very efficient data structure

for sorted list that will go through many
insertions and deletions.

A linked list is a dynamic data structure in
which the list can start with no nodes and then
grow as new nodes are needed.

A node can be easily deleted without moving
other nodes, as would be the case with an array.

Introduction to Computer Science, Fall, 2010
53

Summary

Array, record, and linked list
What are they?
How to do operations?
When will you use them?

