
Introduction to Computer Science, Fall, 2010

Algorithms

Instructor: Tsung-Che Chiang
tcchiang@ieee.org

Department of Computer Science and Information Engineering
National Taiwan Normal University

Introduction to Computer Science, Fall, 2010
2

Outline

Concept
Three Constructs
Algorithm Representation
Basic Algorithms
Recursion
Summary



Introduction to Computer Science, Fall, 2010
3

Concept

An informal definition of an algorithm:

“a step-by-step method for solving a problem or
doing a task”

B. Forouzan and F. Mosharraf, Foundations of Computer Science, 2nd ed., 2008.

Introduction to Computer Science, Fall, 2010
4

Concept

Example

We want to develop an algorithm for finding the
largest integer among a list of positive integers.

 The algorithm should be general and not depend on the
number of integers.

 We first use a small number of integers (for example, five), and
then extend the solution to any number of integers



Introduction to Computer Science, Fall, 2010
5

Concept

B. Forouzan and F. Mosharraf,
Foundations of Computer Science,
2nd ed., 2008.

Introduction to Computer Science, Fall, 2010
6

Concept

Defining actions

B. Forouzan and F. Mosharraf,
Foundations of Computer Science,
2nd ed., 2008.



Introduction to Computer Science, Fall, 2010
7

Concept

Refinement
This algorithm needs refinement to be

acceptable to the programming community.
Two problems.

 First, the action in the first step is different than
those for the other steps.

 Second, the wording is not the same in steps 2 to 5.

Introduction to Computer Science, Fall, 2010
8

Concept

Refinement
Solution to problem 2:

Changing the wording in steps 2 to 5 to
“If the current integer is greater than Largest,
set Largest to the current integer.”

Solution to problem 1:

If we initialize Largest to −∞ (minus infinity),
then the first step can be the same as the
other steps.

In C, see <limits.h> for INT_MIN.
In C++, see <limits> for std::numeric_limits<int>::min()



Introduction to Computer Science, Fall, 2010
9

Concept

The algorithm after refinement

B. Forouzan and F. Mosharraf, Foundations of Computer Science, 2nd ed., 2008.

Introduction to Computer Science, Fall, 2010
10

Concept

Generalization
 Is it possible to generalize the algorithm?

 We want to find the largest of n positive integers,
where n can be 1000, 000,000, or more.

 We can tell the computer to repeat the steps n times.

B. Forouzan and F. Mosharraf, Foundations of Computer Science, 2nd ed., 2008.



Introduction to Computer Science, Fall, 2010
11

Three Constructs

Computer scientists have defined three
constructs for a structured program or
algorithm:
 sequence
 decision (selection)
 repetition.

B. Forouzan and F.
Mosharraf, Foundations of
Computer Science, 2nd ed.,
2008.

Introduction to Computer Science, Fall, 2010
12

Three Constructs

 Sequence
 An algorithm, and eventually a program, is a sequence of

instructions, which can be a simple instruction or either
of the other two constructs.

Decision
 Sometimes we need to test a condition. If the result of

testing is true, we follow a sequence of instructions:
if it is false, we follow a different sequence.

 Repetition
 In some problems, the same sequence of instructions

must be repeated.



Introduction to Computer Science, Fall, 2010
13

Algorithm Representation

 So far, we have used figures to convey the
concept of an algorithm.

During the last few decades, tools have been
designed for this purpose. Two of these tools,
UML and pseudocode, are presented here.

Introduction to Computer Science, Fall, 2010
14

Algorithm Representation

Unified Modeling Language (UML)
UML is a pictorial representation of an

algorithm.
 It hides all the details of an algorithm in an

attempt to give the “big picture”and to show
how the algorithm flows from beginning to end.



Introduction to Computer Science, Fall, 2010
15

Algorithm Representation

UML for three constructs

B. Forouzan and F. Mosharraf, Foundations of Computer Science, 2nd ed., 2008.

Introduction to Computer Science, Fall, 2010
16

Algorithm Representation

Pseudocode
 Pseudocode is an English-language-like

representation of an algorithm.

There is no standard for pseudocode—some
people use a lot of detail, others use less.

Some use a code that is close to English, while
others use a syntax like the Pascal programming
language.



Introduction to Computer Science, Fall, 2010
17

Algorithm Representation

Pseudocode for three constructs

B. Forouzan and F. Mosharraf, Foundations of Computer Science, 2nd ed., 2008.

Introduction to Computer Science, Fall, 2010

Algorithm Representation

18

Deb et al., 2002, NSGA-II



Introduction to Computer Science, Fall, 2010
19

Algorithm Representation

Example 8.1

Write an algorithm in pseudocode that finds the sum of two
integers.

B. Forouzan and F. Mosharraf, Foundations of Computer Science, 2nd ed., 2008.

Introduction to Computer Science, Fall, 2010
20

Algorithm Representation

Example 8.2

Write an algorithm to change a numeric grade to a pass/no pass
grade.

B. Forouzan and F. Mosharraf, Foundations of Computer Science, 2nd ed., 2008.



Introduction to Computer Science, Fall, 2010
21

Algorithm Representation

Example 8.3

Write an algorithm to change a numeric grade (integer) to a
letter grade.

B. Forouzan and F. Mosharraf, Foundations of Computer Science, 2nd ed., 2008.

Note that this is only pseudo code.

In C/C++

int score = 20;
if (70 <= score <= 90)

printf(“Oh no”);

Introduction to Computer Science, Fall, 2010
22

Algorithm Representation

Example 8.4
Write an algorithm to find the largest of a set of integers.

B. Forouzan and F. Mosharraf, Foundations of Computer Science, 2nd ed., 2008.



Introduction to Computer Science, Fall, 2010
23

Algorithm Representation

Example 8.5
Write an algorithm to find the largest of the first 1000
integers in a set
of integers.

B. Forouzan and F. Mosharraf, Foundations of Computer Science, 2nd ed., 2008.

Introduction to Computer Science, Fall, 2010
24

Algorithm Representation

A more formal definition of an algorithm:

“An ordered set of unambiguous steps that
produces a result and terminates in a finite time.”



Introduction to Computer Science, Fall, 2010
25

Algorithm Representation

Ordered set
 An algorithm must be a well-defined, ordered set of

instructions.

Unambiguous steps
 Each step in an algorithm must be clearly and

unambiguously defined.
 If one step is to add two integers, we must define both

“integers”as well as the “add”operation: we cannot for
example use the same symbol to mean addition in one
place and multiplication somewhere else

Introduction to Computer Science, Fall, 2010
26

Algorithm Representation

 Produce a result
 An algorithm must produce a result, otherwise it is

useless.
 The result can be data returned to the calling algorithm,

or some other effect (for example, printing).

 Terminate in a finite time
 An algorithm must terminate (halt). If it does not (that

is, it has an infinite loop), we have not created an
algorithm.



Introduction to Computer Science, Fall, 2010
27

Basic Algorithms

Several algorithms are used in computer
science so prevalently that they are
considered “basic”.

We discuss the most common here. This
discussion is very general: implementation
depends on the language.

Introduction to Computer Science, Fall, 2010
28

Basic Algorithms

Summation
We can add two or three integers very easily,

but how can we add many integers? The solution
is simple: we use the add operator in a loop.

A summation algorithm has three logical parts:
 Initialization of the sum at the beginning.
 The loop, which in each iteration adds a new integer

to the sum.
 Return of the result after exiting from the loop.



Introduction to Computer Science, Fall, 2010
29

Basic Algorithms

Summation

B. Forouzan and F. Mosharraf, Foundations of Computer Science, 2nd ed., 2008.

Introduction to Computer Science, Fall, 2010
30

Basic Algorithms

Product

B. Forouzan and F. Mosharraf, Foundations of Computer Science, 2nd ed., 2008.



Introduction to Computer Science, Fall, 2010
31

Basic Algorithms

Largest & smallest
 Finding the largest

 The idea is to write a decision construct to find the
larger of two integers.

 If we put this construct in a loop, we can find the
largest of a list of integers.

 Finding the smallest is similar, with two minor
differences.
 First, we use a decision construct to find the smaller

of two integers.
 Second, we initialize with a very large integer instead

of a very small one.

Introduction to Computer Science, Fall, 2010
32

Basic Algorithms

Find the largest

B. Forouzan and F. Mosharraf, Foundations of Computer Science, 2nd ed., 2008.

max  minus infinity

current  next integer

If (current > max)
max  current

[true]

[false]



Introduction to Computer Science, Fall, 2010
33

Basic Sorting Algorithms

Sorting
One of the most common applications in

computer science is sorting, which is the
process by which data is arranged according to
its values.

 If the data was not ordered, it would take
hours and hours to find a single piece of
information.
 Imagine the difficulty of finding someone’s telephone

number in a telephone book that is not ordered.

Introduction to Computer Science, Fall, 2010
34

Basic Sorting Algorithms

In this section, we introduce three sorting
algorithms:
 selection sort
 bubble sort
 insertion sort

 These three sorting algorithms are the foundation
of faster sorting algorithms used in computer
science today.



Introduction to Computer Science, Fall, 2010
35

Basic Sorting Algorithms

Selection sort
 In a selection sort, the list to be sorted is

divided into two sublists—sorted and
unsorted—which are separated by an imaginary
wall.

We find the smallest element from the
unsorted sublist and swap it with the element
at the beginning of the unsorted sublist.

After each selection and swap, the imaginary
wall between the two sublists moves one
element ahead.

Introduction to Computer Science, Fall, 2010
36

Basic Sorting Algorithms

Selection sort: an example

B. Forouzan and F. Mosharraf, Foundations of Computer Science, 2nd ed., 2008.



Introduction to Computer Science, Fall, 2010
37

Basic Sorting Algorithms

Selection sort

B. Forouzan and F. Mosharraf, Foundations of Computer Science, 2nd ed., 2008.

Introduction to Computer Science, Fall, 2010
38

Basic Sorting Algorithms

Selection sort

B. Forouzan and F. Mosharraf, Foundations of Computer Science, 2nd ed., 2008.



Introduction to Computer Science, Fall, 2010
39

const int DATA_SIZE = 6;
int data[DATA_SIZE] = {23, 78, 45, 8, 32, 56};

for (int wall=0; wall<DATA_SIZE-1; wall+=1)
{// only DATA_SIZE-1 (5) passes

// Find the position of the minimal element
int min_pos = wall;
for (int next=min_pos+1; next<DATA_SIZE; next+=1)
{

if (data[next] < data[min_pos])
{

min_pos = next;
}

}

// Swap the first element and the minimal element
int tmp = data[min_pos];
data[min_pos] = data[wall];
data[wall] = tmp;

}

Basic Sorting Algorithms

Selection sort

Introduction to Computer Science, Fall, 2010
40

Basic Sorting Algorithms

Bubble sort
The list to be sorted is also divided into two

sublists—sorted and unsorted.
The smallest element is bubbled up from the

unsorted sublist and moved to the sorted
sublist.

After the smallest element has been moved to
the sorted list, the wall moves one element
ahead.



Introduction to Computer Science, Fall, 2010
41

Basic Sorting Algorithms

Bubble sort: an example
“Floating”

B. Forouzan and F. Mosharraf, Foundations of Computer Science, 2nd ed., 2008.

1 2

3

8 45

4

78 458

5

8 78 4523

6

8

Introduction to Computer Science, Fall, 2010
42

Basic Sorting Algorithms

Bubble sort: an example

B. Forouzan and F. Mosharraf, Foundations of Computer Science, 2nd ed., 2008.



Introduction to Computer Science, Fall, 2010
43

Basic Sorting Algorithms

Bubble sort
const int DATA_SIZE = 6;
int data[DATA_SIZE] = {23, 78, 45, 8, 32, 56};

for (int wall=0; wall<DATA_SIZE-1; wall+=1)
{// only DATA_SIZE-1 (5) passes

// Floating the minimal element to the first position within the wall
for (int current = DATA_SIZE-1; current > wall; current-=1)
{

if (data[current-1] > data[current])
{

// data[current] <-> data[current-1]
int tmp = data[current-1];
data[current-1] = data[current];
data[current] = tmp;

}
}

}

Introduction to Computer Science, Fall, 2010
44

Basic Sorting Algorithms

Insertion sort
 It is one of the most common sorting

techniques, and it is often used by card players.
 Each card a player picks up is inserted into the

proper place in their hand of cards to maintain
a particular sequence.

B. Forouzan and F. Mosharraf, Foundations of Computer Science, 2nd ed., 2008.



Introduction to Computer Science, Fall, 2010
45

Basic Sorting Algorithms

Insertion sort: an example

B. Forouzan and F. Mosharraf, Foundations of Computer Science, 2nd ed., 2008.

Introduction to Computer Science, Fall, 2010
46

Basic Sorting Algorithms

Insertion sort
for (int wall=1; wall<DATA_SIZE; wall+=1)
{// only DATA_SIZE-1 (5) passes

// Find the position to insert
int pos = 0;
while (pos<wall && data[pos]<data[wall])
{

pos+=1;
}

// Shift the values after the found position
int current = data[wall];
for (int b=wall; b>pos; b-=1)
{

data[b] = data[b-1];
}

// Put the value in the position
data[pos] = current;

}



Introduction to Computer Science, Fall, 2010
47

Basic Sorting Algorithms

Time complexity
 Estimate how the computation time of your algorithm

increases as the amount of data increases

wall # inner iterations
0 5
1 4
2 3
3 2
4 1(1 + (n –1))(n –1)/2 =(n2 –n)/2=O(n2) =

Introduction to Computer Science, Fall, 2010
48

Basic Sorting Algorithms

Merge sort

http://en.wikipedia.org/wiki/File:Merge_sort_algorithm_diagram.svg

n

Time

n

n

3n =(log27)n =O(nlogn) =



Introduction to Computer Science, Fall, 2010
49

Basic Searching Algorithms

Another common algorithm in computer science is
searching, which is the process of finding the
location of a target among a list of objects.

 In the case of a list, searching means that given a
value, we want to find the location of the first
element in the list that contains that value.

 There are two basic searches for lists: sequential
search and binary search.
 Sequential search can be used to locate an item in any

list, whereas binary search requires the list first to be
sorted.

Introduction to Computer Science, Fall, 2010
50

Basic Searching Algorithms

Sequential search
Generally, we use this technique only for small

lists, or lists that are not searched often.
We start searching for the target from the

beginning of the list. We continue until we
either find the target or reach the end of the
list.



Introduction to Computer Science, Fall, 2010
51

Basic Searching Algorithms

Sequential search: an example

B. Forouzan and F. Mosharraf, Foundations of Computer Science, 2nd ed., 2008.

Introduction to Computer Science, Fall, 2010
52

Basic Searching Algorithms



Introduction to Computer Science, Fall, 2010
53

Basic Searching Algorithms

Binary search
The sequential search algorithm is very slow. If

we have a list of a million elements, we must do
a million comparisons in the worst case. If the
list is not sorted, this is the only solution.

 If the list is sorted, however, we can use a
more efficient algorithm called binary search.

Introduction to Computer Science, Fall, 2010
54

Basic Searching Algorithms

Binary search
A binary search starts by testing the data in

the element at the middle of the list.
This determines whether the target is in the

first half or the second half of the list. We
eliminate half the list from further
consideration.



Introduction to Computer Science, Fall, 2010
55

Basic Searching Algorithms

Binary search: An example

B. Forouzan and F. Mosharraf, Foundations of Computer Science, 2nd ed., 2008.

Introduction to Computer Science, Fall, 2010
56

Basic Searching Algorithms

Binary search: An example

Target = 22

B. Forouzan and F. Mosharraf, Foundations of Computer Science, 2nd ed., 2008.



Introduction to Computer Science, Fall, 2010
57

Basic Searching Algorithms

Binary search: An example

Target = 22

B. Forouzan and F. Mosharraf, Foundations of Computer Science, 2nd ed., 2008.

Introduction to Computer Science, Fall, 2010
58

Basic Searching Algorithms



Introduction to Computer Science, Fall, 2010
59

Basic Searching Algorithms

Introduction to Computer Science, Fall, 2010
60

Basic Searching Algorithms

Time complexity
Sequential search: O(n)

 Binary search: O(logn)
 The premise is that the data are sorted.

(Remember that you may pay O(nlogn)-time to sort the
data.)



Introduction to Computer Science, Fall, 2010
61

Subalgorithms

 The three programming constructs allow us to
create an algorithm for any solvable problem.

 The principles of structured programming,
however, require that an algorithm be broken into
small units called subalgorithms.

 Each subalgorithm is in turn divided into smaller
subalgorithms. A good example is the algorithm
for the selection sort.

Introduction to Computer Science, Fall, 2010
62

Subalgorithms

An example of subalgorithms: selection sort

B. Forouzan and F. Mosharraf,
Foundations of Computer
Science, 2nd ed., 2008.



Introduction to Computer Science, Fall, 2010
63

Subalgorithms

Introduction to Computer Science, Fall, 2010
64

Recursion

In general, there are two approaches to
writing algorithms for solving a problem.

One uses iteration, the other uses
recursion.

Recursion is a process in which an algorithm
calls itself.



Introduction to Computer Science, Fall, 2010
65

Recursion

To study a simple example, consider the
calculation of a factorial.

B. Forouzan and F. Mosharraf, Foundations of Computer Science, 2nd ed., 2008.

Iterative definition

Recursive definition

Introduction to Computer Science, Fall, 2010
66

Recursion

 Iterative vs. recursive algorithms



Introduction to Computer Science, Fall, 2010
67

Recursion

Introduction to Computer Science, Fall, 2010
68

Recursion

 Tracing the recursive solution to the factorial
problem

B. Forouzan and F. Mosharraf, Foundations of Computer Science, 2nd ed., 2008.



Introduction to Computer Science, Fall, 2010
69

Recursion

Another example: Tower of Honai

http://en.wikipedia.org/wiki/Tower_of_hanoi

Introduction to Computer Science, Fall, 2010
71

Recursion



Introduction to Computer Science, Fall, 2010

Recursion

72

Honai(1, 3, 2, 3)

Honai(1, 2, 3, 2) Honai(2, 3, 1, 2)

1  2Honai(1, 3, 2,1)

1  3

Honai(3, 2, 1, 1)

1  3 3  2

Introduction to Computer Science, Fall, 2010
73

Recursion

Other examples:
 Greatest common divisor (gcd)

 Combination of n objects taken k at a time

 Fibonacci number



 


otherwise

yif
yxy

x
yx

0
)mod,gcd(

),gcd(











0if
or0kif

)1,1(),1(
1

),(
kn

kn
knCknC

knC
















1,
1,
0,

)2()1(
1
0

)(
n
n
n

nFibnFib
nFib



Introduction to Computer Science, Fall, 2010
74

Recursion

Other examples:
 Merge sort

http://en.wikipedia.org/wiki/Merge_sort

Introduction to Computer Science, Fall, 2010
75

Recursion

 Recursion is convenient for thinking and
programming.

However, it is not costless. It takes both time and
space to deal with function calls.

 If possible, try loops before recursions.



Introduction to Computer Science, Fall, 2010
76

Summary

An algorithm is an ordered set of
unambiguous steps that produces a result
and terminates in a finite time.

Three constructs for a structured
program/algorithm:
 sequence
 decision
 repetition

Introduction to Computer Science, Fall, 2010
77

Summary

Algorithms can be represented in several
ways:
Unified modeling language (UML)
 Pseudocode

Basic algorithms
Summation/product
Min/max
Sort
Search



Introduction to Computer Science, Fall, 2010
78

Summary

The principles of structured programming
require that an algorithm be broken into
small units called subalgorithms.

There are two general ways to write
algorithms: iterative and recursion.
An algorithm is recursive whenever the

algorithm appears within the definition itself.


