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Concept

An informal definition of an algorithm:

“a step-by-step method for solving a problem or
doing a task”

B. Forouzan and F. Mosharraf, Foundations of Computer Science, 2nd ed., 2008.
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Concept

Example

We want to develop an algorithm for finding the
largest integer among a list of positive integers.

 The algorithm should be general and not depend on the
number of integers.

 We first use a small number of integers (for example, five), and
then extend the solution to any number of integers
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Concept

B. Forouzan and F. Mosharraf,
Foundations of Computer Science,
2nd ed., 2008.
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Concept

Defining actions

B. Forouzan and F. Mosharraf,
Foundations of Computer Science,
2nd ed., 2008.
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Concept

Refinement
This algorithm needs refinement to be

acceptable to the programming community.
Two problems.

 First, the action in the first step is different than
those for the other steps.

 Second, the wording is not the same in steps 2 to 5.
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Concept

Refinement
Solution to problem 2:

Changing the wording in steps 2 to 5 to
“If the current integer is greater than Largest,
set Largest to the current integer.”

Solution to problem 1:

If we initialize Largest to −∞ (minus infinity),
then the first step can be the same as the
other steps.

In C, see <limits.h> for INT_MIN.
In C++, see <limits> for std::numeric_limits<int>::min()
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Concept

The algorithm after refinement

B. Forouzan and F. Mosharraf, Foundations of Computer Science, 2nd ed., 2008.
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Concept

Generalization
 Is it possible to generalize the algorithm?

 We want to find the largest of n positive integers,
where n can be 1000, 000,000, or more.

 We can tell the computer to repeat the steps n times.

B. Forouzan and F. Mosharraf, Foundations of Computer Science, 2nd ed., 2008.
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Three Constructs

Computer scientists have defined three
constructs for a structured program or
algorithm:
 sequence
 decision (selection)
 repetition.

B. Forouzan and F.
Mosharraf, Foundations of
Computer Science, 2nd ed.,
2008.
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Three Constructs

 Sequence
 An algorithm, and eventually a program, is a sequence of

instructions, which can be a simple instruction or either
of the other two constructs.

Decision
 Sometimes we need to test a condition. If the result of

testing is true, we follow a sequence of instructions:
if it is false, we follow a different sequence.

 Repetition
 In some problems, the same sequence of instructions

must be repeated.
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Algorithm Representation

 So far, we have used figures to convey the
concept of an algorithm.

During the last few decades, tools have been
designed for this purpose. Two of these tools,
UML and pseudocode, are presented here.
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Algorithm Representation

Unified Modeling Language (UML)
UML is a pictorial representation of an

algorithm.
 It hides all the details of an algorithm in an

attempt to give the “big picture”and to show
how the algorithm flows from beginning to end.
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Algorithm Representation

UML for three constructs

B. Forouzan and F. Mosharraf, Foundations of Computer Science, 2nd ed., 2008.

Introduction to Computer Science, Fall, 2010
16

Algorithm Representation

Pseudocode
 Pseudocode is an English-language-like

representation of an algorithm.

There is no standard for pseudocode—some
people use a lot of detail, others use less.

Some use a code that is close to English, while
others use a syntax like the Pascal programming
language.
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Algorithm Representation

Pseudocode for three constructs

B. Forouzan and F. Mosharraf, Foundations of Computer Science, 2nd ed., 2008.
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Algorithm Representation

18

Deb et al., 2002, NSGA-II
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Algorithm Representation

Example 8.1

Write an algorithm in pseudocode that finds the sum of two
integers.

B. Forouzan and F. Mosharraf, Foundations of Computer Science, 2nd ed., 2008.
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Algorithm Representation

Example 8.2

Write an algorithm to change a numeric grade to a pass/no pass
grade.

B. Forouzan and F. Mosharraf, Foundations of Computer Science, 2nd ed., 2008.
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Algorithm Representation

Example 8.3

Write an algorithm to change a numeric grade (integer) to a
letter grade.

B. Forouzan and F. Mosharraf, Foundations of Computer Science, 2nd ed., 2008.

Note that this is only pseudo code.

In C/C++

int score = 20;
if (70 <= score <= 90)

printf(“Oh no”);

Introduction to Computer Science, Fall, 2010
22

Algorithm Representation

Example 8.4
Write an algorithm to find the largest of a set of integers.

B. Forouzan and F. Mosharraf, Foundations of Computer Science, 2nd ed., 2008.
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Algorithm Representation

Example 8.5
Write an algorithm to find the largest of the first 1000
integers in a set
of integers.

B. Forouzan and F. Mosharraf, Foundations of Computer Science, 2nd ed., 2008.
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Algorithm Representation

A more formal definition of an algorithm:

“An ordered set of unambiguous steps that
produces a result and terminates in a finite time.”
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Algorithm Representation

Ordered set
 An algorithm must be a well-defined, ordered set of

instructions.

Unambiguous steps
 Each step in an algorithm must be clearly and

unambiguously defined.
 If one step is to add two integers, we must define both

“integers”as well as the “add”operation: we cannot for
example use the same symbol to mean addition in one
place and multiplication somewhere else
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Algorithm Representation

 Produce a result
 An algorithm must produce a result, otherwise it is

useless.
 The result can be data returned to the calling algorithm,

or some other effect (for example, printing).

 Terminate in a finite time
 An algorithm must terminate (halt). If it does not (that

is, it has an infinite loop), we have not created an
algorithm.
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Basic Algorithms

Several algorithms are used in computer
science so prevalently that they are
considered “basic”.

We discuss the most common here. This
discussion is very general: implementation
depends on the language.
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Basic Algorithms

Summation
We can add two or three integers very easily,

but how can we add many integers? The solution
is simple: we use the add operator in a loop.

A summation algorithm has three logical parts:
 Initialization of the sum at the beginning.
 The loop, which in each iteration adds a new integer

to the sum.
 Return of the result after exiting from the loop.
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Basic Algorithms

Summation

B. Forouzan and F. Mosharraf, Foundations of Computer Science, 2nd ed., 2008.
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Basic Algorithms

Product

B. Forouzan and F. Mosharraf, Foundations of Computer Science, 2nd ed., 2008.
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Basic Algorithms

Largest & smallest
 Finding the largest

 The idea is to write a decision construct to find the
larger of two integers.

 If we put this construct in a loop, we can find the
largest of a list of integers.

 Finding the smallest is similar, with two minor
differences.
 First, we use a decision construct to find the smaller

of two integers.
 Second, we initialize with a very large integer instead

of a very small one.
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Basic Algorithms

Find the largest

B. Forouzan and F. Mosharraf, Foundations of Computer Science, 2nd ed., 2008.

max  minus infinity

current  next integer

If (current > max)
max  current

[true]

[false]
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Basic Sorting Algorithms

Sorting
One of the most common applications in

computer science is sorting, which is the
process by which data is arranged according to
its values.

 If the data was not ordered, it would take
hours and hours to find a single piece of
information.
 Imagine the difficulty of finding someone’s telephone

number in a telephone book that is not ordered.
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Basic Sorting Algorithms

In this section, we introduce three sorting
algorithms:
 selection sort
 bubble sort
 insertion sort

 These three sorting algorithms are the foundation
of faster sorting algorithms used in computer
science today.
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Basic Sorting Algorithms

Selection sort
 In a selection sort, the list to be sorted is

divided into two sublists—sorted and
unsorted—which are separated by an imaginary
wall.

We find the smallest element from the
unsorted sublist and swap it with the element
at the beginning of the unsorted sublist.

After each selection and swap, the imaginary
wall between the two sublists moves one
element ahead.
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Basic Sorting Algorithms

Selection sort: an example

B. Forouzan and F. Mosharraf, Foundations of Computer Science, 2nd ed., 2008.
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Basic Sorting Algorithms

Selection sort

B. Forouzan and F. Mosharraf, Foundations of Computer Science, 2nd ed., 2008.
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Basic Sorting Algorithms

Selection sort

B. Forouzan and F. Mosharraf, Foundations of Computer Science, 2nd ed., 2008.
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const int DATA_SIZE = 6;
int data[DATA_SIZE] = {23, 78, 45, 8, 32, 56};

for (int wall=0; wall<DATA_SIZE-1; wall+=1)
{// only DATA_SIZE-1 (5) passes

// Find the position of the minimal element
int min_pos = wall;
for (int next=min_pos+1; next<DATA_SIZE; next+=1)
{

if (data[next] < data[min_pos])
{

min_pos = next;
}

}

// Swap the first element and the minimal element
int tmp = data[min_pos];
data[min_pos] = data[wall];
data[wall] = tmp;

}

Basic Sorting Algorithms

Selection sort
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Basic Sorting Algorithms

Bubble sort
The list to be sorted is also divided into two

sublists—sorted and unsorted.
The smallest element is bubbled up from the

unsorted sublist and moved to the sorted
sublist.

After the smallest element has been moved to
the sorted list, the wall moves one element
ahead.
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Basic Sorting Algorithms

Bubble sort: an example
“Floating”

B. Forouzan and F. Mosharraf, Foundations of Computer Science, 2nd ed., 2008.
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Basic Sorting Algorithms

Bubble sort: an example

B. Forouzan and F. Mosharraf, Foundations of Computer Science, 2nd ed., 2008.
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Basic Sorting Algorithms

Bubble sort
const int DATA_SIZE = 6;
int data[DATA_SIZE] = {23, 78, 45, 8, 32, 56};

for (int wall=0; wall<DATA_SIZE-1; wall+=1)
{// only DATA_SIZE-1 (5) passes

// Floating the minimal element to the first position within the wall
for (int current = DATA_SIZE-1; current > wall; current-=1)
{

if (data[current-1] > data[current])
{

// data[current] <-> data[current-1]
int tmp = data[current-1];
data[current-1] = data[current];
data[current] = tmp;

}
}

}
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Basic Sorting Algorithms

Insertion sort
 It is one of the most common sorting

techniques, and it is often used by card players.
 Each card a player picks up is inserted into the

proper place in their hand of cards to maintain
a particular sequence.

B. Forouzan and F. Mosharraf, Foundations of Computer Science, 2nd ed., 2008.
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Basic Sorting Algorithms

Insertion sort: an example

B. Forouzan and F. Mosharraf, Foundations of Computer Science, 2nd ed., 2008.
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Basic Sorting Algorithms

Insertion sort
for (int wall=1; wall<DATA_SIZE; wall+=1)
{// only DATA_SIZE-1 (5) passes

// Find the position to insert
int pos = 0;
while (pos<wall && data[pos]<data[wall])
{

pos+=1;
}

// Shift the values after the found position
int current = data[wall];
for (int b=wall; b>pos; b-=1)
{

data[b] = data[b-1];
}

// Put the value in the position
data[pos] = current;

}
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Basic Sorting Algorithms

Time complexity
 Estimate how the computation time of your algorithm

increases as the amount of data increases

wall # inner iterations
0 5
1 4
2 3
3 2
4 1(1 + (n –1))(n –1)/2 =(n2 –n)/2=O(n2) =
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Basic Sorting Algorithms

Merge sort

http://en.wikipedia.org/wiki/File:Merge_sort_algorithm_diagram.svg

n

Time

n

n

3n =(log27)n =O(nlogn) =
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Basic Searching Algorithms

Another common algorithm in computer science is
searching, which is the process of finding the
location of a target among a list of objects.

 In the case of a list, searching means that given a
value, we want to find the location of the first
element in the list that contains that value.

 There are two basic searches for lists: sequential
search and binary search.
 Sequential search can be used to locate an item in any

list, whereas binary search requires the list first to be
sorted.
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Basic Searching Algorithms

Sequential search
Generally, we use this technique only for small

lists, or lists that are not searched often.
We start searching for the target from the

beginning of the list. We continue until we
either find the target or reach the end of the
list.
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Basic Searching Algorithms

Sequential search: an example

B. Forouzan and F. Mosharraf, Foundations of Computer Science, 2nd ed., 2008.
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Basic Searching Algorithms
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Basic Searching Algorithms

Binary search
The sequential search algorithm is very slow. If

we have a list of a million elements, we must do
a million comparisons in the worst case. If the
list is not sorted, this is the only solution.

 If the list is sorted, however, we can use a
more efficient algorithm called binary search.
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Basic Searching Algorithms

Binary search
A binary search starts by testing the data in

the element at the middle of the list.
This determines whether the target is in the

first half or the second half of the list. We
eliminate half the list from further
consideration.
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Basic Searching Algorithms

Binary search: An example

B. Forouzan and F. Mosharraf, Foundations of Computer Science, 2nd ed., 2008.
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Basic Searching Algorithms

Binary search: An example

Target = 22

B. Forouzan and F. Mosharraf, Foundations of Computer Science, 2nd ed., 2008.
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Basic Searching Algorithms

Binary search: An example

Target = 22

B. Forouzan and F. Mosharraf, Foundations of Computer Science, 2nd ed., 2008.
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Basic Searching Algorithms
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Basic Searching Algorithms
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Basic Searching Algorithms

Time complexity
Sequential search: O(n)

 Binary search: O(logn)
 The premise is that the data are sorted.

(Remember that you may pay O(nlogn)-time to sort the
data.)
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Subalgorithms

 The three programming constructs allow us to
create an algorithm for any solvable problem.

 The principles of structured programming,
however, require that an algorithm be broken into
small units called subalgorithms.

 Each subalgorithm is in turn divided into smaller
subalgorithms. A good example is the algorithm
for the selection sort.
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Subalgorithms

An example of subalgorithms: selection sort

B. Forouzan and F. Mosharraf,
Foundations of Computer
Science, 2nd ed., 2008.
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Subalgorithms
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Recursion

In general, there are two approaches to
writing algorithms for solving a problem.

One uses iteration, the other uses
recursion.

Recursion is a process in which an algorithm
calls itself.
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Recursion

To study a simple example, consider the
calculation of a factorial.

B. Forouzan and F. Mosharraf, Foundations of Computer Science, 2nd ed., 2008.

Iterative definition

Recursive definition
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Recursion

 Iterative vs. recursive algorithms
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Recursion
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Recursion

 Tracing the recursive solution to the factorial
problem

B. Forouzan and F. Mosharraf, Foundations of Computer Science, 2nd ed., 2008.
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Recursion

Another example: Tower of Honai

http://en.wikipedia.org/wiki/Tower_of_hanoi
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Recursion
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Recursion

72

Honai(1, 3, 2, 3)

Honai(1, 2, 3, 2) Honai(2, 3, 1, 2)

1  2Honai(1, 3, 2,1)

1  3

Honai(3, 2, 1, 1)

1  3 3  2
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Recursion

Other examples:
 Greatest common divisor (gcd)

 Combination of n objects taken k at a time

 Fibonacci number
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Recursion

Other examples:
 Merge sort

http://en.wikipedia.org/wiki/Merge_sort
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Recursion

 Recursion is convenient for thinking and
programming.

However, it is not costless. It takes both time and
space to deal with function calls.

 If possible, try loops before recursions.
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Summary

An algorithm is an ordered set of
unambiguous steps that produces a result
and terminates in a finite time.

Three constructs for a structured
program/algorithm:
 sequence
 decision
 repetition
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Summary

Algorithms can be represented in several
ways:
Unified modeling language (UML)
 Pseudocode

Basic algorithms
Summation/product
Min/max
Sort
Search
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Summary

The principles of structured programming
require that an algorithm be broken into
small units called subalgorithms.

There are two general ways to write
algorithms: iterative and recursion.
An algorithm is recursive whenever the

algorithm appears within the definition itself.


