

Introduction

A number system defines how a number can be represented using distinct symbols.

A number can be represented differently in different systems.

- For example, the two numbers $(2 \mathrm{~A})_{16}$ and $(52)_{8}$ both refer to the same quantity, (42) $)_{10}$.

Positional Number Systems

- In a positional number system, the position a symbol occupies in the number determines the value it represents.
- In this system, a number represented as:

$$
\pm\left(S_{k-1} \ldots S_{2} S_{1} S_{0} . S_{-1} S_{-2} \ldots S_{-}\right)_{b}
$$

has the value of:
$n= \pm S_{k-1} \times \mathbf{b}^{k-1}+\ldots+S_{1} \times \mathbf{b}^{1}+S_{0} \times \mathbf{b}^{0}+S_{-1} \times \mathbf{b}^{-1}+S_{-2} \times \mathbf{b}^{-2}+\ldots+S_{-I} \times \mathbf{b}^{-I}$ b is the base.

The Decimal System (base 10)

The word decimal is derived from the Latin root decem (ten).
Base $b=10$.

- Ten symbols: $S=\{0,1,2,3,4,5,6,7,8,9\}$
- The symbols in this system are often referred to as decimal digits or just digits.

The Decimal System (base 10)

Integer values

10^{k-1}	10^{k-2}	-••	10^{2}	10^{1}	10^{0}	Place values
$\pm \mathrm{S}_{k-1}$	S_{k-2}	-••	S_{2}	S_{1}	S_{0}	Number
\downarrow	\downarrow		\downarrow	\downarrow	\downarrow	
$\pm \mathrm{S}_{k-1} \times 10^{k-1}$	$\times 10^{k}$	-•	2 $\times 10^{2}$	$\times 10^{1}$	$\mathrm{S}_{0} \times 10^{0}$	Values

The Decimal System (base 10)				
- Real values				
Integral part			Fractional part	
$R= \pm S_{k-1} \times 10^{10-1}+\ldots+s_{1} \times 10^{1}+s_{0} \times 10^{0}+$			$s_{-1} \times 10^{-1}+\ldots+s_{-1} \times 10^{-1}$	
10^{1}	10°	${ }^{10^{-1}}$	0^{-2}	Place values
2	4	- 1	3	Number
$R=+2 \times 10$	+ 4×1	+ 1×0.1	+ 3×0.01	Values

The Decimal System (base 10)
Abacus - a device that uses positional notation to represent a decimal number.

The Binary System (base 2)

- The word binary is derived from the Latin root bini (double).
Base $b=2$.
- Ten symbols: $S=\{0,1\}$
- The symbols in this system are often referred to as binary digits or just bits.

The Binary System (bose 2)

Integer values

	2^{4}		2^{3}		2^{2}		2^{1}		2^{0}	Place values
	1		1		0		0		1	Number
$N=$	1×2^{4}	+	1×2^{3}	$+$	0×2^{2}	$+$	0×2^{1}	+	1×2^{0}	Decimal

The Hexadecimal System (base 16)

The word hexadecimal is derived from the Greek root hex (six) and Latin root decem (ten).

- Base $b=16$.

Ten symbols: $S=\{0,1, \ldots, 8,9, \mathrm{~A}, \mathrm{~B}, \mathrm{C}, \mathrm{D}, \mathrm{E}, \mathrm{F}\}$
The symbols in this system are often referred to as hexadecimal digits.

The Octal System (base 8)

The word octal is derived from the Latin root octo (eight).
Base $b=8$.

- Ten symbols: $S=\{0,1,2,3,4,5,6,7\}$

Summary of the Four Positional Number Systems

Table 2.1 Summary of the four positional number systems

System	Base	Symbols	Examples
Decimal	10	$0,1,2,3,4,5,6,7,8,9$	2345.56
Binary	2	0,1	$(1001.11)_{2}$
Octal	8	$0,1,2,3,4,5,6,7$	$(156.23)_{8}$
Hexadecimal	16	$0,1,2,3,4,5,6,7,8,9$, A, B, C, D, E, F	$(\text { A2C.A1 })_{16}$

Summary of the Four Positional Number Systems
Table 2.2 Comparison of numbers in the four systems

Decimal	Binary	Octal	Hexadecimal
0	0	0	0
1	1	1	1
2	10	2	2
3	11	3	3
4	100	4	4
5	101	5	5
6	110	6	6
7	111	7	7
8	1000	10	8
9	1001	11	9
10	1010	12	A
11	1011	13	B
12	1100	14	C
13	1101	15	D
14	1110	16	E
15	1111	17	F

Conversion between Number Systems

We will introduce how to do the following conversions:

- Binary/Hex/Octal \rightarrow Decimal.
- Decimal \rightarrow Binary/Hex/Octal.
- Binary \leftrightarrow Hex/Octal

Decimal-Others Conversion

Decimal \rightarrow Binary/Hex/Octal (Integral part)

Decimal-Others Conversion

Decimal \rightarrow Binary/Hex/Octal (Fractional part)

$$
\begin{aligned}
0.625 & =2^{-1} \cdot\left(2^{1 \cdot} \cdot 0.625\right)=2^{-1} \cdot(1.25) \\
& =2^{-1} \cdot(1+0.25) \\
& =2^{-1} \cdot\left(1+2^{-1} \cdot\left(2^{1} \cdot 0.25\right)\right) \\
& =2^{-1} \cdot\left(1+2^{-1} \cdot(0+0.5)\right) \\
& =2^{-1} \cdot\left(1+2^{-1} \cdot\left(0+2^{-1} \cdot\left(2^{1} \cdot 0.5\right)\right)\right) \\
& =2^{-1} \cdot\left(1+2^{-1} \cdot\left(0+2^{-1} \cdot(1+0)\right)\right)
\end{aligned}
$$

Binary-Hexadecimal Conversion	
\square Binary \rightarrow Hex	
$(11010101011)_{2} \rightarrow$	$?$
- Hex \rightarrow Binary	
$(58 \mathrm{~F})_{16} \rightarrow$	

Binary-Octal Conversion
- Binary \rightarrow Octal
$(101110010)_{2} \rightarrow(101110010)_{2} \rightarrow(562)_{8}$
\square
Octal \rightarrow Binary
$(24)_{8} \rightarrow(010100)_{2} \rightarrow(10100)_{2}$

Binary-Octal Conversion	
- Binary \rightarrow Octal	
$(11100110011)_{2} \rightarrow$?
\square Octal \rightarrow Binary	
$(765)_{8} \rightarrow$?

Octal-Hex Conversion

Convert with the aid of binary systems

Number of Digits

Quiz:
Find the minimum number of binary digits required to store decimal integers with a maximum of six digits.

Number of Digits

How can we know the number of digits required to store a k-digit-base- b_{1} integral value in the base- b_{2} system?

Maximum k-digit value in base $b_{1}:\left(b_{1}{ }^{k}-1\right)$
Maximum x-digit value in base $b_{2}:\left(b_{2}{ }^{x}-1\right)$

$$
\left(b_{2}{ }^{x}-1\right) \geq\left(b_{1}{ }^{k}-1\right) \quad \Rightarrow x \geq k \cdot\left(\log b_{1} / \log b_{2}\right)
$$

Number of Digits

Quiz:
Find the minimum number of binary digits required to store decimal integers with a maximum of six digits.
$k=6, b_{1}=10, b_{2}=2$.
$x \geq 6 \cdot\left(\log b_{1} / \log b_{2}\right)=6 \cdot(1 / 0.30103)=19.9$
$\Rightarrow x=20$

$$
\begin{aligned}
& 2^{19}=524288 \\
& 2^{20}=1048576
\end{aligned}
$$

Non-positional Number System

- A non-positional number system still uses a limited number of symbols in which each symbol has a value.
- However, the position a symbol occupies in the number normally bears no relation to its value-the value of each symbol is fixed.

To find the value of a number, we add the value of all symbols present in the representation.

Non-positional Number System

In this system, a number is represented as:

$$
\mathrm{s}_{k-1} \ldots \mathrm{~s}_{2} \mathrm{~s}_{1} \mathrm{~s}_{0} \cdot \mathrm{~s}_{-1} \mathrm{~s}_{-2} \ldots \mathrm{~s}_{-1}
$$

and has the value of:

$$
\begin{array}{ccc}
& \text { Integral part } & \text { Fractional part } \\
n= \pm & S_{k-1}+\ldots+S_{1}+S_{0} & +
\end{array} \mathbf{S}_{-1}+\boldsymbol{S}_{-2}+\ldots+\boldsymbol{S}_{-I}
$$

There are some exceptions to the addition rule we just mentioned, as shown in the following example.

Non-positional Number System

Example: Roman numerals

Table 2.3 Values of symbols in the Roman number system

Non-positional Number System

Example: Roman numerals

- When a symbol with a smaller value is placed after a symbol having an equal or larger value, the values are added.

III	$\rightarrow 1+1+1$	$=3$
VIII	$\rightarrow 5+1+1+1$	$=8$
XVIII	$\rightarrow 10+5+1+1+1$	$=18$
LXXII	$\rightarrow 50+10+10+1+1$	$=72$
CI	$\rightarrow 100+1$	$=101$
MMVII	$\rightarrow 1000+1000+5+1+1$	$=2007$
MDC	$\rightarrow 1000+500+100$	$=1600$

Non-positional Number System

Example: Roman numerals

- When a symbol with a smaller value is placed before a symbol having a larger value, the smaller value is subtracted from the larger one.

IV	$\rightarrow 5-1$	$=4$
XIX	$\rightarrow 10+(10-1)$	$=19$

Table 2.3 Values of symbols in the Roman number system

Symbol						
	1	V	X	L	C	D

Value	1	5	10	50	100	500	1000

Non-positional Number System

Example: Roman numerals

- For other rules, please refer to the text book.

Summary

Number systems

- Positional vs. Non-positional
- Positional systems
- Decimal
- Binary
- Octal
- Hexadecimal
- Non-positional systems

Roman numeral

