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Abstract

The Fisher Linear Discriminant (FLD) is commonly used
in classification to find a subspace that maximally separates
class patterns according to the Fisher Criterion. It was
previously proven that a pre-whitening step can be used to
truly optimize the Fisher Criterion. In this paper, we study
the theoretical properties of the subspaces induced by this
whitened FLD. Of the four subspaces induced, two are most
important for classification and representation of patterns.
We call these Identity Space and Variation Space. We show
that only the between-class variation remains in Identity
Space, and only the within-class variation remains in Varia-
tion Space. Both spaces can be used for decomposition and
representation of class data. Moreover, we give sufficient
conditions for these spaces to exist. Finally, we also run ex-
periments to show how Identity and Variation Spaces may
be used for classification and image synthesis.

1. Introduction
Among linear discriminants, the Fisher Linear Discrimi-

nant (FLD) [5], also known as Linear Discriminant Analysis
(LDA), is quite possibly the most popular for pattern classi-
fication. It has been widely applied in face recognition [3].
FLD is attractive because it is conceptually straightforward
and computationally efficient. At the heart is the maximiza-
tion of the Fisher Criterion:

JF (Φ) = trace{(Φ>SwΦ)−1(Φ>SbΦ)}, (1)

where Sb and Sw are the between-class and within-class
scatter matrices, respectively, and Φ is the linear transfor-
mation matrix to be found by maximizing JF . (See Sec-
tion 2 for the definitions of Sb and Sw.)

This Criterion expresses the idea that a good feature
(computed by projecting the original feature vector onto the
subspace of Φ) should be completely sensitive to variations

between classes, while at the same time be completely in-
sensitive to variations within each class. Ideally, all patterns
from one class should project onto the same point (result-
ing in zero within-class variation), while patterns belonging
to different classes are projected far away from one another
(large between-class variation).

However, as we observed in our previous work [13, 14],
most researchers apply the FLD in a sub-optimal manner.
That is, the Fisher Criterion JF is not truly maximized.
This often occurs when solving the “singularity problem”
incorrectly. The singularity problem refers to the situation
when Sw is singular (non-invertible), and usually occurs
when the number of training samples N is less than the di-
mension D of the feature vectors (called the “small sample-
size problem”). In attempting to overcome this singularity
problem, many techniques [3, 12] inadvertently discard im-
portant discriminative information, rendering the FLD sub-
optimal.

Apart from the small sample-size problem, the FLD in
general leaves a number of questions unanswered: (a) Does
maximizing JF guarantee perfect class separation? (b) If
not, under what conditions can classes be perfectly sepa-
rated? (c) Can these conditions be satisfied in practice? (d)
How are the class patterns distributed in the subspace Φ?
We will answer these questions in this paper.

Our previous paper [13] showed that by first applying
the Fukunaga-Koontz Transform (FKT) [7] (essentially a
pre-whitening step) to the FLD, the Fisher Criterion JF

can achieve a theoretical maximum value of +∞. This is
clearly the best possible value. Moreover, this combination
of FKT and FLD decomposed the whole data space into
four subspaces, thereby providing additional insight into
where common computational errors are made that yield a
sub-optimal JF . However, we did not study the properties
of these subspaces, which we now take up in this paper, and
which help to answer the above questions.

More precisely, of the four subspaces, two are signifi-
cant for pattern classification and representation: Identity



Space and Variation Space (see Sections 3 and 4 for defini-
tions). Our paper explores the theoretical properties of these
two subspaces, thereby giving further insight into FLD. We
make the following contributions:

1. We prove mathematically that in Identity Space, all
classes are perfectly separated: all within-class vari-
ation has been “projected out”, and only the between-
class variation remains. This is what makes the Fisher
Criterion achieve its best value of +∞.

2. We further show the geometric structure of Identity
Space: the class means are maximally spread out over
a hypersphere. They are equidistant from the global
mean (i.e. the mean of all data, regardless of class).
In other words, the class means form the vertices of a
regular simplex.

3. We prove analogous properties in Variation Space: (a)
all between-class variation has been projected out, and
only within-class variation remains; (b) the within-
class variation of each class occupies orthogonal sub-
spaces; and (c) the samples in each class are arranged
in a regular simplex.

4. We show that Variation Space contains discrimination
information, even though all class means are equal. We
show how both spaces can be used to decompose and
represent class patterns.

2. Mathematical Background
We begin by letting X = {x1, ...,xN}, with xi ∈

RD, denote a dataset of D-dimensional feature vectors.
Each feature vector xi belongs to exactly one of C classes
{L1, ..., LC}. Let mk denote the mean of class Lk, and sup-
pose each class has the same number of vectors n, so that
N = nC. Without loss of generality, we will assume that
the global mean of X is zero, i.e. (

∑
i xi)/N = m = 0.

If not, we may simply subtract m from each xi. Define
the between-class scatter matrix Sb, the within-class scatter
matrix Sw, and the total scatter matrix St as follows:

St =
N∑

i=1

xix>i , Sb =
C∑

k=1

Nkmkm>
k (2)

Sw =
C∑

i=1

∑
xi∈Lk

(xi −mk)(xi −mk)> (3)

Let rt = rank(St), rb = rank(Sb), and rw = rank(Sw).
We remark without proof that St = Sb + Sw.

2.1. Whitened Fisher Linear Discriminant (WFLD)

To whiten the data, first compute the total scatter matrix
St = XX>, then eigen-decompose it to get St = UDU>,

retaining only non-zero eigenvalues in the diagonal matrix
D and their corresponding eigenvectors in U. Now com-
pute the (N − 1) × D matrix P = UD−1/2, and apply it
to the data to get the (N − 1) × N matrix: X̃ = P>X.
The data is now whitened because the scatter matrix of X̃
is the identity matrix I. The whitened class means are now
m̃k = P>mk. We have previously proven [13] that the
generalized eigenvalue of the Fisher Criterion (see Equa-
tion (1)) is equal to the ratio λb

λw
, where λb, λw are the

eigenvalues of S̃b, S̃w corresponding to the same eigenvec-
tor, where S̃b = P>SbP and S̃w = P>SwP.

Suppose V is the set of eigenvectors of S̃b. We can par-
tition the columns of V as shown below, according to their
corresponding eigenvalues λb: (1) those columns whose
λb = 1; (2) those columns whose 0 < λb < 1; and (3)
those columns whose λb = 0, respectively. (We can easily
calculate λw by noting that λb + λw = 1.)

V = [V1 | V2 | V3 ] (4)

We will refer to the subspaces spanned by the three mu-
tually orthogonal matrices as Identity Space, Mixed Space,
and Variation Space, respectively.

3. Identity Space
We can now study the properties of the subspace spanned

by V1, which we term Identity Space. We will show that
(a) it contains only the class means; and (b) all within-class
variation has been “projected out”. That is, Identity Space
reveals the class label (identity) of a data point, hence justi-
fying its name. We begin with the following theorem.

Theorem 1. In WFLD, if V1 is the set of eigenvectors of
S̃w associated with λw = 0, then

V>
1 x̃i = V>

1 m̃k, ∀x̃i ∈ Lk (5)

For detailed proof, please refer to our another paper [11].
A few remarks are in order. First, we see that the vector
m′

k = V>
1 m̃k ∈ R(rt−rw)×1, may be used to represent the

identity of class Lk, since all samples of the class project
onto it. We may therefore call it the Identity Vector. Second,
all within-class variation are projected out of Identity Space.
Third, a sample from one class will never project onto the
Identity Vector of another distinct class.

3.1. Geometric structure

Having established that Identity Space contains only
identity information (i.e. between-class variation), we now
ask about its structure: how the Identity Vectors are ar-
ranged in Identity Space. This can be answered by examin-
ing S̃b, the dual of S̃w, as shown in the next theorem:



Theorem 2. Given the C Identity Vectors {m′
k}, if the di-

mension of Identity Space is C − 1, then

‖m′
k‖ =

√
1

Nk
− 1

N
, (6)

cos θkl =
−
√

NkNl√
N −Nk

√
N −Nl

, ∀ k 6= l (7)

where θkl is the angle between m′
k and m′

l, Nk is the num-
ber of samples in class Lk, and N =

∑
Nk.

Please see Appendix A for the proof.

Corollary 3. If each class has the same number of samples,
∀k, Nk = n, then

‖m′
k‖ =

√
C − 1
nC

, and cos θkl = − 1
C − 1

, ∀ k 6= l (8)

We can easily prove Corollary 3 by setting Nk = n in
Theorem 2. Corollary 3 says that with equal samples in all
classes, the C Identity Vectors distribute on a hypersphere

of radius rC =
√

C−1
nC . Moreover, the angle between any

two Identity Vectors is constant, and always larger than 90◦.
This means that the Identity Vectors are maximally spread
out on the hypersphere. (They form the vertices of a regular
simplex in RC−1.) We may therefore call this the Identity
Sphere. Figures 1(a) and 1(b) show the Identity Spheres for
C = 3 and 4.

4. Variation Space
We now study the properties of Variation Space, the sub-

space spanned by V3. We will prove that in this subspace,
(a) all class means project to zero; and (b) the within-class
variations of each class lie in orthogonal subspaces.

Theorem 4. In WFLD, if V3 is the set of eigenvectors of S̃b

associated with λb = 0, then all class means project to 0:

∀ k, V>
3 m̃k = 0. (9)

Proof. For any eigenvector v ∈ V3, we have v>S̃bv = 0.
But S̃b = P>SbP, so v>P>SbPv = 0. If we replace Sb

with Equation (2), then

0 =
C∑

k=1

Nkv>P>mkm>
k Pv (10)

=
C∑

k=1

Nk‖v>m̃k‖2 (11)

This is a sum of squared norms, which is zero if and only if
each term is zero. Hence v>m̃k = 0. But this is true for
any v ∈ V3, and thus V>

3 m̃k = 0.

(a) (b)

(c)

Figure 1. (a) — (c) Illustration of the Identity Sphere and Variation
Space. (a) When C = 3, it is a circle in 2D space and the Identity
Vectors are vertices of an equilateral triangle; (b) When C = 4, it
is a sphere in 3D space and the Identity Vectors are vertices of a
regular tetrahedron; (c) An illustration of the geometric structure
of Variation Space. Note that different shapes (colors) represent
distinct classes. Class One has two samples lying on a vertical line,
and both are orthogonal to Class Two, which has three samples
evenly distributed on a circle.

4.1. Geometric structure

Let’s explore the geometric structure of Variation Space.

Lemma 5. The inner product of any two whitened samples
x̃i and x̃j is:

x̃>i x̃j =
{

1− 1
N if i = j,

− 1
N if i 6= j.

(12)

Please refer to Appendix B for a proof.

Theorem 6. After projecting onto Variation Space, any two
vectors V>

3 x̃i = x′i ∈ Lk and V>
3 x̃j = x′j ∈ Ll, have

their inner product given by:

x′>i x′j =


1− 1

Nk
if i = j and Lk = Ll,

− 1
Nk

if i 6= j and Lk = Ll,

0 if i 6= j and Lk 6= Ll.

(13)

Again, we defer the proof to Appendix C so as not to
distract from the main flow of our paper. Theorem 6 says
that within Variation Space, any two classes lie in orthog-
onal subspaces. This can be seen from the last clause of
Equation (13). Because of this, the within-class variation
of each class do not overlap, but instead occupy distinct
regions in the subspace Rrt−rb . Moreover, the Theorem
also reveals how class samples are distributed in Variation
Space, as shown in the next Corollary.



Corollary 7. After projecting onto Variation Space, all
vectors from the same class Lk have the same length√

1− 1
Nk

; and any two vectors are separated by a constant

angle θk, where cos θk = −1
Nk−1 .

Here then is the whole picture of Variation Space. (1)
Different classes share the same mean (Theorem 4); (2) Any
two classes are orthogonal to each other (Theorem 6); (3)
The Nk vectors for each class are equally distributed over
a hypersphere of dimension Nk − 1 (Corollary 7). That is,
the Nk vectors form a regular simplex. Figure 1(c) shows
an example of Variation Space for two classes N1 = 2 and
N2 = 3.

5. Practical Considerations

5.1. Existence conditions

The Identity and Variation Spaces do not always exist;
their existence depends on rb, rt, and rw respectively. For
the Identity Space to exist at its maximum extent (size =
C − 1), a sufficient condition is that (a) all data samples
are linearly independent, and (b) D ≥ N − 1. This is also
the sufficient condition for Variation Space to exist at its
maximum size of N −C. Moreover, in this case, the size of
Mixed Space is zero. This is the ideal situation because all
class samples are neatly separated into Identity Space and
Variation Space. Equation (4) now becomes: V = [V1 |
V3 ]. Note that V is an (N−1)×(N−1) orthogonal matrix,
and thus invertible.

In practice, Identity or Variation Space does not always
exist because the sufficient condition (D ≥ N − 1 and
linear independence) may not be satisfied. To encourage
their existence, we implicitly transform the data into a high-
dimensional space by using the kernel trick [1]. There are
two reasons to employ the kernel mapping function ϕ. First,
the function ϕ can map two linearly dependent vectors xi

and xj onto two linearly independent ones ϕ(xi) and ϕ(xj)
[4]. Second, the mapped space {ϕ(xi)} could have arbi-
trarily large (even infinite) dimensionality [9]. After map-
ping the original space into the high-dimensional space with
some function ϕ, we then maximize the Fisher Criterion in
the new transformed space. This method is termed kernel
WFLD (kWFLD) hereafter.

5.2. Decomposition and Representation

We can thus decompose any training point x̃i ∈ Lk into
two components:

x̃i = V1V>
1 x̃i + V3V>

3 x̃i (14)
= V1V>

1 m̃k + V3V>
3 x̃i (15)

= V1m′
k + V3x′i. (16)

where x′i = V>
3 x̃i is the projection onto Variation Space,

and m′
k = V>

1 x̃i = V>
1 m̃k is the projection onto Iden-

tity Space. This decomposition follows because V1V>
1 +

V3V>
3 = I. Thus, any sample x̃i ∈ Lk can be decom-

posed into m′
k (the identity component), and x′i (the vari-

ation component). Furthermore, x′i ∈ RN−C has a sparse
representation (only Nk − 1 nonzeros) because the within-
class variation of each class is distinct (see Theorem 6). To
recap, we have achieved a clean decomposition of a sam-
ple into its identity and variation components. This has the
following merits.

1. It provides a way for efficient data representation. Any
data point xi ∈ RD can be decomposed into its iden-
tity vector m′

k ∈ RC−1 and its variation vector x′i
encoded by Nk − 1 nonzero numbers, requiring only
C + Nk − 2 numbers to represent it. Note that C and
N could be � D, e.g. in face recognition, typically
D ≈ 104, while C ≈ 100 and Nk ≈ 10.

2. It combines the strengths of PCA (which is suited for
representation, not classification) and the FLD (which
is meant for classification, not representation). The
identity vector m′

k is best for classification according
to the Fisher Criterion, while the vector x′i makes loss-
less reconstruction possible by retaining the variation
information.

6. Experiments
6.1. Discriminability of Identity Space

We perform face and digits recognition by using two
datasets. The experimental setting is as follows. For PCA,
we take the top C principal components, where C is the
number of classes; for LDA, we apply PCA first by keep-
ing 95% eigen-energy, followed by LDA; for kernel WFLD,
we use Gaussian kernel. After projection, we use 1NN to
perform classification. The recognition rate is reported by
averaging over 20 runs.

1. Banca dataset [2] contains 52 subjects, and each sub-
ject has 120 face images, which are normalized to
51 × 55 in pixels. By using a web cam and an ex-
pensive camera, these subjects were recorded in three
different scenarios over a period of three months. Each
face image contains illumination, expression and pose
variations because the subjects are required to talk dur-
ing the recording (Fig. 2(a)).

2. MNIST dataset is derived from the NIST dataset, and
has been created by Yann LeCun [8]. This dataset of
handwritten digits (′0′ −′ 9′) has a set of 70, 000 ex-
amples in total. The digits have been centered and nor-
malized to 28× 28 in pixels. Fig. 2(b) shows a sample
of MNIST digits images.



(a)

(b)

(c)

Figure 2. Samples of real data: (a) Banca faces; (b) MNIST dig-
its; (c) PIE faces. For (a) and (c), each row represents one per-
son. Note that PIE dataset only presents illumination variation;
whereas, Banca dataset presents more variations, such as illumi-
nation, pose, and expression.

For face recognition, we randomly choose n training
samples from each subject, n = 2, · · · , 12, and the remain-
ing images are used for testing. For each set of n train-
ing samples, we employ cross validation so that we can
compute the mean and standard deviation for classification
accuracies. As shown in Table 1, we observe that for all
methods, the more training samples, the greater the recog-
nition accuracy. Kernel WFLD achieves around 2% better
accuracy than WFLD. This shows that kernel method makes
classes more separable in the high dimensional space. How-
ever, this performance difference is only slight, because
Identity Space already exists in the original space for lin-
early independent samples with D ≥ N − 1.

For digits recognition, we randomly choose n =
100, · · · , 600 training samples from each class, and the
remaining images are used for testing. As shown in Ta-
ble 2, WFLD produces the worst performance among all
four methods. The reason is that Identity Space does not
exist, so that identity and variation information are mixed
together in Mixed Space. Kernel WFLD is always the best
classifier in terms of the classification accuracy; it is also the
most stable classifier in terms of having the smallest stan-
dard deviation. The gap between kWFLD and the second
best is around 10%. All these results demonstrate that even

when Identity Space does not exist in the original data space
when N > D, we can still create the most discriminant sub-
spaces (aka Identity Space) by using the kernel method.

Another strength of WFLD and kWFLD is efficiency.
To classify an unknown point, WFLD or kWFLD needs to
compare it with C Identity Vectors, whereas PCA and LDA
require nC comparisons. For digits recognition, C = 10
and n = 600, so WFLD is 600 times more efficient in terms
of storage and computation.

6.2. Discriminability of Variation Space

We now compare the discriminative power in Identity
Space and Variation Space. We do this by taking a weighted
sum of dV

k and dI
k:

dk = αdI
k + (1− α)dV

k , 0 ≤ α ≤ 1. (17)

where dI
k is the distance from the query point to each Iden-

tity Vector and dV
k is the distance from the query point to

class Variation Space. The classification is performed by
using the minimum distance: L? = arg minLk

dk. Obvi-
ously, when α = 1, we are using only Identity Space, and
when α = 0, we are using only Variation Space. To il-
lustrate, we will use the Banca dataset for face recognition
under varying illumination, pose, and expression.

The experimental setting is thus: From the Banca
dataset, we choose n = 2, 4, 6, 8, 10, 12 samples per class
as the training set, and the rest for testing. We then vary
α ∈ [0, 1] in steps of 0.1, and in each case classify the test-
ing samples according to minimum distance. We repeat the
sampling 20 times to compute the mean and standard devia-
tion of classification accuracy. Figure 3 shows the results 1.
We observe that:

1. Variation Space does contain some discriminative in-
formation. This can be seen in the row where α =
0: the accuracies are significantly better than random
guessing (= 1

52 = 1.92%).

2. Identity Space is more discriminative than Variation
Space, by comparing the accuracies for α = 0 and
α = 1. More precisely, Identity Space achieves at least
33% greater accuracy than Variation Space.

3. Variation and Identity Spaces overlap a lot in terms
of discriminability. This is suggested by the fact that
when α = 1, the performance is approximately the
best. This substantiates the effectiveness of Identity
Space as a pattern recognition tool.

1For the purpose of clear visualization, we only plot the mean rates
without the standard deviation.



Table 1. BANCA: Classification accuracy (%) with different training set size.
#. 2 4 6 8 10 12

PCA 38.30 (1.57) 54.45 (1.78) 65.37 (0.74) 73.63 (1.04) 78.54 (1.33) 82.34 (1.31)
LDA 65.33 (3.71) 79.81 (2.19) 90.15 (0.94) 94.20 (0.85) 95.93 (0.79) 96.92 (0.48)

WFLD 70.45 (1.74) 85.33 (1.67) 90.87 (0.77) 93.85 (0.56) 94.35 (0.60) 95.12 (0.35)
kWFLD 70.26 (1.74) 86.89 (2.12) 92.29 (1.21) 95.44 (0.59) 96.47 (0.56) 97.04 (0.41)

Table 2. MNIST: Classification accuracy (%) with different training set size.
#. 100 200 300 400 500 600

PCA 82.76 (0.57) 85.23 (0.50) 86.49 (0.34) 87.13 (0.27) 87.75 (0.21) 88.14 (0.24)
LDA 82.69 (0.53) 85.12 (0.37) 86.10 (0.29) 86.72 (0.23) 87.24 (0.21) 87.50 (0.23)

WFLD 63.38 (1.03) 76.41 (0.49) 79.72 (0.34) 81.37 (0.29) 82.26 (0.27) 82.84 (0.25)
kWFLD 92.79 (0.24) 94.84 (0.12) 95.70 (0.11) 96.19 (0.11) 96.54 (0.08) 96.79 (0.08)
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Figure 3. Face recognition by using both Identity and Variation
Spaces with varying training set size n = 2, ..., 12. When α = 1,
we are using only Identity Space; when α = 0, we are using only
Variation Space. It shows that Identity Space contains much more
discriminant information than Variation Space.

6.3. Face Synthesis

Our next experiment attempts to synthesize face images
under varying illumination. We know from Section 5.2 that
we can use WFLD to cleanly decompose any sample into
its identity and variation components, modify each compo-
nent separately, and then reconstruct a new sample. More
specifically, given a face image x̃i, we synthesize a new
image using x̂(c) = V1V>

1 x̃i + cV3V>
3 x̃i, where c is a

parameter for us to control the amount of variation.
To illustrate, we will use the CMU PIE [10] dataset for

illumination synthesis. We choose C = 68 subjects, each
having 24 frontal face images taken under a wide range of
lighting conditions. All face images are aligned based on
eye coordinates, and cropped to the size of 70 × 80(= D)
pixels. Figure 2(c) shows some PIE face images.

Figure 4 shows two examples of illumination synthesis
as we vary c = −1, . . . , 3. It is evident that this parameter

controls the illumination. Because the WFLD is a lossless
invertible transform, when c = 1 we get back exactly the
input image. Here, it is clear from the shadows that the
light source is from the left of the face. When c = 0, the
illumination appears frontal and there is no shadow. This is
because in the PIE dataset, the illumination varies approx-
imately symmetrically from left to right, so that the mean
face is frontally illuminated. Since c = 0, we are effec-
tively reconstructing the face using only its identity compo-
nent and suppressing its variation component. This appears
to have suppressed shadows as well. When c = −1, we ob-
serve that the illumination has moved to the right; while for
c = 2, 3, the illumination has become harsh.

Actually, we have a whole subspace (the class variation
space of the sample x̃i) to vary the illumination. Any vec-
tor in this subspace will synthesize a new illumination. We
have merely shown the trivial case of varying the magnitude
of the projected sample.

Figure 4. Two examples of illumination synthesis, as c, the user-
controlled parameter is varied. The original input images are in
column c = 1, because the WFLD is an invertible transform.

Our final experiment shows that WFLD may be used to
swap face illuminations. Fig. 5 shows two examples of the
variation synthesis. Given two novel face images under
different lighting, we synthesize the face images with the
swapped variation components. In this case, the variation
components represent the face illumination. To evaluate the



synthesis quality, we also show the real face images under
the swapped lighting. Our synthesized face images are com-
parable to the real face images, except the shadows. The
reason is the shadows are generally encoded as high-order
information. However, our theory is based on second-order
information (scatter matrices).

(a)

(b)

Figure 5. Two examples of variation synthesis. For (a) and (b), the
leftmost column is the given face images with different identities
and variations (lighting); the medium column shows the synthe-
sized face images with the swapped lighting; the rightmost column
shows the real face images with the swapped lighting.

7. Conclusion
We have proven a number of important theoretical prop-

erties of the WFLD. As such, we argue that the WFLD is
the correct way to compute the FLD. In so far as the original
objective of the FLD was to eliminate within-class variation
and maximize between-class variation, the pre-whitening
step guarantees this objective. Note that we are not claiming
that the WFLD is better than the Bayes’ Classifier. Instead,
we are merely explaining that elegant properties emerge
when the FLD is computed correctly.

More precisely, the WFLD decomposes pattern vectors
into two neat subspaces with useful properties: Identity
and Variation Spaces. We defined Identity Space as the

optimal subspace for pattern classification in terms of the
Fisher Criterion, and then mathematically proved its prop-
erty: all samples from one class project onto its Identity
Vector, which is also its class mean. Variation Space was
defined as the least discriminant subspace for pattern classi-
fication, and it contains no class means to be used for classi-
fication. We further showed their geometric structures, the
conditions required for them to exist. When the conditions
are not satisfied, the kernel trick was proposed to encour-
age the existence. To assess the performance of these two
spaces, we ran face and digits recognition by using the Iden-
tity Space, and synthesized face images by using the Vari-
ation Space. The results show the power of WFLD as a
pattern classification tool and as a data decomposition tool.

One limitation of our work is generalization. The prop-
erty of clean class separation that we prove applies only to
the training data, and not necessarily to novel, unseen data.
Pre-whitening the FLD does not guarantee improved gener-
alization, so standard regularization techniques [6] can still
be applied here. However, it is clear from the linearity of our
proofs that if novel data lie within the subspace of the train-
ing data, then they will also be perfectly separated. Thus,
the crux is whether training data is representative of novel
data — a problem common to all machine learning meth-
ods, not just to the FLD.

A. Proof of Theorem 2
Proof. The whitened Sb is decomposed as eSb = VΛbV

>. Within Iden-
tity Space, λb = 1. That is: Λb = I corresponding to the set of eigenvec-
tors V1. Thus, V>

1
eSbV1 = I. Because eSb = P>SbP, it is easy to see

that V>
1 P>SbPV1 = I. If we replace Sb with Equation (2),

I = V>
1 P>SbPV1 =

CX
k=1

NkV>
1 P>mkm>

k PV1 (18)

=
CX

k=1

Nkm′
km′>

k (19)

Now let’s denote M = [
√

N1m′
1, · · · ,

√
NCm′

C ] ∈ R(C−1)×C , then
we can rewrite Equation (19) as

MM> = IC−1. (20)

where IC−1 is the (C − 1) × (C − 1) identity matrix. Since the total
mean is zero, i.e.

P
Nkm′

k = 0, it is easy to see that

Mi = 0 (21)

where i = [
√

N1, · · · ,
√

NC ]>. Equations (20) and (21) shows that the
rank of M is C − 1 and its only nullspace is i ∈ RC .

To compute M>M, we first define Q =

"
M
1√
N

i>

#
∈ RC×C .

Thus,

QQ> =

"
M
1√
N

i>

# h
M> 1√

N
i

i
= IC (22)

Here N = i>i =
P

Nk . Since Q is a full rank, square matrix, Equa-
tion (22) shows that Q is an orthogonal matrix, i.e. QQ> = Q>Q = I.
Hence,

Q>Q = M>M +
1

N
ii> = I (23)



And thus, M>M = I−
1

N
ii> (24)

On the other hand,

M>M =
hp

NkNlm
′>
k m′

l

i
, ii> =

hp
NkNl

i
. (25)

Considering Equations. (24) and (25), we see that

p
NkNlm

′>
k m′

l =

8<: 1−
√

NkNl

N
if k = l;

−
√

NkNl

N
if k 6= l.

(26)

That is: m′>
k m′

l =

(
1

Nk
− 1

N
if k = l;

− 1
N

if k 6= l.
(27)

When k = l, ‖m′
k‖ =

s
1

Nk
−

1

N
. (28)

When k 6= l, cos θkl =
m′>

k m′
l

‖m′
k‖‖m

′
l‖

=
−
√

NkNl√
N − Nk

√
N − Nl

(29)
This completes the proof.

B. Proof of Lemma 5
Proof. After pre-whitening, P>StP = I. That is:

I = P>
X

xix
>
i P =

X exiex>i (30)

We further define eX = [ex1, · · · , exN ], then eX eX>
= I. Because of

the zero global mean, eX1 = 0. Thus, rank( eX) = N − 1 and its only
nullspace is 1 ∈ RN . Using the same trick as in Equations (22) to (24),
we get

eX> eX = I−
1

N
11> (31)

The diagonal entries of eX> eX are 1− 1
N

, and off-diagonal ones are − 1
N

.
This completes the proof.

C. Proof of Theorem 6
Proof.

x′>i x′j =
“
V>

3 exi

”> “
V>

3 exj

”
(32)

= ex>i V3V
>
3 exj = ex>i “

I−V1V
>
1

” exj (33)

= ex>i exj −
“
V>

1 exi

”> “
V>

1 exj

”
(34)

= ex>i exj −
“
V>

1 emk

”>
V>

1 eml (35)

= ex>i exj −m′>
k m′

l (36)

Remarks: (1) Equation (33) is derived from V1V>
1 + V3V>

3 = I. (2)
Equation (36) is derived from Theorem 1. It remains to consider three
cases, with the help of Equation (27) and Lemma 5:

1. When i = j, immediately Lk = Ll, then

x′>i x′j = ex>i exj −m′>
k m′

l (37)

=

„
1−

1

N

«
−

„
1

Nk
−

1

N

«
= 1−

1

Nk
(38)

2. When i 6= j and Lk = Ll, then

x′>i x′j = ex>i exj −m′>
k m′

l (39)

= −
1

N
−

„
1

Nk
−

1

N

«
= −

1

Nk
(40)

3. When i 6= j and Lk 6= Ll, then

x′>i x′j = ex>i exj −m′>
k m′

l (41)

= −
1

N
−

„
−

1

N

«
= 0 (42)

This completes the proof.
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