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ABSTRACT 

 
Tasks of image clustering and classification often deal 

with data of very high dimensions.  To alleviate the 

dimensionality curse, several methods, such as Isomap, 

LLE and KPCA, have recently been proposed and applied 

to learn low-dimensional non-linear embedded manifolds 

in high-dimensional spaces. Unfortunately, the scenarios 

in which these methods appear to be effective are very 

contrived.  In this work, we empirically examine these 

methods on a realistic but not-so-difficult dataset. We 

discuss the promises and limitations of these dimension-

reduction schemes. 

 

1. INTRODUCTION 

 

Several dimensionality-reduction algorithms have recently 

been proposed to find nonlinear manifolds embedded in a 

high-dimensional space.  Among the proposed methods, 

Isomap [5], local linear embedding (LLE) [1], and kernel 

PCA (KPCA) [6] have been applied to tasks of image 

clustering [1, 3-6] and image retrieval [7,8]. However, the 

scenarios in which manifold learning has been shown to 

be effective are rather contrived.  For instance, the widely 

used Swiss-roll example [5] is a three-dimensional 

structure on which data are densely populated. Several 

examples of face and object images presented in [1-6] 

change their poses only slightly from one image to another, 

so manifolds can easily be discovered.  In all 

demonstrated scenarios, noise has not been considered a 

factor to seriously challenge manifold learning.  

 

Manifold learning faces at least three technical challenges 

[3]. First, training data must be densely populated in the 

intrinsic space where a manifold resides. If data are 

sparsely populated, or if many data instances cannot find 

neighboring points in a local area, then no manifold can be 

learned. Second, the presence of noise in a local area may 

prevent correctly learning the real structure. Third, when 

the dimension of data is high (typically higher than 30), 

the dimensionality curse aggravates the above two 

problems.  An exponentially large number of instances are 

required to characterize a manifold in a very high-

dimensional space. The problem of noise magnifies when 

data is sparsely populated, which is inevitable in a high-

dimensional space.  

In this paper, we report our experiments using a real-world 

image dataset to examine the effectiveness of Isomap, 

LLE and KPCA. The 1,897-image dataset we used 

consists of 14 image categories. We have used this dataset 

in several settings, both supervised and unsupervised, and 

have found it to be relatively “well behaved” compared to 

many other real-world datasets we have used.  We did not 

use a “harder” database because all dimension-reduction 

methods would have failed miserably, and we would not 

be able to observe, identify, and explain the limitations of 

manifold learning. 

 

The rest of this paper is organized into three sections.  

Section 2 briefly summarizes Isomap, LLE, and KPCA.  

Section 3 presents the results of our empirical studies.  We 

offer our observations and concluding remarks in Section 

4. 

   

2. MANIFOLD LEARNING 

 

Given a set of high-dimensional training 

instances },...,,{ 21 NO xxx= , where
p

i ℜ∈x . 

Manifold learning algorithms attempt to find an 

embedding set },...,,{ 21 NE yyy=  of O in a low-

dimensional space ( )pdd <ℜ , and the local manifold 

structure formed by O in the original space 
pℜ is 

preserved in the embedded space 
dℜ . An underling 

assumption of these algorithms is that the data are “well 

distributed” on a manifold (M) of dimension d. In the 

following, we briefly review three representative manifold 

learning algorithms, Isomap, LLE, and kernel PCA. 

 

2.1 ISOMAP 

 

Isomap [5] builds on classical multi-dimensional scaling 

(MDS) by first constructing a squared distance 

matrix
N

jiijd 1,][ ==D . Instead of calculating ijd using the 

Euclidean distance, Isomap uses the geodesic distance 

between ix and jx  along the manifold M where the 

training points reside in the high-dimensional space
pℜ . 

In [5], the geodesic distance is approximated by finding 

the shortest path in a weighted graph G with edges of 

weight ijd connecting neighboring data points on the 



manifold M.  Next, Isomap applies MDS to the geodesic 

distance matrix D, embedding the p-dimensional dataset O 

in a d-dimensional Euclidean space 
dℜ that preserves the 

M’s intrinsic geometry. More specifically, let ( )N
kkk 1

, =vλ  

be the eigenmap of the geodesic distance matrix D. 

Isomap chooses the d largest kλ with the corresponding 

eigenvector kv and calculates the d-dimensional 

embedded vector iy of the training point ix  as 

( )Tdidkiki vvv λλλ ,...,,...,11 . 

 

2.2 LLE 

 

The LLE algorithm [1] seeks an embedding to preserve 

the local manifold geometry of the neighborhood of each 

training point. It first constructs a sparse weight matrix W 

with its i,j
th
 component ijw representing the construction 

ability of jx on ix , where 1=∑
j

ijw , and ijw equals 0 

if jx is out of the k-nearest neighbors of ix . Next, LLE 

makes an eigendecomposition on the matrix 

( )WIWIM −




 −= T

 and generates the embedding 

using M’s bottom d+1 eigenvectors s'kv , corresponding 

to the d+1 smallest eigenvalues s'kλ . LLE discards the 

bottom kv  with the zero kλ . Therefore, iy  is equal to 

( )T
idkii vvv )1(2 ,...,,..., + . 

 

2.3. KPCA 

 

The KPCA algorithm [6] seeks a non-linear dimension 

reduction in a high-dimensional space. KPCA first maps 

data ix into a high-dimensional Hilbert kernel space as 

( )ixφ  using a positive semi-definite kernel K.  Next, 

KPCA solves an eigen problem on a centered kernel 

matrix ( ) ( )TeeIKeeIK −−= T~
where 

( )Tme 1,...,12/1−= . Finally, the iy is calculated as 
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Although KPCA does not obviously consider the local 

manifold geometry in the algorithm, it can be related to 

Isomap and LLE in a kernel framework. For example, [4] 

argues that by taking the following “kernel”  

( ) ( ),
2

1
eeIDeeIK −−−= T

isomap  

the final embedding found by ISOMAP using isomapK is 

identical (up to some scaling) to the projections of KPCA 

using the kernel. For LLE, by using the 

kernel MIK −= maxλlle , where maxλ is the largest 

eigenvalue of M, the coordinates of the leading 

eigenvectors of KPCA performed on lleK  yield the LLE 

embedding. 

 

3. EXPERIMENTAL RESULTS 

 

We performed several experiments to examine if 

preprocessing data with Isomap, LLE, or KPCA can 

improve clustering performance. We employed k-means 

as our clustering algorithm.  To conduct our experiments, 

we used a 14-category 1,897-image dataset, with each 

image being represented by a 144-dimensional feature 

vector [9]. We first applied k-means to the raw data to 

record the percentage of data that can be clustered into 

their correct categories.  We obtained clustering accuracy 

of 87.36% (or 0.8736).  This is the yardstick performance 

to which Isomap, LLE, and KPCA were compared. 

 

3.1. Clustering Accuracy 

 

Figure 1. Isomap Clustering Accuracy. 
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Figure 1 presents the clustering accuracy using Isomap 

with different values of k (number of nearest neighbors) 

and d (intrinsic data dimension, on the x-axis).  When d is 

reduced from 144 to between 60 and 100 and k is set 

between 20 and 40, preprocessing data with Isomap shows 

improvement in clustering accuracy.  However, the 



improvement is less than 1% even in the best case, a very 

insignificant amount. 

  

Figure 2 presents the results when using LLE. The best 

result was obtained when d was set to 2 and k between 40 

and 80.  Again, the accuracy improvement is insignificant. 
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Figure 2. Clustering accuracy with LLE (d = 2). 
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Figure 3. Clustering Accuracy using KPCA and LLE. 

 

Figure 3 shows the clustering accuracy after using KPCA 

for manifold learning.  The light-color curve shows the 

KPCA clustering accuracy on different d settings.  When d 

is 4 or 5, KPCA slightly outperforms the yardstick 

accuracy.  KPCA and LLE appear to obtain similar 

intrinsic dimensions (2-5), whereas Isomap works better 

when d is between 20 and 40. 

 

3.2. Promising Potential 

 

Our experimental results show that manifold learning can 

be helpful in two ways.  First, it can (although in a very 

insignificant way on our dataset) improve data quality for 

supervised and unsupervised learning tasks. Second, if the 

discovered intrinsic structure is in low dimensions, one 

can visualize the data and gain useful insights.  Figure 4 

plots the image-dataset in a 3-d space after LLE has been 

applied. From the plot, we can identify “trouble-spot” 

classes or clusters, and this information can be useful for 

designing new features to improve cluster separation.  
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Figure 4. Image Data in a 3-d Space After LLE. 

 

3.3. Limitations 

 

Unfortunately, several limitations hinder manifold 

learning from being practical.  In addition to the high data-

density requirement, sensitivity to noise, and curse of 

dimensionality that we discussed in Section 1, we 

observed during our empirical study one major chicken-

and-egg problem:  without knowing the structure of the 

data, turning parameters (such as d and k for LLE) is 

merely shooting in the dark. When conducting our 

experiments, since we had the labels of the images, we 

could measure the effectiveness of the learned manifolds 

and identify the best parameter combinations.  However, 

in a realistic setting when little or no ground-truth is given, 

there is no way of knowing what parameter setting might 

yield improved results. More specifically, let us use 

Figures 1-3 to explain. Without prior knowledge of the 

image categories, we would not have been able to evaluate 

clustering accuracy.  Thus, we cannot predict whether a 

parameter combination would be helpful or counter-

productive.   

 

At first glance, it would seem that combining supervised 

learning with manifold learning might alleviate this 

parameter-setting problem. Our experimental results, 

however, do not show that this path can work effectively. 

We randomly set aside 50% of the data as training data. 

We intended to learn the best parameter setting(s) using 

the training data, and then apply that setting(s) to the 



entire dataset to learn manifolds.  We conducted this 

training experiment for both Isomap and LLE with four 

sets of randomly sampled datasets.  Unfortunately, from 

the four different training datasets, we obtained vastly 

different parameter settings. Figure 5 plots the distribution 

of the “good” settings that can yield improved clustering 

accuracy for Isomap. Notice that the “good” parameters 

obtained with different training datasets are all quite 

different; moreover, the parameters learned do not 

correlate with the best parameters for the entire dataset, as 

shown in Figure 1. Similarly, Figure 6 plots the same poor 

parameter pattern we obtained from the LLE training 

experiment. We believe that since manifold learning is 

very sensitive to data distribution, even slightly different 

sets of data can lead to very different manifold structures.  

Both the high training variance and the inability to 

generalize the training result to unseen data render this 

semi-supervised path unusable or unhelpful. 

 
Figure 5. Parameter Settings for ISOMAP. 

 
Figure 6. Parameter Settings for LLE. 

 

 

4. CONCLUSIONS 

 

In this paper, we have explained how we performed an 

empirical study on the representative manifold learning 

methods Isomap, LLE, and KPCA. Our results show that 

when the data is “well behaved” and we have an oracle to 

provide us with good parameter settings (k and d), then 

manifold learning can improve clustering accuracy 

somewhat. However, we concur with [3] that when a 

dataset is noisy and high dimensional, manifold learning is 

generally ineffective. Furthermore, we found a practical 

chicken-and-egg problem -- that it is impossible to obtain 

good parameter settings for manifold learning without 

prior knowledge of the data characteristics.  In addition, 

we are not fully convinced that manifolds learned on a 

visible set of data can be generalized to unseen data. 

Despite some recent claims of success in image retrieval 

[7-8], we remain skeptical about the practical use of 

manifold learning at our current level of knowledge.  In a 

recent IPAM meeting [10], which two authors of this 

paper and the inventors of Isomap and LLE attended, the 

consensus of the presenters and participants was that 

manifold learning remains a work-in-progress area for 

research. 
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