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ABSTRACT 
Sequence matching techniques are effective for comparing two 
videos. However, existing approaches suffer from demanding 
computational costs and thus are not scalable for large-scale 
applications. In this paper we view video copy detection as a local 
alignment problem between two frame sequences and propose a 
two-level filtration approach which achieves significant 
acceleration to the matching process. First, we propose to use an 
adaptive vocabulary tree to index all frame descriptors extracted 
from the video database. In this step, each video is treated as a 
“bag of frames.” Such an indexing structure not only provides a 
rich vocabulary for representing videos, but also enables efficient 
computation of a pyramid matching kernel between videos. This 
vocabulary tree filters those videos that are dissimilar to the query 
based on their histogram pyramid representations. Second, we 
propose a fast edit-distance-based sequence matching method that 
avoids unnecessary comparisons between dissimilar frame pairs. 
This step reduces the quadratic runtime to a linear time with 
respect to the lengths of the sequences under comparison. 
Experiments on the MUSCLE VCD benchmark demonstrate that 
our approach is effective and efficient. It is 18X faster than the 
original sequence matching algorithms. This technique can be 
applied to several other visual retrieval tasks including shape 
retrieval. We demonstrate that the proposed method can also 
achieve a significant speedup for the shape retrieval task on the 
MPEG-7 shape dataset. 

Categories and Subject Descriptors 
H.3.3 [Information Storage and Retrieval]: Information Search 
and Retrieval – information filtering, search process. I.4.9 
[Computing Methodologies]: Image Processing and Computer 
Vision – Applications. 

General Terms 
Algorithms. 

Keywords 
Video copy detection, local alignment, similarity measure, 
vocabulary tree. 

1. INTRODUCTION 
With digital video content production and distribution continuing 
to grow, content-based copy detection (CBCD) has been actively 
studied for a wide range of applications that include searching [8, 
20], multimedia linking [4, 23], and protecting copyrighted 
content [5, 6, 7, 10, 11, 15, 16]. Based on content alone, CBCD 
attempts to identify segments in a query video that are copies 
from a reference video database. A copy is not an exact duplicate 
but, in general, either a transformed or a modified version of the 
original document that remains recognizable [6]. Transformations 
to digital content such as cropping and inserting logos are 
frequently performed and the resulting near-duplicates could be 
different from the source in terms of not only formats, but also 
content [20]. 

Many existing approaches cast the task of CBCD into a traditional 
content-based key-frame retrieval framework [5, 11] since both 
tasks follow the query-by-example paradigm [6]. However, 
CBCD aims at identifying video copies instead of similar 
individual frames. For example, two videos of the same scene 
may be considered similar; however, they are not necessarily 
copies of each other (based on the definition described above). 
Thus, methods that solely rely on frame-level similarities can 
suffer from high false positive rates [7]. 

Since a video can be naturally represented as a sequence of 
frames, temporal constraints have been employed in the design of 
metrics that compare the similarities between two videos [1, 3, 8, 
24]. More specifically, videos are represented as strings of 
symbols and the edit distance between two symbol strings—
defined as the minimal cost of any insertions, deletions, and 
substitutions of symbols needed to make two strings equal—is 
used for measuring video similarity. Video matching methods 
based on such a metric have a number of merits. First, the ground 
distance used to compare frame descriptors can be seamlessly 
integrated into the distance measurement. Second, the temporal 
order is preserved during matching. Moreover, two similar videos 
that differ either in length, or in terms of other factors such as 
differences in subsequences caused by incorrect key frame 
detection, are likely to obtain a high similarity score based on 
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such a metric. Recent studies have shown some successes in the 
use of the edit distance in the context of video clip retrieval [3]. 

However, two major problems hinder the use of the edit distance 
in real-world CBCD applications. One video could consist of one 
or several segments copied from different videos and, thus, copies 
may appear locally. For example, one common editing effect 
found on pirated web videos is to insert irrelevant frames at the 
beginning and the end of an original video. Another example is 
detecting commercials in a TV show. The query content, i.e. the 
commercials, might appear several times in the show. For either 
case, only a small portion of the query or the reference video is a 
copy. The second issue is the computational cost of computing the 
edit distance. Spurred on by the popularity of large video 
distribution web sites such as YouTube.com, a practical CBCD 
method must be highly efficient and scalable. 

In this paper, we address both problems and propose an edit-
distance-based approach that has the potential for large-scale 
CBCD applications. We first formulate a local alignment problem 
between two sequences and extend previous edit-distance-based 
approaches to compare video segments of all possible lengths. 
The main contribution of this work is the highly efficient 
matching process between a query video and a video database 
which is achieved by a fast local alignment method along with a 
dedicated index structure that provides detection acceleration at 
both the clip and frame levels. This method decomposes the 
design of the representation and matching, thus any frame-based 
representation could be easily incorporated into our framework. 
We demonstrate the effectiveness and efficiency of this method 
using the MUSCLE VCD benchmark [9]. We additionally suggest 
an application of the proposed method for fast shape retrieval. 

In the remainder of the paper, we first provide background for the 
edit-distance-based approaches and present our implementation of 
various video signature and matching approaches. Section 3 
describes our proposed method for efficient detection. Section 4 
describes the experimental results for video copy detection. We 
also show results for fast shape retrieval using the same 
framework. Finally, we conclude the paper with a summary of our 
contributions and propose ideas for future research based on these 
concepts. 

2. BACKGROUND 
The process of pair-wise comparison of two videos is a 
fundamental task for determining whether one video contains 
sequences that are copies of sequences in the other. We start by 
describing the particular use of the edit distance for matching two 
videos. Approaches of this type differ from each other mostly in 
their sequence representation and their assignment of operation 
costs. In the following, we discuss the design options and our 
implementation. 

2.1 Representation 
2.1.1 Frame Sampling 
For edit-distance-based approaches, the first step is to partition a 
video into a sequence of frames. To avoid unnecessary and 
duplicate comparisons for all frames, two sampling strategies are 
commonly used. First, a video is viewed as a list of shots 
represented by keyframes. This mapping of video to keyframes 
reduces the number of frames that needs to be analyzed by a 

factor of 100 to 5000, depending on the video content [20]. 
Although methods for detecting keyframes are, in general, quite 
robust for videos with the same format, different keyframe 
sequences might be generated when these techniques are applied 
to near-duplicate videos [20].  

The second strategy is to sample frames at a fixed rate. This 
approach is simpler compared to automatic keyframe detection. In 
our experiments, we sampled one frame per second. Note that a 
sampled video sequence could still be long: a two-hour film, for 
example, has 7200 sampled frames. 

2.1.2 Frame Description 
In the second step, content in a frame is summarized by feature 
descriptors. Global statistics, such as color histograms, have been 
well developed and used successfully for content-based image 
retrieval. Bertini et al. proposed to use MPEG-7 descriptors— 
specifically the color layout, the edge histogram, and the scalable 
color descriptors—for effective video-clip matching [3]. Chum et 
al. showed that a color histogram, combined with a spatial 
pyramid placed over an image, could serve as a compact and 
discriminative descriptor for near identical image and shot 
detection [5]. 

Alternatively, local statistics, such as interest points with PCA-
SIFT, have been applied in [5, 7, 17, 23]. This type of description 
is somewhat invariant, thus is highly robust, to image 
transformations such as occlusions and cropping. However, since 
one image can have hundreds to thousands of local features, 
matching between descriptors is computationally expensive. 
Although fast indexing structures (e.g. LSH) could help filter 
unnecessary comparisons among dissimilar features, matching 
based on local descriptors is still costly. Moreover, as indicated in 
[10], interest point detection alone is one of the computational 
bottlenecks in these methods. For videos, performing interest 
point detection on every extracted frame of a query video is 
simply infeasible due to the unacceptably high computational cost. 

In general, global features are efficient to compute, compact in 
storage, but insufficiently accurate in terms of retrieval quality. 
Local features are more robust but computationally more complex 
and require more storage. A good tradeoff might be derived by 
the use of a semi-global descriptor. In this work, we extended the 
Markov stationary feature (MSF), which was proposed in [12] and 
has been shown to be effective for the task of TRECVID video 
concept detection. The MSF extends the histogram-based features 
by characterizing the spatial co-occurrence of histogram patterns 
using the Markov chain models. It therefore encodes spatial 
structure information both within and between histogram bins. 
We implemented the MSF-Color feature—the MSF extension of 
color histograms—in our experiments. To further enhance the 
feature by incorporating local information, we partition a frame 
into four regions, each of which is described using the MSF-Color 
feature. We quantized the HSV color space into 36 bins, resulting 
in a 288-dimensional (4 regions, 36 bins, 2 distributions) compact 
feature vector for each frame. Figure 1 summarizes the feature 
extraction process. Although the frame descriptor is based on 
appearance alone, the temporal aspects of a video are implicitly 
considered using the edit distance, which will be discussed in the 
next subsection. 



 
Figure 1. Extended MSF features. The left side shows the 
spatial division of a frame and the right side is the derived 
feature descriptor. 

2.2 Matching Two Sequences 
Motivated by the approximate string matching techniques, the use 
of edit distance in the context of video matching was first 
proposed in [1]. Given two strings X = [x1, x2, …, xm] and Y = [y1, 
y2, …, yn], over an alphabet ∑, and a set of operations (e.g. 
insertion, deletion, and substitution), the edit distance between X 
and Y is the minimal cost of applying a sequence of operations 
that transforms X into Y.  

To use the edit distance for comparing two frame sequences, early 
studies suggested a quantization step that maps frames into 
symbols [1, 8]. For such cases, all operations have equal costs. 
The edit distance is then calculated as the number of operations 
needed to make two sequences of symbols equal. In [8], a 
heuristic method was proposed to determine the best step-size for 
quantization. However, the quantization process has potential 
drawbacks. It is not clear, for example, how one should choose 
the number of symbols for generic videos. Bertini et al. avoided 
this quantization step and proposed relying directly on the ground 
distance for comparing two frame descriptors to determine the 
operation costs [3].   

The edit distance is flexible and can be easily adapted to 
applications by assigning different operation costs. For example, 
the longest common subsequence (LCS) matching technique used 
for measuring the similarity between video clips in [8] is a special 
case of using the edit distance for sequence matching. This 
technique allows insertion and deletion operations only, each of 
which incurs a unit cost. However, for some tasks such as 
identifying the appearance of a summarized video in a long 
sequence, deletions should be considered less expensive than 
insertions. The cost functions therefore need to be modified for 
such tasks.  

Another view of the edit distance is that it measures how two 
sequences are globally aligned. By global we mean two 
sequences are aligned across their entire lengths. However, in 
many CBCD applications, the query sequence might not be a 
single video clip, but the concatenation of a collection of clips. 
Therefore, we often are more interested in finding the most 
similar subsequences within two sequences that are aligned pair-
wise in the subsequence-level rather than finding the best 
alignment for the entire length of two sequences. Local alignment 
methods can return more than one match for subsequences among 

the two sequences under comparison because there may exist 
multiple-to-one, one-to-multiple, or multiple-to-multiple matches 
of subsequences. Therefore, for general CBCD applications, a 
metric based on local alignment is desirable. 

3. FAST VIDEO COPY DETECTION 
We extend the edit distance for the purpose of finding local 
alignments between two video sequences. We further propose a 
two-step method for accelerating the task. 

3.1 Local Alignment 
We extend the edit distance in two aspects to find the optimal 
local similarity. First, we derive a score v(xi, yj) between two 
frame descriptors xi and yj based on their distance under the 
principle that v(xi, yj) would be positive if xi and yj are similar, and 
negative otherwise. The value v(xi, yj) can then be treated as the 
substitution “score.” Moreover, we assign negative scores to 
insertions, denoted as v(xi, ε), and deletions denoted as v(ε, yi). 
Then, the optimal local alignment can be computed by dynamic 
programming that is very similar to the edit distance computation: 
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This is known as the Smith-Waterman algorithm [18]. The 
computational complexity is O(mn) and the storage is O(min(m, 
n)), where m and n are the lengths of the sequences under 
comparison. The local alignment is obtained by searching for the 
maximal score in the dynamic programming graph, and by tracing 
back the optimal path until a score of zero is retrieved. We use a 
simple linear model v(xi, yj) = c - d(xi, yj) to derive the 
substitution score, where c is a constant and d(xi, yj) is the χ2 
statistics between two normalized MSF-Color feature descriptors. 

3.2 Acceleration 
Filtration is a widely used technique for speeding up object 
detection or information retrieval tasks. For example, the popular 
face detection algorithm proposed by Viola and Jones [19] applies 
a cascade classifier structure that can quickly reject non-face 
regions so more computational resources can be reserved for 
examining more promising face-like regions. In information 
retrieval, the database is indexed so that when searching for 
similar instances for a query, only a small fraction of the dataset 
in the database needs to be examined. In this work, we apply 
filtration at two levels: 1) selecting candidate videos in the 
database, and 2) selecting good starting points for aligning two 
sequences. 

3.2.1 Indexing Structure 
We propose to use a vocabulary tree [13] for indexing all the 
frames extracted from the video database. The vocabulary tree 
was initially proposed for efficient image retrieval. In this work, 
each of the frame descriptors is hierarchically quantized in the 
vocabulary tree by hierarchical k-means clustering. Here, k 
defines the branch factor of the tree rather than the final number 
of clusters. The vocabulary tree allows a large and more 



discriminative vocabulary to be used efficiently. It was shown 
experimentally in [13] that this indexing structure leads to a 
dramatic improvement in retrieval quality. Similar to the 
implementation in [13], we keep an inverted file associated with 
each leaf node—a representative frame (visual word)—in the 
vocabulary tree. However, we record not only the videos that 
contain frames of that word, but also those frame IDs. Intuitively, 
videos that have frames similar to the query should potentially be 
copies. Moreover, those similar frame pairs are candidate starting 
points for an alignment. 
To improve the vocabulary tree for those tasks where videos can 
be added or removed from an active set over time, we 
implemented the adaptive vocabulary tree [22]. As its name 
implies, it adapts as instances are added to or removed from the 
database. One merit of the adaptive vocabulary tree is that we do 
not need to re-build the tree when the database slightly changes. 
In other words, an adaptive tree can be built incrementally. 
Moreover, the tree grows based on a measure that encourages 
splitting those nodes that become too ambiguous and pruning 
nodes that are not active for the current set of tasks. Thus, the 
distribution of descriptors decides the structure of the tree, which 
is also an important factor in determining the vocabulary’s quality. 
Finally, the retrieval performance is less sensitive to the 
parameters—the number of branches and the capacity of a node—, 
as shown in [22]. As shown in Fig. 2, this indexing structure 
enables the retrieval time to grow sub-linearly with respect to the 
number of videos in the database. 

 
Figure 2. The levels of an adaptive vocabulary tree grow sub-
linearly in terms of frame numbers in the database. 

3.2.2 Fast Matching 
The second opportunity for acceleration is to filter unnecessary 
alignments that would not possibly lead to successful matching. 
Suppose two sequences are unrelated; then, the best local 
alignment is no better than no alignment! Therefore, we can 
formulate an easier problem from the start: given two sequences, 
find those alignments that have a similarity exceeding a given 
threshold. 
Inspired by FASTA [14], a fast algorithm used in bioinformatics 
for finding similar DNA and protein sequences, we first create a 
visual method called a dot plot. A dot plot puts a dot at (i, j) in an 
m by n matrix if the similarity between descriptor i and descriptor 
j exceeds a specific threshold. Figure 3 shows an example of the 
dot plot. This plot can be easily constructed by using those 
inverted files built in the previous step. Note that the dot plot is 

sparse if two videos under comparison are either completely or 
partially unrelated. 
Figure 4 illustrates our search strategy, which consists of four 
steps. First, we identify all diagonals in the dot plot. A diagonal, 
shown as a diagonal line in Fig. 4 (a), represents consecutive 
matched frames of two video sequences. Next, those diagonals 
whose length is shorter than a pre-set threshold are discarded. 
That is, we filter out those single-frame matches and short aligned 
segments. This is illustrated in Fig. 4 (b). We then calculate a 
score, based on the ground distance between those frame 
descriptors that are aligned, for each remaining segment. Those 
segments with the top N highest scores are selected for further 
examination (Fig. 4 (c)). Among the selected segments, we try to 
join those that are close to each other in the dot plot with the goal 
of extending the overall length of the alignment. In this step, 
insertions and deletions are allowed, but there would be a penalty 
applied for such operations when connecting neighboring 
diagonals to form a longer segment. We obtain an approximate 
final score for each linked, longer segment by accumulating the 
scores of each of the connected diagonals minus those penalties 
caused by gaps between the diagonals. We return local alignments 
whose final scores exceed a threshold. The returned segments that 
consist of connected diagonals are illustrated in the gray areas in 
Fig. 4 (d). If the precise score for a linked segment is required, the 
Smith-Waterman algorithm can be applied. But due to its high 
computational complexity, it can only be applied to a much more 
restricted area.  
The Smith-Waterman algorithm compares each frame of the 
query to every frame in the video database. Suppose the length of 
a query is m, and the size of the database (i.e. the number of 
frames) is N. The time complexity of the query would be O(mN). 
In our fast method, we first construct dot plots by retrieving the 
corresponding visual word and its video and frame IDs for each 
query frame. This step takes O(mL) using the vocabulary tree, 
where L is the depth of the tree. The complexity of deriving the 
local alignment from the dot plot depends on the number of dots 
in the plot. Suppose the size of the dot plot is m by n and it 
consists of r dots. Identifying diagonals requires a linear time 
O(m+n), and the remaining processes for examining diagonals 
would take O(r), overall. Since, in practice, dots are distributed 
sparsely and most dots can be eliminated in the initial filtration 
process, the overall runtime is generally linear, rather than 
quadratic, with respect to the sequence lengths.  

 
Figure 3. An example of the dot plot. Two sequences are 
locally aligned where the diagonals in the boxes indicate the 
region of alignment. See text for details. 



 
Figure 4. The search strategy: (a) determining diagonals, (b) 
eliminating short diagonals, (c) selecting the top N diagonals 
with the highest scores, and (d) linking diagonals and 
calculating the final score for each connected diagonal. 

4. EXPERIMENTS 
4.1 Dataset 
We conducted experiments using the MUSCLE VCD benchmark 
[9]. This publicly available benchmark provides ground truth data 
for evaluating a system’s detection accuracy based on two tasks: 
finding copies (ST1) and finding extracts (ST2). The first task 
evaluates a system’s ability to find copies of whole videos in the 
database. This corresponds to the global alignment problem 
addressed in our framework. The second task is to detect regions 
of copies in the query, which is a local alignment problem. Both 
tasks are challenging because the transformations applied to this 
benchmark were very diverse. 

This database consists of 101 videos with a total length of 80 
hours. These videos come from different sources—web video 
clips, TV archives, movies—and cover various program types 
including documentaries, movies, sporting events, TV shows, and 
cartoons. Also, the videos in this dataset have different bit-rates, 
resolutions, and video formats. 

4.2 Detection Results 
We first show the performance of our recipe that uses the MSF-
Color descriptor and the sequence matching method. Table 1 
summarizes the results. Although the MSF-Color descriptor is a 
global feature 1 , combining it with the sequence matching 
techniques surprisingly achieves good performance in comparison 
with other methods. Figure 5 shows two videos that failed in the 
ST1 task. It is apparent that the colors are changed substantially 
from the reference videos, and the magnitude of the change is 
greater than the range that the feature can cover. Poullot et al. has 
recently proposed a frame-level bag-of-features like description, 
and reported a score of 0.93 and 0.86 respectively for the same 
tasks [15]. It would be interesting to incorporate this feature into 
our framework in future experiments. 

 
Table 1: Accuracy on the MUSCLE VCD benchmark 

Method ST1 score ST2 segment score 

CIVR07 Teams 0.46 ~ 0.86 0.17 ~ 0.86 

Ours (MSF-Color+Edit) 0.86 0.76 

 

                                                                 
1  We have tried other global features, including MPEG-7 

descriptors and the ordinary features. However, none of them 
can achieve accuracy higher than 62% for this dataset. 

 
Figure 5. Two query examples for which our method failed. 
Left: queries, right: references. 

4.3 Runtime Results 
A sequence matching approach before applying any acceleration 
technique compares all frames in the query to all frames in the 
video database. For example, in ST1 there are 199,590 frames 
extracted from 101 reference videos and 11,232 frames from 15 
queries. The total number of frame-pairs for comparison is 
approximately 2,246 million! In the first step of our proposed 
approach, we employ a vocabulary tree to filter out those videos 
which have just few frames similar to those in the query. Because 
each query in ST1 is a whole video copy and its reference video 
in the database was always among the ones with most matched 
frames, we selected the top 10 matched videos in this step for 
further examination. However, even though we filtered out 91 
videos for each query, there are still more than 341 million frame-
pair computations remained. 
The second step, as discussed in Section 3, uses the inverted files 
associated with tree nodes to derive a dot plot between two 
sequences. The dot plot is, in general, sparse. The density, defined 
as the number of dots divided by the total plot area, of those dot 
plots between each query in ST1 and the top 10 selected videos is, 
on average, 32.93%. The density ranges from 1.33% to 89.12%. 
Recall that fast matching is performed by first identifying 
diagonals on the dot plot, removing short diagonals, computing a 
score for each of the remaining diagonals, selecting those with top 
10 highest scores, and finally linking them into longer diagonals. 
We conduct frame comparisons only if a pair is located on a 
sufficiently long diagonal. In this step, the threshold of the 
diagonal length for filtration is an important parameter for 
adjusting the tradeoff between accuracy and speed. A larger 
threshold reduces the number frame comparisons but increases the 
risk of missing segments that are true copies. Figure 6 shows the 
number of frame pairs that need to be compared versus the 
threshold of the diagonal length for ST1. Based on these results, 
we selected 1/16 of the query length for our experiment—it did 
not cause any detection rate drop and the comparison count is 
reduced by approximately 85%. 
For ST2, since each copy only represents a small portion (3.5%-
12.6%) of the query, the pyramid matching score would not be a 
good metric for measuring of the relevance between the query and 
the reference videos. Therefore, for this task we do not filter any 



video and Step 1 is solely used for creating dot plots. Furthermore, 
we set an absolute threshold (15) of the diagonal length in our 
experiments. Figure 7 shows an example of the alignment, where 
white pixels denote original dots, red pixels denote diagonals with 
a length longer than the threshold, and green pixels denote the 
alignment found. 
Table 2 summarizes the total runtime in seconds, which is based 
on non-optimized MATLAB codes running on a machine with a 
2.4 GHz P4 CPU and 768 MB of RAM. Our method, with a 
runtime of about 1/4-1/8 of the query length, is a viable solution 
to applications that require real-time processing. 

 
Figure 6. The diagonal length threshold vs. the performance: 
(a) number of frame pairs needed for comparison, which will 
be proportional to the speed, (b) ST1 score. 

 
Figure 7. An example of local alignment in ST2. 

 

Table 2. Total runtime (in seconds). 

Task Query length Sequence 
matching 

Ours Speedup 

ST1 11,232 26,307.63 1,394.61 18.86x 

ST2 2,690 10,492.33 570.09 18.40x 

 

4.4 Fast Shape Retrieval 
The proposed fast matching method for efficient video copy 
detection can actually be applied to several other visual retrieval 
tasks. In this subsection, we demonstrate experimental results for 
its application to fast shape retrieval. 

Shape matching techniques can be used as a basis for object 
category recognition or for hand-written text recognition [2]. In 
many state-of-the-art shape matching approaches, a contour 

image is described as a sequence of local descriptors gathered 
from the contour and the similarity between two sequences is 
measured by edit-distance-based metrics. These approaches are 
effective, but are difficult to apply for large-scale applications 
since they are computationally expensive. 

Those approaches can be significantly accelerated using the 
proposed framework. We conducted experiments on the MPEG-7 
shape database, namely the Core Experiment CE-Shape-1 part B, 
which measures the performance of similarity-based shape 
retrieval. The database consists of 1,400 shapes in 70 categories, 
each of which consists of 20 shapes. We followed the same setup 
used in [21] for our experiments. For each shape image, we 
uniformly sampled 100 points from the contour of each shape. 
Each point is described by the shape context descriptor [2]—a 60-
dimensional feature vector—, which encodes the relative 
coordinates of remaining points using the log-polar space. To 
compare two shape images, a variant of the edit distance was used 
to search for optimal alignment and to derive a similarity score. 

Before applying the acceleration technique, this process took 
95.95 hours to complete. The search requires 3.92 × 1010 
descriptor-pair comparisons. Our method first indexed all the 
shape context descriptors, resulting in a tree of 4,097 nodes and 5 
levels. Since one shape is a global copy of others belonging to the 
same class, their similarities—which are based on the pyramid 
matching kernel—are very accurate. We selected the top 140 
(1/10) candidate shapes in the first step and further examined 
them in the second step. The total processing time after the 
application of our acceleration technique is 6.23 hours—a 15.4X 
speed-up in comparison to the original sequence matching 
techniques and the same level of retrieval accuracy is achieved.  

5. CONCLUSIONS 
The edit distance is a powerful metric for measuring the 
dissimilarity between two video sequences and its variants can be 
used to effectively and efficiently identify video segments that are 
locally aligned. In this paper we formulate the video copy 
detection problem as a local alignment problem between video 
sequences. We propose a two-step method to speed up the edit-
distance-based approaches which address the formulated problem. 
Results on the MUSCLE VCD benchmark and the MPEG-7 shape 
dataset demonstrate significant computational improvement 
without sacrificing accuracy. 

One direction of our future research is to design a more effective 
feature descriptor. Frame representation is very crucial to the 
detection performance. Although we showed that a semi-global 
descriptor provides promising discriminative power, there is still 
room for improvement in comparison with those representations 
based on local features [15]. Since our method decomposes the 
representation and the indexing/matching process, any frame-
based representation could be easily incorporated into our 
framework. Another direction is to explore multiple sequence 
alignment techniques to find essential content within multiple 
relevant video streams. This could be a useful tool for creating a 
summary from huge volumes of near-duplicate videos on video 
sharing websites.  
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