
Video Copy Detection by Fast Sequence Matching

Mei-Chen Yeh
Dept. of Electrical and Computer Engineering

University of California, Santa Barbara
Santa Barbara, CA 93106, USA

1-805-893-4852

meichen@umail.ucsb.edu

Kwang-Ting Cheng
Dept. of Electrical and Computer Engineering

University of California, Santa Barbara
Santa Barbara, CA 93106, USA

1-805-893-4852

timcheng@ece.ucsb.edu

ABSTRACT
Sequence matching techniques are effective for comparing two
videos. However, existing approaches suffer from demanding
computational costs and thus are not scalable for large-scale
applications. In this paper we view video copy detection as a local
alignment problem between two frame sequences and propose a
two-level filtration approach which achieves significant
acceleration to the matching process. First, we propose to use an
adaptive vocabulary tree to index all frame descriptors extracted
from the video database. In this step, each video is treated as a
“bag of frames.” Such an indexing structure not only provides a
rich vocabulary for representing videos, but also enables efficient
computation of a pyramid matching kernel between videos. This
vocabulary tree filters those videos that are dissimilar to the query
based on their histogram pyramid representations. Second, we
propose a fast edit-distance-based sequence matching method that
avoids unnecessary comparisons between dissimilar frame pairs.
This step reduces the quadratic runtime to a linear time with
respect to the lengths of the sequences under comparison.
Experiments on the MUSCLE VCD benchmark demonstrate that
our approach is effective and efficient. It is 18X faster than the
original sequence matching algorithms. This technique can be
applied to several other visual retrieval tasks including shape
retrieval. We demonstrate that the proposed method can also
achieve a significant speedup for the shape retrieval task on the
MPEG-7 shape dataset.

Categories and Subject Descriptors
H.3.3 [Information Storage and Retrieval]: Information Search
and Retrieval – information filtering, search process. I.4.9
[Computing Methodologies]: Image Processing and Computer
Vision – Applications.

General Terms
Algorithms.

Keywords
Video copy detection, local alignment, similarity measure,
vocabulary tree.

1. INTRODUCTION
With digital video content production and distribution continuing
to grow, content-based copy detection (CBCD) has been actively
studied for a wide range of applications that include searching [8,
20], multimedia linking [4, 23], and protecting copyrighted
content [5, 6, 7, 10, 11, 15, 16]. Based on content alone, CBCD
attempts to identify segments in a query video that are copies
from a reference video database. A copy is not an exact duplicate
but, in general, either a transformed or a modified version of the
original document that remains recognizable [6]. Transformations
to digital content such as cropping and inserting logos are
frequently performed and the resulting near-duplicates could be
different from the source in terms of not only formats, but also
content [20].

Many existing approaches cast the task of CBCD into a traditional
content-based key-frame retrieval framework [5, 11] since both
tasks follow the query-by-example paradigm [6]. However,
CBCD aims at identifying video copies instead of similar
individual frames. For example, two videos of the same scene
may be considered similar; however, they are not necessarily
copies of each other (based on the definition described above).
Thus, methods that solely rely on frame-level similarities can
suffer from high false positive rates [7].

Since a video can be naturally represented as a sequence of
frames, temporal constraints have been employed in the design of
metrics that compare the similarities between two videos [1, 3, 8,
24]. More specifically, videos are represented as strings of
symbols and the edit distance between two symbol strings—
defined as the minimal cost of any insertions, deletions, and
substitutions of symbols needed to make two strings equal—is
used for measuring video similarity. Video matching methods
based on such a metric have a number of merits. First, the ground
distance used to compare frame descriptors can be seamlessly
integrated into the distance measurement. Second, the temporal
order is preserved during matching. Moreover, two similar videos
that differ either in length, or in terms of other factors such as
differences in subsequences caused by incorrect key frame
detection, are likely to obtain a high similarity score based on

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, to republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
CIVR’09, July 8-10, 2009 Santorini, GR
Copyright © 2009 ACM 978-1-60558-480-5/09/07... $5.00

such a metric. Recent studies have shown some successes in the
use of the edit distance in the context of video clip retrieval [3].

However, two major problems hinder the use of the edit distance
in real-world CBCD applications. One video could consist of one
or several segments copied from different videos and, thus, copies
may appear locally. For example, one common editing effect
found on pirated web videos is to insert irrelevant frames at the
beginning and the end of an original video. Another example is
detecting commercials in a TV show. The query content, i.e. the
commercials, might appear several times in the show. For either
case, only a small portion of the query or the reference video is a
copy. The second issue is the computational cost of computing the
edit distance. Spurred on by the popularity of large video
distribution web sites such as YouTube.com, a practical CBCD
method must be highly efficient and scalable.

In this paper, we address both problems and propose an edit-
distance-based approach that has the potential for large-scale
CBCD applications. We first formulate a local alignment problem
between two sequences and extend previous edit-distance-based
approaches to compare video segments of all possible lengths.
The main contribution of this work is the highly efficient
matching process between a query video and a video database
which is achieved by a fast local alignment method along with a
dedicated index structure that provides detection acceleration at
both the clip and frame levels. This method decomposes the
design of the representation and matching, thus any frame-based
representation could be easily incorporated into our framework.
We demonstrate the effectiveness and efficiency of this method
using the MUSCLE VCD benchmark [9]. We additionally suggest
an application of the proposed method for fast shape retrieval.

In the remainder of the paper, we first provide background for the
edit-distance-based approaches and present our implementation of
various video signature and matching approaches. Section 3
describes our proposed method for efficient detection. Section 4
describes the experimental results for video copy detection. We
also show results for fast shape retrieval using the same
framework. Finally, we conclude the paper with a summary of our
contributions and propose ideas for future research based on these
concepts.

2. BACKGROUND
The process of pair-wise comparison of two videos is a
fundamental task for determining whether one video contains
sequences that are copies of sequences in the other. We start by
describing the particular use of the edit distance for matching two
videos. Approaches of this type differ from each other mostly in
their sequence representation and their assignment of operation
costs. In the following, we discuss the design options and our
implementation.

2.1 Representation
2.1.1 Frame Sampling
For edit-distance-based approaches, the first step is to partition a
video into a sequence of frames. To avoid unnecessary and
duplicate comparisons for all frames, two sampling strategies are
commonly used. First, a video is viewed as a list of shots
represented by keyframes. This mapping of video to keyframes
reduces the number of frames that needs to be analyzed by a

factor of 100 to 5000, depending on the video content [20].
Although methods for detecting keyframes are, in general, quite
robust for videos with the same format, different keyframe
sequences might be generated when these techniques are applied
to near-duplicate videos [20].

The second strategy is to sample frames at a fixed rate. This
approach is simpler compared to automatic keyframe detection. In
our experiments, we sampled one frame per second. Note that a
sampled video sequence could still be long: a two-hour film, for
example, has 7200 sampled frames.

2.1.2 Frame Description
In the second step, content in a frame is summarized by feature
descriptors. Global statistics, such as color histograms, have been
well developed and used successfully for content-based image
retrieval. Bertini et al. proposed to use MPEG-7 descriptors—
specifically the color layout, the edge histogram, and the scalable
color descriptors—for effective video-clip matching [3]. Chum et
al. showed that a color histogram, combined with a spatial
pyramid placed over an image, could serve as a compact and
discriminative descriptor for near identical image and shot
detection [5].

Alternatively, local statistics, such as interest points with PCA-
SIFT, have been applied in [5, 7, 17, 23]. This type of description
is somewhat invariant, thus is highly robust, to image
transformations such as occlusions and cropping. However, since
one image can have hundreds to thousands of local features,
matching between descriptors is computationally expensive.
Although fast indexing structures (e.g. LSH) could help filter
unnecessary comparisons among dissimilar features, matching
based on local descriptors is still costly. Moreover, as indicated in
[10], interest point detection alone is one of the computational
bottlenecks in these methods. For videos, performing interest
point detection on every extracted frame of a query video is
simply infeasible due to the unacceptably high computational cost.

In general, global features are efficient to compute, compact in
storage, but insufficiently accurate in terms of retrieval quality.
Local features are more robust but computationally more complex
and require more storage. A good tradeoff might be derived by
the use of a semi-global descriptor. In this work, we extended the
Markov stationary feature (MSF), which was proposed in [12] and
has been shown to be effective for the task of TRECVID video
concept detection. The MSF extends the histogram-based features
by characterizing the spatial co-occurrence of histogram patterns
using the Markov chain models. It therefore encodes spatial
structure information both within and between histogram bins.
We implemented the MSF-Color feature—the MSF extension of
color histograms—in our experiments. To further enhance the
feature by incorporating local information, we partition a frame
into four regions, each of which is described using the MSF-Color
feature. We quantized the HSV color space into 36 bins, resulting
in a 288-dimensional (4 regions, 36 bins, 2 distributions) compact
feature vector for each frame. Figure 1 summarizes the feature
extraction process. Although the frame descriptor is based on
appearance alone, the temporal aspects of a video are implicitly
considered using the edit distance, which will be discussed in the
next subsection.

Figure 1. Extended MSF features. The left side shows the
spatial division of a frame and the right side is the derived
feature descriptor.

2.2 Matching Two Sequences
Motivated by the approximate string matching techniques, the use
of edit distance in the context of video matching was first
proposed in [1]. Given two strings X = [x1, x2, …, xm] and Y = [y1,
y2, …, yn], over an alphabet ∑, and a set of operations (e.g.
insertion, deletion, and substitution), the edit distance between X
and Y is the minimal cost of applying a sequence of operations
that transforms X into Y.

To use the edit distance for comparing two frame sequences, early
studies suggested a quantization step that maps frames into
symbols [1, 8]. For such cases, all operations have equal costs.
The edit distance is then calculated as the number of operations
needed to make two sequences of symbols equal. In [8], a
heuristic method was proposed to determine the best step-size for
quantization. However, the quantization process has potential
drawbacks. It is not clear, for example, how one should choose
the number of symbols for generic videos. Bertini et al. avoided
this quantization step and proposed relying directly on the ground
distance for comparing two frame descriptors to determine the
operation costs [3].

The edit distance is flexible and can be easily adapted to
applications by assigning different operation costs. For example,
the longest common subsequence (LCS) matching technique used
for measuring the similarity between video clips in [8] is a special
case of using the edit distance for sequence matching. This
technique allows insertion and deletion operations only, each of
which incurs a unit cost. However, for some tasks such as
identifying the appearance of a summarized video in a long
sequence, deletions should be considered less expensive than
insertions. The cost functions therefore need to be modified for
such tasks.

Another view of the edit distance is that it measures how two
sequences are globally aligned. By global we mean two
sequences are aligned across their entire lengths. However, in
many CBCD applications, the query sequence might not be a
single video clip, but the concatenation of a collection of clips.
Therefore, we often are more interested in finding the most
similar subsequences within two sequences that are aligned pair-
wise in the subsequence-level rather than finding the best
alignment for the entire length of two sequences. Local alignment
methods can return more than one match for subsequences among

the two sequences under comparison because there may exist
multiple-to-one, one-to-multiple, or multiple-to-multiple matches
of subsequences. Therefore, for general CBCD applications, a
metric based on local alignment is desirable.

3. FAST VIDEO COPY DETECTION
We extend the edit distance for the purpose of finding local
alignments between two video sequences. We further propose a
two-step method for accelerating the task.

3.1 Local Alignment
We extend the edit distance in two aspects to find the optimal
local similarity. First, we derive a score v(xi, yj) between two
frame descriptors xi and yj based on their distance under the
principle that v(xi, yj) would be positive if xi and yj are similar, and
negative otherwise. The value v(xi, yj) can then be treated as the
substitution “score.” Moreover, we assign negative scores to
insertions, denoted as v(xi, ε), and deletions denoted as v(ε, yi).
Then, the optimal local alignment can be computed by dynamic
programming that is very similar to the edit distance computation:

)}.,()1,1(

),,()1,(
),,(),1(

,0max{),(

ji

j

i

yxvjiS

yvjiS
xvjiS

jiS

+−−

+−
+−

=

ε
ε

 (1)

This is known as the Smith-Waterman algorithm [18]. The
computational complexity is O(mn) and the storage is O(min(m,
n)), where m and n are the lengths of the sequences under
comparison. The local alignment is obtained by searching for the
maximal score in the dynamic programming graph, and by tracing
back the optimal path until a score of zero is retrieved. We use a
simple linear model v(xi, yj) = c - d(xi, yj) to derive the
substitution score, where c is a constant and d(xi, yj) is the χ2
statistics between two normalized MSF-Color feature descriptors.

3.2 Acceleration
Filtration is a widely used technique for speeding up object
detection or information retrieval tasks. For example, the popular
face detection algorithm proposed by Viola and Jones [19] applies
a cascade classifier structure that can quickly reject non-face
regions so more computational resources can be reserved for
examining more promising face-like regions. In information
retrieval, the database is indexed so that when searching for
similar instances for a query, only a small fraction of the dataset
in the database needs to be examined. In this work, we apply
filtration at two levels: 1) selecting candidate videos in the
database, and 2) selecting good starting points for aligning two
sequences.

3.2.1 Indexing Structure
We propose to use a vocabulary tree [13] for indexing all the
frames extracted from the video database. The vocabulary tree
was initially proposed for efficient image retrieval. In this work,
each of the frame descriptors is hierarchically quantized in the
vocabulary tree by hierarchical k-means clustering. Here, k
defines the branch factor of the tree rather than the final number
of clusters. The vocabulary tree allows a large and more

discriminative vocabulary to be used efficiently. It was shown
experimentally in [13] that this indexing structure leads to a
dramatic improvement in retrieval quality. Similar to the
implementation in [13], we keep an inverted file associated with
each leaf node—a representative frame (visual word)—in the
vocabulary tree. However, we record not only the videos that
contain frames of that word, but also those frame IDs. Intuitively,
videos that have frames similar to the query should potentially be
copies. Moreover, those similar frame pairs are candidate starting
points for an alignment.
To improve the vocabulary tree for those tasks where videos can
be added or removed from an active set over time, we
implemented the adaptive vocabulary tree [22]. As its name
implies, it adapts as instances are added to or removed from the
database. One merit of the adaptive vocabulary tree is that we do
not need to re-build the tree when the database slightly changes.
In other words, an adaptive tree can be built incrementally.
Moreover, the tree grows based on a measure that encourages
splitting those nodes that become too ambiguous and pruning
nodes that are not active for the current set of tasks. Thus, the
distribution of descriptors decides the structure of the tree, which
is also an important factor in determining the vocabulary’s quality.
Finally, the retrieval performance is less sensitive to the
parameters—the number of branches and the capacity of a node—,
as shown in [22]. As shown in Fig. 2, this indexing structure
enables the retrieval time to grow sub-linearly with respect to the
number of videos in the database.

Figure 2. The levels of an adaptive vocabulary tree grow sub-
linearly in terms of frame numbers in the database.

3.2.2 Fast Matching
The second opportunity for acceleration is to filter unnecessary
alignments that would not possibly lead to successful matching.
Suppose two sequences are unrelated; then, the best local
alignment is no better than no alignment! Therefore, we can
formulate an easier problem from the start: given two sequences,
find those alignments that have a similarity exceeding a given
threshold.
Inspired by FASTA [14], a fast algorithm used in bioinformatics
for finding similar DNA and protein sequences, we first create a
visual method called a dot plot. A dot plot puts a dot at (i, j) in an
m by n matrix if the similarity between descriptor i and descriptor
j exceeds a specific threshold. Figure 3 shows an example of the
dot plot. This plot can be easily constructed by using those
inverted files built in the previous step. Note that the dot plot is

sparse if two videos under comparison are either completely or
partially unrelated.
Figure 4 illustrates our search strategy, which consists of four
steps. First, we identify all diagonals in the dot plot. A diagonal,
shown as a diagonal line in Fig. 4 (a), represents consecutive
matched frames of two video sequences. Next, those diagonals
whose length is shorter than a pre-set threshold are discarded.
That is, we filter out those single-frame matches and short aligned
segments. This is illustrated in Fig. 4 (b). We then calculate a
score, based on the ground distance between those frame
descriptors that are aligned, for each remaining segment. Those
segments with the top N highest scores are selected for further
examination (Fig. 4 (c)). Among the selected segments, we try to
join those that are close to each other in the dot plot with the goal
of extending the overall length of the alignment. In this step,
insertions and deletions are allowed, but there would be a penalty
applied for such operations when connecting neighboring
diagonals to form a longer segment. We obtain an approximate
final score for each linked, longer segment by accumulating the
scores of each of the connected diagonals minus those penalties
caused by gaps between the diagonals. We return local alignments
whose final scores exceed a threshold. The returned segments that
consist of connected diagonals are illustrated in the gray areas in
Fig. 4 (d). If the precise score for a linked segment is required, the
Smith-Waterman algorithm can be applied. But due to its high
computational complexity, it can only be applied to a much more
restricted area.
The Smith-Waterman algorithm compares each frame of the
query to every frame in the video database. Suppose the length of
a query is m, and the size of the database (i.e. the number of
frames) is N. The time complexity of the query would be O(mN).
In our fast method, we first construct dot plots by retrieving the
corresponding visual word and its video and frame IDs for each
query frame. This step takes O(mL) using the vocabulary tree,
where L is the depth of the tree. The complexity of deriving the
local alignment from the dot plot depends on the number of dots
in the plot. Suppose the size of the dot plot is m by n and it
consists of r dots. Identifying diagonals requires a linear time
O(m+n), and the remaining processes for examining diagonals
would take O(r), overall. Since, in practice, dots are distributed
sparsely and most dots can be eliminated in the initial filtration
process, the overall runtime is generally linear, rather than
quadratic, with respect to the sequence lengths.

Figure 3. An example of the dot plot. Two sequences are
locally aligned where the diagonals in the boxes indicate the
region of alignment. See text for details.

Figure 4. The search strategy: (a) determining diagonals, (b)
eliminating short diagonals, (c) selecting the top N diagonals
with the highest scores, and (d) linking diagonals and
calculating the final score for each connected diagonal.

4. EXPERIMENTS
4.1 Dataset
We conducted experiments using the MUSCLE VCD benchmark
[9]. This publicly available benchmark provides ground truth data
for evaluating a system’s detection accuracy based on two tasks:
finding copies (ST1) and finding extracts (ST2). The first task
evaluates a system’s ability to find copies of whole videos in the
database. This corresponds to the global alignment problem
addressed in our framework. The second task is to detect regions
of copies in the query, which is a local alignment problem. Both
tasks are challenging because the transformations applied to this
benchmark were very diverse.

This database consists of 101 videos with a total length of 80
hours. These videos come from different sources—web video
clips, TV archives, movies—and cover various program types
including documentaries, movies, sporting events, TV shows, and
cartoons. Also, the videos in this dataset have different bit-rates,
resolutions, and video formats.

4.2 Detection Results
We first show the performance of our recipe that uses the MSF-
Color descriptor and the sequence matching method. Table 1
summarizes the results. Although the MSF-Color descriptor is a
global feature 1 , combining it with the sequence matching
techniques surprisingly achieves good performance in comparison
with other methods. Figure 5 shows two videos that failed in the
ST1 task. It is apparent that the colors are changed substantially
from the reference videos, and the magnitude of the change is
greater than the range that the feature can cover. Poullot et al. has
recently proposed a frame-level bag-of-features like description,
and reported a score of 0.93 and 0.86 respectively for the same
tasks [15]. It would be interesting to incorporate this feature into
our framework in future experiments.

Table 1: Accuracy on the MUSCLE VCD benchmark

Method ST1 score ST2 segment score

CIVR07 Teams 0.46 ~ 0.86 0.17 ~ 0.86

Ours (MSF-Color+Edit) 0.86 0.76

1 We have tried other global features, including MPEG-7

descriptors and the ordinary features. However, none of them
can achieve accuracy higher than 62% for this dataset.

Figure 5. Two query examples for which our method failed.
Left: queries, right: references.

4.3 Runtime Results
A sequence matching approach before applying any acceleration
technique compares all frames in the query to all frames in the
video database. For example, in ST1 there are 199,590 frames
extracted from 101 reference videos and 11,232 frames from 15
queries. The total number of frame-pairs for comparison is
approximately 2,246 million! In the first step of our proposed
approach, we employ a vocabulary tree to filter out those videos
which have just few frames similar to those in the query. Because
each query in ST1 is a whole video copy and its reference video
in the database was always among the ones with most matched
frames, we selected the top 10 matched videos in this step for
further examination. However, even though we filtered out 91
videos for each query, there are still more than 341 million frame-
pair computations remained.
The second step, as discussed in Section 3, uses the inverted files
associated with tree nodes to derive a dot plot between two
sequences. The dot plot is, in general, sparse. The density, defined
as the number of dots divided by the total plot area, of those dot
plots between each query in ST1 and the top 10 selected videos is,
on average, 32.93%. The density ranges from 1.33% to 89.12%.
Recall that fast matching is performed by first identifying
diagonals on the dot plot, removing short diagonals, computing a
score for each of the remaining diagonals, selecting those with top
10 highest scores, and finally linking them into longer diagonals.
We conduct frame comparisons only if a pair is located on a
sufficiently long diagonal. In this step, the threshold of the
diagonal length for filtration is an important parameter for
adjusting the tradeoff between accuracy and speed. A larger
threshold reduces the number frame comparisons but increases the
risk of missing segments that are true copies. Figure 6 shows the
number of frame pairs that need to be compared versus the
threshold of the diagonal length for ST1. Based on these results,
we selected 1/16 of the query length for our experiment—it did
not cause any detection rate drop and the comparison count is
reduced by approximately 85%.
For ST2, since each copy only represents a small portion (3.5%-
12.6%) of the query, the pyramid matching score would not be a
good metric for measuring of the relevance between the query and
the reference videos. Therefore, for this task we do not filter any

video and Step 1 is solely used for creating dot plots. Furthermore,
we set an absolute threshold (15) of the diagonal length in our
experiments. Figure 7 shows an example of the alignment, where
white pixels denote original dots, red pixels denote diagonals with
a length longer than the threshold, and green pixels denote the
alignment found.
Table 2 summarizes the total runtime in seconds, which is based
on non-optimized MATLAB codes running on a machine with a
2.4 GHz P4 CPU and 768 MB of RAM. Our method, with a
runtime of about 1/4-1/8 of the query length, is a viable solution
to applications that require real-time processing.

Figure 6. The diagonal length threshold vs. the performance:
(a) number of frame pairs needed for comparison, which will
be proportional to the speed, (b) ST1 score.

Figure 7. An example of local alignment in ST2.

Table 2. Total runtime (in seconds).

Task Query length Sequence
matching

Ours Speedup

ST1 11,232 26,307.63 1,394.61 18.86x

ST2 2,690 10,492.33 570.09 18.40x

4.4 Fast Shape Retrieval
The proposed fast matching method for efficient video copy
detection can actually be applied to several other visual retrieval
tasks. In this subsection, we demonstrate experimental results for
its application to fast shape retrieval.

Shape matching techniques can be used as a basis for object
category recognition or for hand-written text recognition [2]. In
many state-of-the-art shape matching approaches, a contour

image is described as a sequence of local descriptors gathered
from the contour and the similarity between two sequences is
measured by edit-distance-based metrics. These approaches are
effective, but are difficult to apply for large-scale applications
since they are computationally expensive.

Those approaches can be significantly accelerated using the
proposed framework. We conducted experiments on the MPEG-7
shape database, namely the Core Experiment CE-Shape-1 part B,
which measures the performance of similarity-based shape
retrieval. The database consists of 1,400 shapes in 70 categories,
each of which consists of 20 shapes. We followed the same setup
used in [21] for our experiments. For each shape image, we
uniformly sampled 100 points from the contour of each shape.
Each point is described by the shape context descriptor [2]—a 60-
dimensional feature vector—, which encodes the relative
coordinates of remaining points using the log-polar space. To
compare two shape images, a variant of the edit distance was used
to search for optimal alignment and to derive a similarity score.

Before applying the acceleration technique, this process took
95.95 hours to complete. The search requires 3.92 × 1010
descriptor-pair comparisons. Our method first indexed all the
shape context descriptors, resulting in a tree of 4,097 nodes and 5
levels. Since one shape is a global copy of others belonging to the
same class, their similarities—which are based on the pyramid
matching kernel—are very accurate. We selected the top 140
(1/10) candidate shapes in the first step and further examined
them in the second step. The total processing time after the
application of our acceleration technique is 6.23 hours—a 15.4X
speed-up in comparison to the original sequence matching
techniques and the same level of retrieval accuracy is achieved.

5. CONCLUSIONS
The edit distance is a powerful metric for measuring the
dissimilarity between two video sequences and its variants can be
used to effectively and efficiently identify video segments that are
locally aligned. In this paper we formulate the video copy
detection problem as a local alignment problem between video
sequences. We propose a two-step method to speed up the edit-
distance-based approaches which address the formulated problem.
Results on the MUSCLE VCD benchmark and the MPEG-7 shape
dataset demonstrate significant computational improvement
without sacrificing accuracy.

One direction of our future research is to design a more effective
feature descriptor. Frame representation is very crucial to the
detection performance. Although we showed that a semi-global
descriptor provides promising discriminative power, there is still
room for improvement in comparison with those representations
based on local features [15]. Since our method decomposes the
representation and the indexing/matching process, any frame-
based representation could be easily incorporated into our
framework. Another direction is to explore multiple sequence
alignment techniques to find essential content within multiple
relevant video streams. This could be a useful tool for creating a
summary from huge volumes of near-duplicate videos on video
sharing websites.

6. REFERENCES
[1] D. A. Adjeroh, M. -C. Lee, and I. King. A distance measure

for video sequence similarity matching. In Proceedings of
the International Workshop on Multi-Media Database
Management Systems, pages 72-79, 1998.

[2] S. Belongie, J. Malik, and J. Puzicha. Shape matching and
object recognition using shape contexts. IEEE Transactions
on Pattern Analysis and Machine Intelligence (PAMI’98),
24(4): 509-522, 2002.

[3] M. Bertini, A. D. Bimbo, and W. Nunziati. Video clip
matching using MPEG-7 descriptors and edit distance. In
Proceedings of the ACM International Conference on Image
and Video Retrieval (CIVR’07), pages 133-142, 2006.

[4] S. -C Cheung, and A. Zakhor. Fast similarity search and
clustering of video sequences on the world-wide-web. IEEE
Transactions on Multimedia, 7(3): 524-537, 2004.

[5] O. Chum, J. Philbin, M. Isard, and A. Zisserman. Scalable
near identical image and shot detection. In Proceedings of
the ACM International Conference on Image and Video
Retrieval (CIVR’07), pages 549-556, 2007.

[6] A. Joly, O. Buisson, and C. Frelicot. Content-based copy
retrieval using distortion-based probabilistic similarity search.
IEEE Transactions on Multimedia, 9(2): 293-306, 2007.

[7] Y. Ke, R. Sukthankar, and L. Houston. Efficient near-
duplicate detection and sub-image retrieval. In Proceedings
of the ACM International Conference on Multimedia
(MM’04), pages 1150-1157, 2004.

[8] Y. Kim, and T. -S. Chua. Retrieval of news video using
video sequence matching. In Proceedings of the
International Multimedia Modelling Conference (MMM’05),
pages 68-75, 2005.

[9] J. Law-To, A. Joly, and N. Boujemaa. Muscle-VCD-2007: a
live benchmark for video copy detection, 2007. http://www-
rocq.inria.fr/imedia/civr-bench/.

[10] J. Law-To, O. Buisson, V. Gouet-Brunet, and N. Boujemaa.
Robust voting algorithm based on labels of behavior for
video copy detection. In Proceedings of the ACM
International Conference on Multimedia (MM’06), pages
835-844, 2006.

[11] J. Law-To, L. Chen, A. Joly, I. Laptev, O. Buisson, V.
Gouet-Brunet, N. Boujemaa, and F. Stentiford. Video copy
detection: a comparative study. In Proceedings of the ACM
International Conference on Image and Video Retrieval
(CIVR’07), pages 371-378, 2007.

[12] J. Li, W. Wu, T. Wang, and Y. Zhang. One step beyond
histograms: Image representation using Markov stationary
features. In Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition (CVPR’08), pages
1-8, 2008.

[13] D. Nister, and H. Stewenius. Scalable recognition with a
vocabulary tree. In Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition (CVPR’06), pages
2161-2168, 2006.

[14] W. R. Pearson, and D. J. Lipman. Improved tools for
biological sequence comparison. In Proceedings of the

National Academy of Sciences of the United States of
America, 85(8):2444-2448, 1988.

[15] S. Poullot, M. Crucianu, and O. Buisson. Scalable mining of
large video databases using copy detection. In Proceedings
of the ACM International Conference on Multimedia
(MM’08), pages 61-70, 2008.

[16] S. Poullot, O. Buisson, and M. Crucianu. Z-grid-based
probabilistic retrieval for scaling up content-based copy
detection. In Proceedings of the ACM International
Conference on Image and Video Retrieval (CIVR’07), pages
348-355, 2007.

[17] J. Sivic, and A. Zisserman. Video Google: A text retrieval
approach to object matching in videos. In Proceedings of the
IEEE International Conference on Computer Vision
(ICCV’03), pages 1470-1477, 2003.

[18] T. F. Smith, and M. S. Waterman. Identification of common
molecular subsequences. Journal of Molecular Biology,
147(1): 195-197, 1981.

[19] P. Viola, and M. Jones. Robust real-time face detection.
International Journal of Computer Vision, 57(2), pages 137-
154, 2004.

[20] X. Wu, A. G. Hauptmann, and C. -W. Ngo. Practical
elimination of near-duplicates from web video search. In
Proceedings of the ACM International Conference on
Multimedia (MM’07), pages 218-227, 2007.

[21] M. Yeh, and K. -T. Cheng. A string matching for visual
retrieval and classification. In Proceedings of the ACM
International Conference on Multimedia Information
Retrieval (MIR’08), pages 52-58, 2008.

[22] T. Yeh, J. Lee, and T. Darrell. Adaptive vocabulary forests
for dynamic indexing and category learning. In Proceedings
of the IEEE International Conference on Computer Vision
(ICCV’07), pages 1-8, 2007.

[23] D. -Q. Zhang, and S. -F. Chang. Detecting image near-
duplicate by stochastic attributed relational graph matching
with learning. In Proceedings of the ACM International
Conference on Multimedia (MM’04), pages 877-884, 2004.

[24] J. Zhou, X. -P. Zhang. Automatic identification of digital
video based on shot-level sequence matching. In
Proceedings of the ACM International Conference on
Multimedia (MM’05), pages 515-518, 2005.

