
 
 

 

  

Abstract— Face annotation of photos, a key enabling 
technology for many exciting new applications, has been gaining 
broad interest. The task is different from the general face 
recognition problem because the dataset is not constrained—an 
unlabelled face may not have any corresponding match in the 
training set. Moreover, faces in real-life photos have a 
significantly wider variation range than those in the 
conventional face datasets. We designed and conducted a 
thorough experimental study to understand the efficacy of face 
recognition methods for annotating faces in real-world 
scenarios. The findings of this study should provide information 
for various design choices for a practical and high-accuracy face 
annotation system. 

I. INTRODUCTION 
N recent years, the number of consumer photos has 
increased rapidly with the wider availability of devices 

with cameras and the proliferation of free image storage web 
sites. People can readily share and browse pictures with 
negligible cost and effort. To organize the expanding volume 
of personal photo collections, automatic face annotation [1, 3, 
7, 8, 9, 14, 17, 19] can be used to label faces with names, 
which enables efficient photo searching. More recently, 
online face annotation systems have been commercially 
launched, such as Picasa Web Albums [27] and Riya [28]. 

Face annotation is generally considered a combined 
problem of face detection and face recognition. Given an 
input image, a face detector is first applied to locate face areas 
and each localized face is assigned a name based on the most 
similar identity in the training set. However, this 
formulation—the input of face recognition is the outcome 
from face detection—creates new, specific challenges for the 
traditional face recognition problem. First, names associated 
with a few training images initially provided by users are 
relatively limited. Thus, it’s necessary to mark some faces as 
unknown. These unknown faces might come from people 
whom we don’t know (e.g. pedestrians or strangers in pictures 
taken during vacation) or from known people whose image 
we have not yet labeled to train the system. Second, the 
localized face from the face detector could be a false positive 
(i.e. not a human face). Traditional face recognition methods 
always find the most similar face in the gallery set for every 
query face, which might result in an incorrect annotation 
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result, as shown in Fig. 1a.  
The goals of face annotation are two-fold: to achieve great 

accuracy in recognizing people of interest and to reject any 
unknowns as well as false positives. However, the task of 
recognizing faces among known people alone, especially in 
candid photos, remains highly challenging in spite of the vast 
amount of research conducted on this subject [25].  Numerous 
factors other than identity—such as lighting conditions, facial 
expressions, poses, and partial occlusions—, change the way 
a face appears in an image. Rejecting faces that do not appear 
in the training set is even more challenging. Unknown faces 
share features with known faces since both are images of 
faces. Moreover, they lack coherent patterns, thus making 
them difficult to characterize. Most existing face recognition 
methods learn discriminative information for differentiating 
among people who appear in the training set. Their ability to 
reject unknowns has not been thoroughly evaluated and 
remains an open question.  

In order to understand the efficacy of existing, substantially 
sophisticated methods for annotating faces in real-world 
scenarios and further identify the best combination of 
technologies for designing a practical annotation system, we 
conducted an experimental study that consists of three 
components. First, we conducted a comparative evaluation 
with combinations of several state-of-the-art face 
representation and recognition methods. We identified the use 
of local features combined with the Linear Discriminant 
Analysis (LDA)-based recognition method achieves 
promising recognition performance—93.83% accuracy on 
the traditional face recognition dataset FERET [16] and 
71.69% accuracy on the more challenging photo dataset LFW 
[8]. Second, we proposed a new measure for evaluating a 
method’s ability to reject unknowns. With this measure, we 
study the tradeoff between the rejection rate on unknown 
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Fig. 1. Example of face annotation. Left: the training set consists of three
people. Middle: each detected face is assigned a name based on the
training set. Right: preferred annotation. 



 
 

 

faces and the recognition rate drop on known faces, which 
should be carefully considered when designing a practical 
annotation system. Last but not least, we built a face dataset 
collected from family photo albums. It is more challenging 
than other real-world imagery because family members tend 
to look alike and these sets of photographs tend to consist of 
people from the same racial background. With this dataset, 
we are able to conduct cross-set evaluations by combing it 
with other life photo sets such as the news photos in [3, 8]. To 
the best of our knowledge, we are the first to examine 
methods’ abilities to reject unknown and non-face images. 

Note that the use of multiple modalities is effective for face 
annotation and there have been extensive studies that address 
this problem [3, 7, 9, 14, 17]. However, one of our target 
applications—labeling faces with names in consumer 
photos—does not necessarily contain additional text cues. As 
a result, we focused on methods that solely rely on visual 
information. It is important to understand the level of 
performance that can be achieved solely by using visual cues, 
but the performance can be improved whenever information 
from other modalities is available. 

In the rest of the paper, we start by describing the face 
representations and face recognition algorithms evaluated in 
this study. In Section 3 we present a method for measuring 
both recognition and rejection performances, followed by the 
description of datasets used in the evaluation. Finally, we 
demonstrate the comparative evaluations in Section 5 and 
conclude the paper.  

II. RECOGNITION METHODS 
Content-based face recognition generally consists of three 

steps—pre-processing, feature extraction and classification. 
In this section we briefly discuss methods examined in this 
study. 

A. Pre-processing 
The measured performance of face recognition methods 

can be significantly biased if non-facial areas (e.g. 
background, hair) are used [18]. Features extracted from 
those non-facial areas are not completely uncorrelated to the 
face, and may thus provide accidental, additional hints for 
recognition. For example, Shamir showed that the recognition 
accuracy could achieve 99% on the YaleB face dataset solely 
by using features from a small background area [18]. To 
minimize the use of such non-facial features, we extracted 
features from the tightly bounded face area, as shown in Fig. 
2b. 
Face representation is, in general, categorized into two 
classes—global and local [25, 26]. Global features, such as 
pixel intensities, are extracted from the whole face area. Local 
features, on the other hand, are concatenated features 
extracted from several local facial parts. Fig. 2 shows our 
flow for deriving local regions. First, we employed a face 
detector [21] to obtain the exact face rectangle. Following this 
step we used Active Appearance Models [13] to find 

coordinates of landmarks1 and determined five local regions 
on the face. The face area is then normalized and aligned 
based on those coordinates. 

B. Face Description 
Face description is as critical as face modeling for a 

successful recognition system. Extraction of face features 
must be automatic and efficient. Moreover, feature 
descriptors should be compact and discriminative. In this 
study we examined three methods: pixel intensities [2, 20], 
Gabor filters [10], and Scale Invariant Feature Transform 
(SIFT) [12]. In the following we describe details of our 
implementation. To derive a fixed-length descriptor from 
varying sizes of face images, we rescaled the face region (or 
the facial regions) to a fixed resolution. For Gabor filters, we 
used the integral Gabor-Haar transformation [10], which is 
essentially using Haar-like feature extraction on raw Gabor 
features. We implemented 2-D Gabor filters with 5 scales, 8 
orientations, and 5 Haar-like features, providing 200 face 
features for describing an area. SIFT features have recently 
been demonstrated effective for matching faces [19]. We 
applied SIFT on the center of each facial region, thus 
providing 640 features per face. Table I summarizes the 
feature descriptions and their dimensions. 

TABLE  I 
FEATURE DESCRIPTIONS AND THEIR DIMENSIONS 

 Global Local 
Pixel Intensities 3600 4240 
Gabor filters 200 1000 (200*5) 
SIFT N/A 640 (128*5) 

C. Feature Selection and Classification 
Face annotation applications require a recognition 

approach that can handle the small sample size problem (i.e. 
the data dimensionality is greater than the number of training 
samples) and the multi-category classification problem (i.e. 
the number of people of interest is greater than two) with 
efficient computation. It is also desirable to involve less 
parameter tuning for optimizing the recognition results. 
Moreover, it should offer the flexibility of adding additional 
training images, either for new or existing names. 
Considering those criteria, we examine template-based 
recognition approaches such as Principal Component 

 
1 Active Appearance Models do not necessarily give correct landmark 

coordinates. We do not use any hand-labeled ground truth data of landmarks 
in our experiments. All feature extraction processes are automatic. 

  (a)           (b)     (c)             (d) 
Fig. 2. Flow of extracting local regions: (a) input image; (b) detected
face area; (c) landmark coordinates; (d) local regions. 



 
 

 

Analysis (PCA) [20], several variants of Linear Discriminant 
Analysis (LDA) [5], and a Support Vector Machine (SVM) 
[4]. To overcome the small size problem in LDA, several 
methods have been proposed in the literature. In this study we 
implemented the Fisherface [2], Regularized LDA [6], 
Dual-Space LDA [22], and LDA/FKT [24] methods. The 
classification is accomplished by measuring the cosine 
similarity on the projection space. We also compare them 
with the Nearest Neighbor (NN) classifier to determine the 
amount of performance gain by applying these 
dimensionality reduction schemes. Table II summarizes the 
details of our implementations. 

TABLE II 
DESCRIPTIONS OF FEATURE SELECTION METHODS 

Method Description 
NN We used the cosine measure for comparing two vectors. 
PCA Also known as Eigenface [20]. We selected top 

eigenvectors that keep 95% of the eigen-energy. 
PCA+LDA Also known as Fisherface [2]. We first applied PCA to 

keep 95% eigen-energy, followed by LDA. 
Regularized 
LDA [6] 

We computed the generalized eigenvectors of 
(Sw+!I)-1Sb where we set ! = 0.05. 

DSLDA [22] We select C-1 eigenvectors from the principal, and the 
null space of Sw, respectively, where C is the number of 
people under recognition. 

LDA/FKT[24] 
or KFKT 

We used subspace 1 with a dimensionality of C-1. If this 
subspace did not fully exist, we used the kernel 
extension of this method [11]. 

SVM We used the implementation of LIBSVM [4] with linear 
kernel, and a pair-wise coupling scheme for 
multi-category classification. 

III.  MEASURE FOR REJECTING UNKNOWNS 
Many classifiers yield a set of scores between an unseen 

pattern and class models—numeric values that represent the 
likelihood of the unseen pattern belonging to a class. These 
scores can either be strict probabilities or some general, 
un-calibrated proximity values or distances. For example, 
NN-based face recognition approaches produce such scores 
by using a distance function in a (transformed) feature space. 
A natural solution for rejecting a pattern is to set a threshold 
on the maximum score or on a measure that combines these 
scores, such as the p-value, which quantifies the confidence 
of the classification decision. 

A face annotation system can be evaluated from the 
retrieval perspective if we care about how the system ranks 
those unlabelled faces, including known and unknown faces, 
given training faces from known persons. Precision and recall 
are two widely used measures for evaluating the quality of 
results [8, 9, 14, 19]. By introducing an unknown face dataset 
in the testing phase, we are ready to calculate the precision 
and recall by ranking images in both the testing set and the 
unknown set based on their scores to each identity model. 
However, these measures are sensitive to the amount of 
irrelevant data (the size of the unknown dataset), and may not 
directly relate to the primary recognition performance. 

Inspired by the signal detection theory, we propose to use a 
receiver operating characteristics (ROC)-like measure, as 
shown in Fig. 3, in which the recognition rate on known faces 

(plotted on the Y-axis), the rejection rate on unknown faces 
(plotted on the X-axis), and their tradeoffs can be 
simultaneously displayed. The origin (0, 0) in the figure 
implies a classifier rejects every pattern. On the other hand, a 
classifier that does not have the rejection option corresponds 
to the point with x = 1. The measure also depicts a classifier’s 
ability to rank the known faces (positive instances) relative to 
the unknown faces (negative instances).  

This measure has a few attractive properties. First, it is 
insensitive to class skew (e.g. changes in the proportion of 
known and unknown faces) or error costs. Face annotation 
applications may contain a wide range of class skews, and the 
ratio of known and unknown faces changes as users label 
more and more images. It is important that the measure used 
is invariant to such changes. Secondly, this measure provides 
a performance spectrum. For situations in which negative 
samples dominate, the performance area with a great rejection 
rate becomes more interesting. Third, it is easy to reduce this 
2-D depiction to a single scalar value for comparing 
classifiers. Common methods such as the area under the curve 
(AUC) and equal error rate (ERR) can be used to derive the 
value. 

IV. DATASET  
We conducted experiments on one standard database— 

FERET [16], and two photo datasets—news photos and 
consumer photos. As shown later in this paper, we observed a 
significant disparity between the results reported in research 
papers and those of real-world field tests. However, the use of 
FERET helps validate that our implementation achieves 
baseline performances. 

We followed the same setup in [23] and created the FERET 
subset. This dataset consists of 1000 images of 200 
individuals and each of them has five images. Fig. 4 shows a 
few sample images. It has variations in facial expression, 
illumination, and pose; however, we used a different method 
for cropping the face regions. In [23], each face region was 
cropped based on the labeled location of eyes and mouth, and 
contained hair and background. Instead, we cropped the 
photo using a much tighter face region (i.e., non-face areas 
are excluded), resulting in a more challenging dataset. 

The first photo dataset, referred to as Faces in the Wild, 
was collected by Berg et al. [3] from Yahoo! News photos 

Fig. 3. The recognition-rejection curve.



 
 

 

during a period of roughly two years. The original dataset has 
30,281 detected faces, grouped by their clustering algorithm 
into 14,808 clusters with 77% accuracy. After discarding 
clusters with less than 20 elements and merging those clusters 
corresponding to the same person, 126 clusters remain. We 
manually removed near-duplicate images and reduced the 
number of clusters to 74. This resulted in a dataset of 3,523 
images of 74 people, in which the number of images per 
person ranged from 13 to 699. Fig. 4 shows samples from this 
dataset. Our building process is very similar to that of the 
Labeled Faces in the Wild (LFW) dataset [8]. We did not use 
LFW because it is designed for studying the pair matching 
problem. However, we can use its protocol for face 
verification to demonstrate the performance of our best 
combination of methods, which is later shown in the 
experimental section. 

The second photo dataset, named the Family dataset, was 
collected from four family albums2. A few samples are shown 
in Fig. 4 (c). This dataset contains 1,158 images of 18 people. 
Although only 18 people are in this dataset, it is a challenging 
task to annotate these photos because family members tend to 
look alike. Besides, family albums often include images of a 
person collected over a long period of time (e.g. children 
progressing from infancy to teenage; adults aging over time, 
etc.) and tend to consist of people from the same racial 
background. Table III summarizes the datasets used in our 
study.  

 

 
Fig. 4. Sample images in (a) FERET, (b) Yahoo! News, and (c) Family 
datasets. 
 
 

TABLE III 
STATISTICS OF FACE DATASETS 

Name # {people} Size Description 
FERET 200 1,000 Standard dataset 
Yahoo! News 74 3,523 News photos 
Family Albums 18 1,158 Consumer photos 

V. EXPERIMENTS 

A.  Setup 
Practically speaking, a user typically provides only a small 

number of training samples initially. More and more training 
samples would become available over time. It is important to 
observe how the recognition accuracy changes with respect to 
 

2 http://lbmedia.ece.ucsb.edu/research/annotation/annotate.htm 

the number of training samples. The accuracy curve could 
provide the information needed for suggesting the number of 
required training samples for a specific target accuracy. In our 
experiment, we randomly select N training images for each 
identity. The value of N ranges from 2 to 10 for Yahoo! News 
and from 2 to 30 for Family Albums. The remaining images 
serve as the testing set. For each selection of N, we repeat 
sampling 10 times, and show the mean and the standard 
deviation of the average recognition accuracy across 
categories3. For the FERET dataset, as suggested in [23], we 
used two images—frontal neutral and frontal smiling 
faces—for training, and the remaining three images for 
testing. 

B. Comparative Evaluation 
We first compare different combinations of face 

description and face modeling. In Section 2, we discussed 
five types of face descriptions: global/local pixels, 
global/local Gabor filters, SIFT, and several dimensionality 
reduction or classification methods: NN, PCA, LDA, and 
SVM. To illustrate the contribution of each component to the 
overall recognition performance, we also show the results for 
each component. 

The recognition accuracy rates across datasets are shown in 
Fig. 5. Rows are results for the dataset of FERET, Yahoo! 
News, and Family Albums. The first column illustrates the 
comparison of descriptions. We applied the NN classifier to 
report the recognition accuracy rates. The comparison of 
feature selection methods is shown in the second column. In 
these experiments we used the SIFT features. The last column 
demonstrates the accuracy rates using all 35 combinations of 
descriptions and methods evaluated in this study given 10 
training images per person. In Fig. 5c, the hole in this graph is 
caused by the fact that accuracy rates using PCA+LDA with 
certain descriptions are unavailable since the feature 
dimension in the transformed space after PCA is less than that 
required by LDA. 

We first observe a significant disparity between FERET 
and the photo datasets. Given two training images per person, 
the combination of local Gabor filters and DSLDA can 
recognize 200 people in FERET with 93.83% accuracy; 
however, the recognition rates drop to 40.89% and 46.39% 
when the other datasets are used. This result suggests that the 
performance reported using standard face datasets tends to be 
too optimistic for our target applications. We observe a 
dramatic performance drop (half the accuracy rate) when 
real-life photos are used. 

Local features outperform global features in all datasets, 
and among these local features, local Gabor and SIFT 
features perform the best. Considering Fig. 5(a), (d) and (g), 
those features extracted from automatically detected facial 
parts perform better than those extracted from the whole 
face—regardless of which descriptions are used. The large 

 
3 Since each category contains different number of testing images, the 

overall performance may be biased to those categories with more images 
without normalizing accuracies across categories. 



 
 

 

performance gain (18.5% in FERET, 14.96% to 24.12% in 
Yahoo! News, 11.57% to17.47% in Family Albums) is 
apparent especially when using the Gabor features.  Among 
local features, local Gabor features seem to be the best; 
however, SIFT’s ability is obscured in the FERET 
experiments. The performance gain of local Gabor features 
versus SIFT is reduced from 21.83% for the FERET dataset to 
less than 5% for the photo datasets. As we will show, the use 
of SIFT features and KFKT gives the best performance for 
both the Yahoo! News and Family Albums sets. This result 
suggests that SIFT is a good feature for describing faces in 
photos. It might also reflect the fact that SIFT was originally 
designed for reliable matching between different views of 
3-D objects—thus, it is more robust to the variations common 
in photo collections. 

One interesting question rises following the discussion of 
local features: which facial part is most discriminative? 
Psychophysical studies indicate that human recognition 
identifies the eyes as being the best feature for recognizing 
faces, followed by the mouth, and then the nose [15]. 

However, previous work on machine vision ranks these parts 
differently. In [26], the authors argue that machines favor 
facial parts that contain the least noise. Thus, the nose is 
probably the best feature for distinguishing a person since it is 
less noisy than eyes and mouth as the shapes of noses are less 
likely to be distorted. Our study suggests a different 
result—the discriminative power of facial parts for machines 
depends upon the way we describe them. Table IV shows the 
recognition accuracy rates for FERET using each facial part 
alone with the KFKT method. The numbers shown in red 
indicate the ranking. We observed similar results regardless 
of which classifier is applied, and the same observation was 
made when the photo datasets were used. As shown in [26], 
Gabor features are discriminative for describing stable parts 
such as nose and the region between the eyes; however, noisy 
parts are more discriminative when SIFT  is used (compare 
among accuracy rates in the bottom column). This result 
suggests we may describe different parts by applying 
different descriptions to them. 

Fig. 5. Comparative evaluation of descriptions and methods on three datasets: FERET (a)-(c), Yahoo! News (d)-(f), and Family Albums (g)-(i). The first
column shows comparison between descriptions. The second column shows comparison between feature selection methods. The last column shows the
accuracy of all combinations. 

                                   (a)                                                       (b)                                                    (c)      

                                   (d)                                                       (e)                                                    (f)      

                                   (g)                                                       (h)                                                    (i)      



 
 

 

Fig. 5 (b), (e) and (h) show a feature selection method does 
improve the separation of features from different identities. 
The performance gain ranges from 11.7% to 24.14% 
depending on the number of training samples. In all 
experiments, LDA-based approaches achieve the best 
performance, followed by SVM, PCA and NN. It is not 
surprising that those discriminative learning approaches in 
which class labels are used in the training phase perform 
better than unsupervised approaches. Moreover, the 
LDA/FKT produces the best results since it truly maximizes 
the Fisher criterion [5], and the kernel extension of this 
method (KFKT) ensures the existence of such discriminative 
subspace where the Fisher criterion is equal to infinity. Fig. 5 
(h) shows encouraging results on the use of KFKT and 
SIFT—81.57% and 90.43% recognition rates, given 10 and 
24 training samples per person. 

The recognition accuracy rates using all combinations with 
10 training samples per person are shown in Fig. 5 (c), (f) and 
(i). For the FERET dataset, the best recognition rate, which is 
93.83%, is achieved by using local Gabor features and 
DSLDA. This result is better than the best result reported in 
[23], which was 81.2%.  Experiments on two photo datasets 
consistently suggest that the best result is achieved by using a 
combination of SIFT and KFKT. The accuracy rate is 74.42% 
for Yahoo! News dataset and 81.57% for the Family Albums 
dataset, both with a small accuracy variation (1.01% and 
0.98%). This combination also achieves great performance 
(near 60% improvement) using the face verification protocol 
and the LFW dataset. The estimated mean accuracy is 
71.69%±2.18%, while the baseline performance reported in 
[8] is 12.7% ±0.45%. 

As shown previously in this paper, local Gabor and SIFT 
features deliver comparable overall performance, but are 
inconsistent in ranking the different facial parts. If we 
concatenate both features, this fused descriptor boosts the 
accuracy rate to 76.86% for the Yahoo! News photos and to 
85.83% for the Family Albums dataset. 

TABLE IV 
PERFORMANCE OF FACIAL PARTS 

 Left eye Right eye Bet. eye Nose Mouth All 
Gabor 73.0% 

4 
74.8% 

3 
78.8% 

2 
82.8% 

1 
70.5% 

5 
91.2% 

SIFT 68.8% 
2 

69.3% 
1 

49.3% 
3 

37.3% 
4 

31.2% 
5 

73.8% 

C. Cross-set Evaluation for Rejecting Unknowns 
In this section, we investigate a method’s ability to reject 

unknown faces by using the recognition-rejection measure 
introduced in Section 3. In this experiment we require an 
unknown dataset in the testing phase to calculate the rejection 
rate. Since both the Yahoo! News and the Family Albums are 
constructed from candid photos and the people appearing in 
these two dataset are completely different, we conducted a 
cross-set evaluation that used one group as the known dataset 
for training the system, and the other as the unknown dataset 
for testing the rejection ability. 

The evaluation results are shown in Fig. 6. Each row shows 
three different charts using the same known and unknown 
face sets. Fig. 6 (a) and (d) demonstrate the 
recognition-rejection curves in one experiment given 10 
training samples per person. Again, we used SIFT for feature 
description. The figures show how the recognition rate varies 

Fig. 6. Evaluation including an unknown face dataset: (a)-(c) use Yahoo! News as known set and Family Albums as unknown set, and vice versa (d)-(f). The
first column shows the recognition-rejection curves. The second column shows recognition rates with various rejection rates. The last column shows the
rejection rates with different recognition rate drop. 

                                   (a)                                                       (b)                                                    (c)      

                                   (d)                                                       (e)                                                    (f)      



 
 

 

with different rejection rates for the unknowns. It is clear that 
the recognition rates increase while the rejection rates 
decrease, and are bounded by the case in which no rejections 
are allowed. Most papers in the literature report the end points 
of these curves, which provide no information on the false 
positive rate. In other words, we don’t know how a classifier 
performs when samples outside the training set are present. In 
fact, in the early stage of training, unlabelled faces are usually 
dominated by large numbers of negative instances. Thus, the 
performance in the far left-hand side of the curve becomes 
more interesting. 

In our target application, we need to compare the 
recognition rates at both zero and non-zero rejection rates. A 
good method’s recognition rate at a higher rejection rate 
should be as close as possible to that at the zero rejection rate. 
For example, in Fig. 6d the PCA+LDA, Regularized LDA, 
DSLDA, and SVM methods achieve similar recognition 
performance at the zero rejection rates. However, DSLDA is 
considered better than the other methods as, at a higher 
rejection rate, it achieves a higher recognition rate than others. 
Among these methods NN has the best shaped curve. That is, 
it declares positive classification only when strong evidence 
is present and makes few false positive errors. Indeed, most 
feature selection methods learn a discriminative space solely 
by looking at a strictly constrained training set, and, thus, they 
might not be general enough to differentiate the known and 
unknown faces. This result suggests the need to combine both 
the discrimination and the generalization ability—for 
example, the use of a training set as well as an unknown face 
dataset for discriminative learning might help enhance the 
generalization ability. 

We now select the KFKT method and show more 
performance details using its recognition-rejection curve. Fig. 
6 (b) and (e) demonstrate the average recognition accuracy 
rates with different rejection rates across a range of training 
samples. In both sets, the drop in the recognition rates is fairly 
small when the rejection rate is below 50%. Fig. 6 (c) and (f) 
show the rejection rates with the recognition rate drop ranging 
from 5% to 20%. However, the recognition rate drops 
significantly when a larger rejection rate (>50%) is required. 

The recognition-rejection measure can also be used to 
evaluate those methods that combine scores. It reflects the 
separability of score distributions between known and 
unknown faces. In the previously mentioned experiments we 
set a threshold on the highest score between an unseen pattern 

and the class models. An alternative method is to set the 
threshold on the ratio of scores (e.g. the ratio of the highest 
score to the second highest score). If there are multiple 
training images for one class, we must make sure the 
second-highest score is for a different class from the first. As 
explained in [12], using a score ratio makes more sense since 
correct matches need to have the score significantly greater 
than that of a “closest” incorrect match. Fig. 7 shows the AUC 
for three different scoring methods using the SIFT+KFKT 
method. The blue bar represents the AUC that directly uses 
the score for thresholding, while the other two use the score 
ratios, s1/s2 and 1-(s2/s1), where s1 and s2 are the highest and 
the second highest scores. These results indicate that for 
SIFT+KFKT, thresholding based only on the score would be 
a good choice as it achieves a greater AUC. 

VI. CONCLUSION 
In this paper we study the face annotation problem for 

real-life photos. It is different from the general face 
recognition problem because faces from photos contain a 
wider range of variations in appearance, and an unlabelled 
face may not have any matching face in the training set. We 
implemented, experimented, and analyzed the performance of 
several state-of-the-art face description and modeling 
methods. A few remarks can be drawn from this study: 1) the 
use of real-life datasets is important. We observe a significant 
disparity between performance using standard face datasets 
and photo datasets. Moreover, a method’s ability can be 
obscured if only standard datasets were used for evaluation; 
2) both face description and face modeling methods are 
crucial to achieving good recognition performance. Our study 
suggests  combining SIFT features and KFKT classification 
could provide a good baseline method for real-world testing; 
3) local facial parts have different discriminative power 
rankings depending upon the description used; and 4) a 
figure-of-merit is introduced which should be more suitable 
for studying the face annotation problem. We hope the 
experimental results derived from this study are beneficial for 
the design of a practical and high-accuracy face annotation 
system. 
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