

Adaptive Sample Selection Approach for Learning with Noisy Labels

Jing-Yong Wang and Mei-Chen Yeh

Department of Computer Science and Information Engineering National Taiwan Normal University

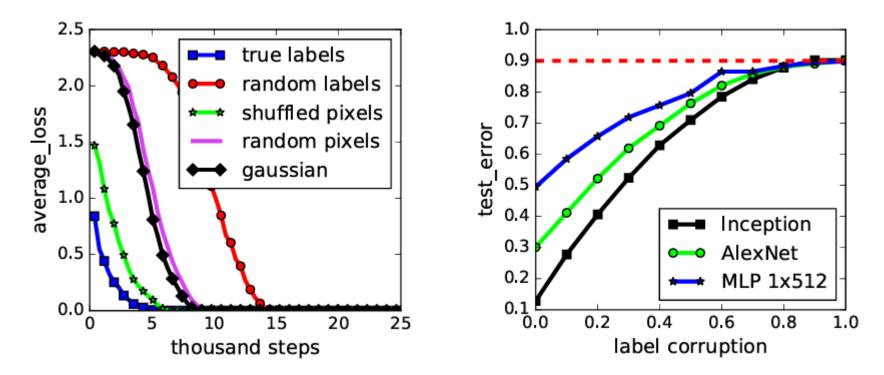
Learning with Noisy Labels

- Assumes the label information provided in the training dataset may not be entirely correct
- Why do we have noisy labels?

- Annotating a large amount of data
- Dealing with pseudo-labels in semi-supervised learning

Learning with Noisy Labels

• Learning from noisy data decreases model performance.



Chiyuan Zhang, Samy Bengio, Moritz Hardt, Benjamin Recht, Oriol Vinyals, "Understanding deep learning requires rethinking generalization," *ICLR* 2017.

Learning with Noisy Labels

- Current methods typically resort to segregating the training dataset into distinct *clean* and *noisy* subsets.
- Following this, semi-supervised learning approaches are applied, where clean samples are employed for supervised training, and noisy samples are utilized without corresponding ground-truth labels.

The quality is more important than the quantity!

Distinguishing clean and noisy samples is important!

Contributions

- We propose a *rigorous* and *adaptive* sample selection approach for selecting high-quality clean samples from the training set.
- We progressively extend the clean set by performing kNN classification on pre-filtered clean samples, maximizing the value of the clean set filtered in the previous stage.
- This approach can effectively handle data with varying noise levels, without requiring prior knowledge of the noise rate.
- We conduct extensive experiments on several datasets, and show comparable or even better performance than previous methods on these benchmarks.

Method



N. Karim et al., "Unicon: Combating label noise through uniform selection and contrastive learning," CVPR, 2022.

Adaptive Sample Selection

• Assumption: large disagreement between ground-truth labels and predicted probabilities implies a noisy or difficult sample!

$$\begin{split} d_i &= \mathrm{JSD}(\mathbf{y}_i, \mathbf{p}_i) \\ &= \frac{1}{2}\mathrm{KLD}(\mathbf{y}_i || \frac{\mathbf{y}_i + \mathbf{p}_i}{2}) + \frac{1}{2}\mathrm{KLD}(\mathbf{p}_i || \frac{\mathbf{y}_i + \mathbf{p}_i}{2}) \end{split}$$

 A sample is classified as clean only if it not only exhibits a small disagreement but also consistently maintains this small discrepancy in recent predictions.

$$\begin{array}{l} \text{Be refined with more training iterations}\\ d_i \leq d_{\mathrm{avg}},\\ s_i \leq s_{\mathrm{avg}} + s_{\mathrm{avg}} \times (1 - d_{\mathrm{avg}}) \times (1 - \frac{t}{T})\\ \text{Be conservative with a high noise rate} \end{array}$$

Adaptive Sample Selection

• A *k*-nearest neighbors search retrieves additional clean samples, leveraging the rigorously selected clean set from the previous stage.

 $k = \sqrt{|D_{\text{clean}}|} \times \alpha_k$

 However, if the kNN prediction of a clean sample contradicts the ground truth label, we evaluate further whether this sample should remain in the clean set.

$$s_i \ge \left(s_{\text{avg}} + s_{\text{avg}} \times (1 - d_{\text{avg}})\right) \times \left(1 - \frac{t}{T}\right)$$

More rigorous as the threshold is lower!

Algorithm 1 Adaptive Sample Selection

Input:

Training set $D = \{X, Y\};$

A scaling factor α_k ;

Output:

Clean sample subset D_{clean} ;

1: Initialize $D_{\text{clean}} \leftarrow \emptyset$;

2: for $x_i \in D$ do

3: Calculate d_i and s_i ;

4: if $d_i \leq d_{avg}$ and $s_i \leq s_{avg} + s_{avg} \times (1 - d_{avg}) \times (1 - \frac{t}{T})$ then

5:
$$D_{\text{clean}} \leftarrow x_i$$

6: end if

- 7: end for
- 8: Determine $k = \sqrt{|D_{\text{clean}}|} \times \alpha_k$;
- 9: for $x_i \in D$ do
- 10: Perform k-NN label classification using D_{clean}
- 11: if k-NN prediction equals ground-truth then

12:
$$D_{\text{clean}} \leftarrow D_{\text{clean}} \cup \{x_i\}$$

13: else

14: **if** $x_i \in D_{\text{clean}}$ **and** Equ. 5 holds **then** 15: $D_{\text{clean}} \leftarrow D_{\text{clean}} \setminus \{x_i\};$

17: end if

18: end for

- 19: Perform Uniform Selection;
- 20: return D_{clean} ;

Experimental settings

- Datasets
 - CIFAR-10 (50K images, 10 classes)
 - CIFAR-100 (50K images, 100 classes)
 - WebVision (66K images, 50 classes)
- Evaluation protocol
 - Symmetric noise rates: 20%, 50%, 80%, 90%
 - Asymmetric noise rates: 10%, 30%, 40%
 - Metric: Top-1 accuracy rate
- Implementation details

- Backbone: ResNet18 for CIFAR-10 and CIFAR-100, InceptionResNetV2 for WebVision
- Warm-up: 10 epochs for CIFAR-10, 30 epochs for CIFAR-100, 2 epochs for WebVision
- Batch size: 64 for CIFAR-10 and CIFAR-100, 32 for WebVision

symmetric noise

Method	CIFAR-10				CIFAR-100			
	20%	50%	80%	90%	20%	50%	80%	90%
DMix $[15]$ (ICLR'20)	96.1	94.6	92.9	76.0	77.3	74.6	60.2	31.5
ELR $[20]$ (NeurIPS'20)	95.8	94.8	93.3	78.7	77.6	73.6	60.8	33.4
JPL $[11]$ (CVPR'21)	93.5	90.2	35.7	23.4	70.9	67.7	17.8	12.8
MOIT $[22]$ (<i>CVPR</i> '21)	94.1	91.1	75.8	70.1	75.9	70.1	51.4	24.5
UNICON $[10]$ (<i>CVPR</i> '22)	96.0	95.6	93.9	90.8	78.9	77.6	63.9	44.8
Sel-CL+ $[17]$ (<i>CVPR</i> '22)	95.5	93.9	89.2	81.9	76.5	72.4	59.6	48.8
DISC $[19]$ (<i>CVPR</i> '23)	96.5	-	-	-	80.1	-	-	-
DivideMix+ $[27]$ (<i>ICCV</i> '23)	96.2	94.7	93.1	-	77.5	74.7	60.4	-
Ours	95.4	95.9	95.1	93.7	81.2	77.8	66.9	51.7

asymmetric noise

Method	C	FAR-	10	CIFAR-100			
	10%	30%	40%	10%	30%	40%	
DMix $[15]$ (ICLR'20)	93.8	92.5	91.7	71.6	69.5	55.1	
ELR $[20]$ (NeurIPS'20)	95.4	94.7	93.0	77.3	74.6	73.2	
JPL $[11]$ (CVPR'21)	94.2	92.5	90.7	72.0	68.1	59.5	
MOIT $[22]$ (<i>CVPR</i> '21)					75.1		
UNICON $[10]$ (<i>CVPR</i> '22)	95.3	94.8	<u>94.1</u>	78.2	75.6	74.8	
Sel-CL+ $[17]$ (<i>CVPR</i> '22)	95.6	94.5	93.4	78.7	76.4	74.2	
Ours	95.1	95.0	94.3	81.5	80.0	78.1	

real noise						
Method	Web	Vision	ILSVRC12			
	Top-1	Top-5	Top-1	Top-5		
DMix $[15]$ (ICLR'20)	77.32	91.64	75.20	90.84		
ELR $[20]$ (NeurIPS'20)	77.78	91.68	70.29	89.72		
MOIT $[22]$ (<i>CVPR</i> ² 1)	78.76	-	-	-		
UNICON $[10]$ (<i>CVPR</i> '22)	77.60	93.44	75.29	93.72		
DISC $[19]$ (<i>CVPR</i> '23)	80.28	92.28	77.44	92.28		
DivideMix+ $[27]$ (<i>ICCV</i> '23)	77.51	91.95	75.51	91.58		
Ours	80.40	92.72	75.80	92.68		

1600 Səld 1400 Number of selected clean sam 1200 1000 800 600 400 Ablation experiment 200 CIFAR-100 (sym) Consistency-based kNN 0 20% 50% 80% 90%selection automobile airplain bird 410⁸ horse 908 Skill يتري deer truct X 79.2 77.7 65.8 45.2 Х 77.9 75.7 66.3 45.9 True Positive (Ours) False Positive (Ours) 80.7 77.2 66.8 51.3 ■ True Positive (UNICON) ■ False Positive (UNICON) 81.2 77.8 66.9 51.7 35000 30000 25000 20000 15000

Number of selected clean samples 10000

5000

0

20%

Noise Rate

80%

90%

50%

Conclusion

- We present a sample selection method for learning with noisy labels
 - Considering the disagreement of model predictions and ground-truth, and the stability of model predictions
 - Handling data with varying noise levels
 - Expanding the clean sample set by a traditional machine learning method
- We will integrate the proposed method with advanced semisupervised or self-supervised learning techniques, which could lead to further improvements in learning with noisy labels.

Questions?

More Information:

https://web.ntnu.edu.tw/~myeh/