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Object Detection 

• Detects and locates objects of interest in an image



Semi-Supervised Object Detection 

• Utilizes labeled and unlabeled images to train the object detection model
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• Geoffrey Hinton, Oriol Vinyals, and Jeff Dean, “Distilling the knowledge in a neural
network,” arXiv:1503.02531v1, 2015.

• Kihyuk Sohn et al., “A simple semi-supervised learning framework for object
detection,” arXiv:2005.04757v2, 2020.



Motivations

• Pseudo-labels generated by the teacher model inevitably introduce
label noise. However, deep neural networks have shown the ability to 
effectively memorize arbitrary noisy labels during training.

• We need a new strategy to utilize unlabeled data.
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Motivations and Challenges

• Self-supervised learning diminishes the reliance on annotation.

• We incorporate this strategy to foster feature learning independent of 
(pseudo) labels in the context of semi-supervised object detection.

• Images are scene-centric, rather than object-centric.
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Contributions

• We present a contrastive learning approach to improve semi-
supervised object detection, performing consistency regularization 
not only by aligning the box predictions to pseudo boxes but also by 
considering feature-level representations.

• To address the challenge of object detection, the contrastive loss is 
computed at the box level, rather than on the entire image.
Furthermore, the loss computation is spatially aware.

• Through experiments, we demonstrate that contrastive learning on 
RoI features can enhance the model’s ability to gain additional 
information from unlabeled data.



Method
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RoI-Enhanced Contrastive Learning 
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RoI-Enhanced Contrastive Learning 
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Shaoqing Ren et al., “Faster r-cnn: Towards real-time object detection with region proposal networks,” Advances 

in Neural Information Processing Systems, 2015.



Dense Contrastive Learning
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Xinlong Wang et al., “Dense contrastive learning for self-supervised visual pre-training,” Proceedings of the 

IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2021.



Experimental Settings

• Dataset: COCO-Standard
• Training: 118,000 images (train2017)

• Test: 5,000 images (val2017)

• Evaluation protocol
• Labeled Images: 1%, 5%, 10% training set

• Metric: mAP

• Implementation details
• Backbone: Faster-RCNN with ResNet50-FPN

• Burn-in stage: 30k iterations

• Batch size: 16 (smaller than other works)



Experimental Result

Method 1% 5% 10%

Supervised 9.05 18.47 23.86

Unbiased Teacher 20.19 28.20 31.46

Ours 20.78 28.73 31.77

Y. -C. Liu et al., “Unbiased teacher for semi-supervised object detection,” arXiv:2102.09480, 2021.



Effect of RoI-Enhanced Contrastive Learning
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Conclusion

• We present a contrastive learning approach to enhance semi-
supervised object detection.

• Leveraging the candidate boxes selected by the Region Proposal Network 
(RPN) to facilitate RoI-based contrastive learning

• Incorporating pixel-level comparisons to enable spatial-aware loss calculation

• We will validate the proposed plug-and-play method on alternative
detection frameworks beyond Faster-RCNN.



2024/12/11 22

Questions?

More Information:

https://web.ntnu.edu.tw/~myeh/
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https://web.ntnu.edu.tw/~myeh/

