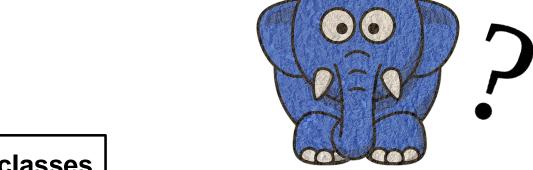


Generalized Zero-Shot Recognition through Image-Guided Semantic Classification

Fang Li and Mei-Chen Yeh



Dept. of Computer Science and Information Engineering National Taiwan Normal University

(Generalized) Zero-Shot Learning

Goal: Recognize objects whose instances may not have been

seen during training

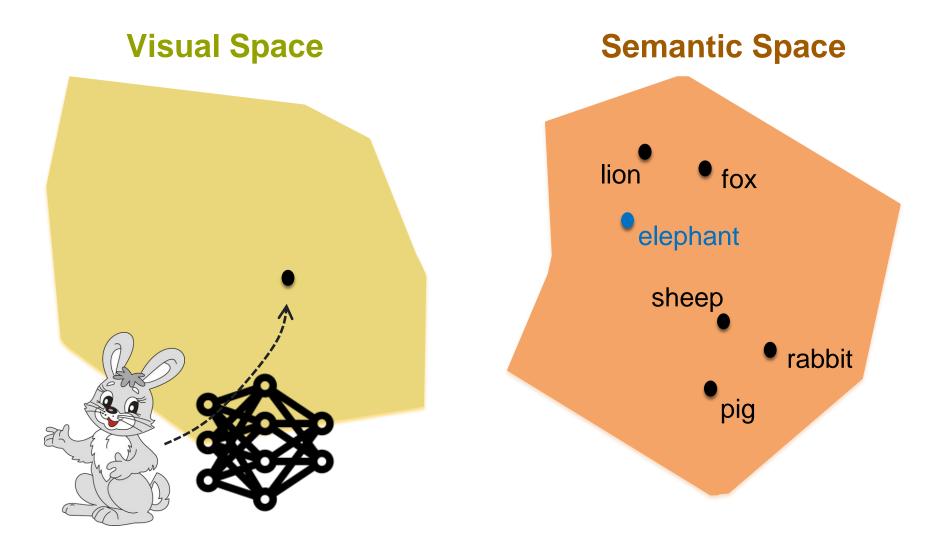
Seen classes

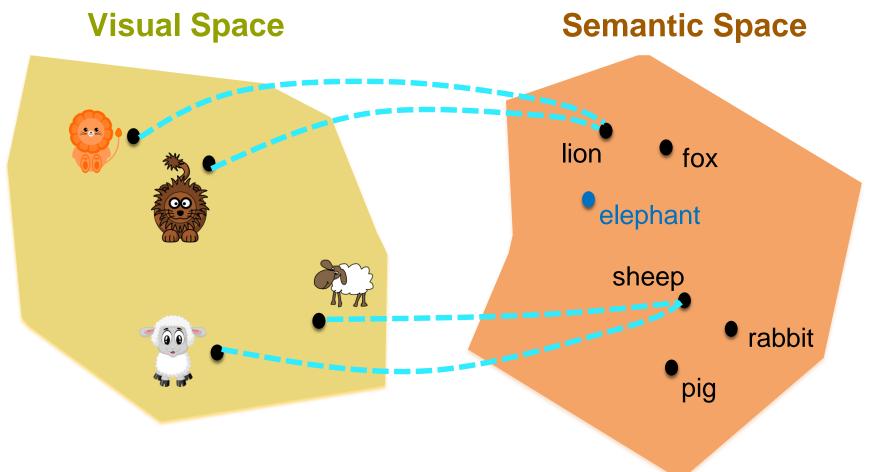
(Generalized) Zero-Shot Learning

Goal: Recognize objects whose instances may not have been

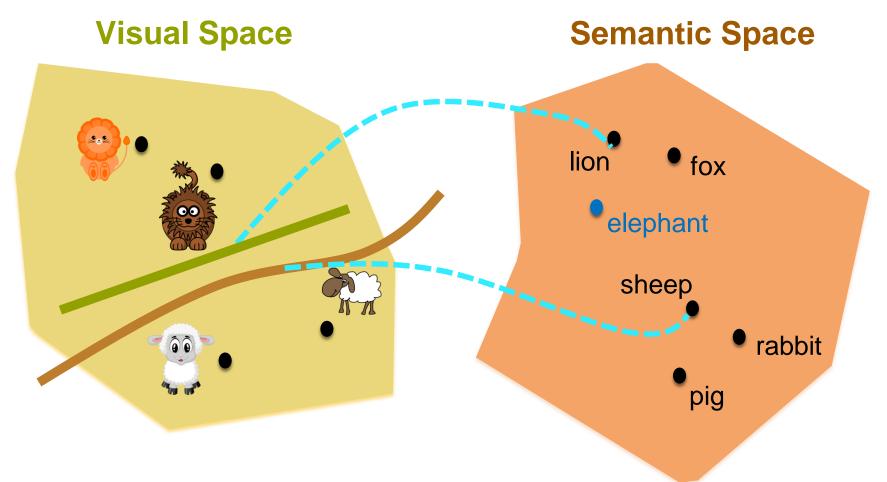
seen during training

Seen classes





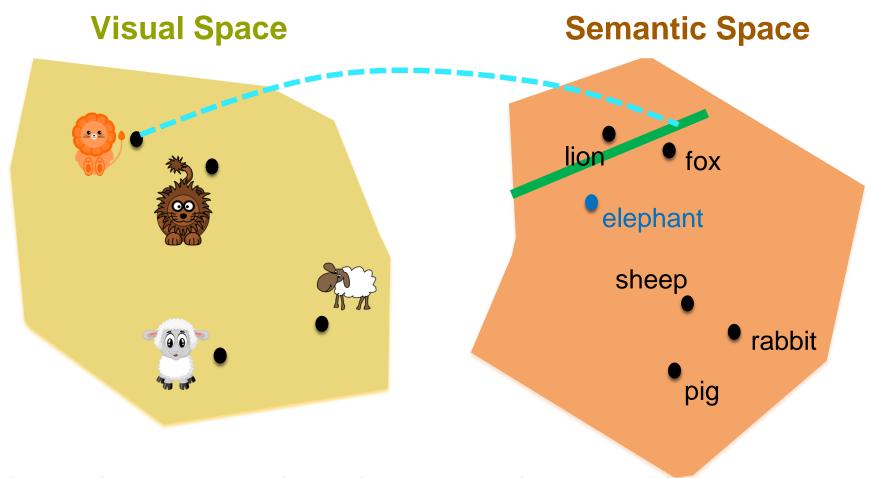
Visual and Semantic Embeddings



Existing Embedding-Based Methods

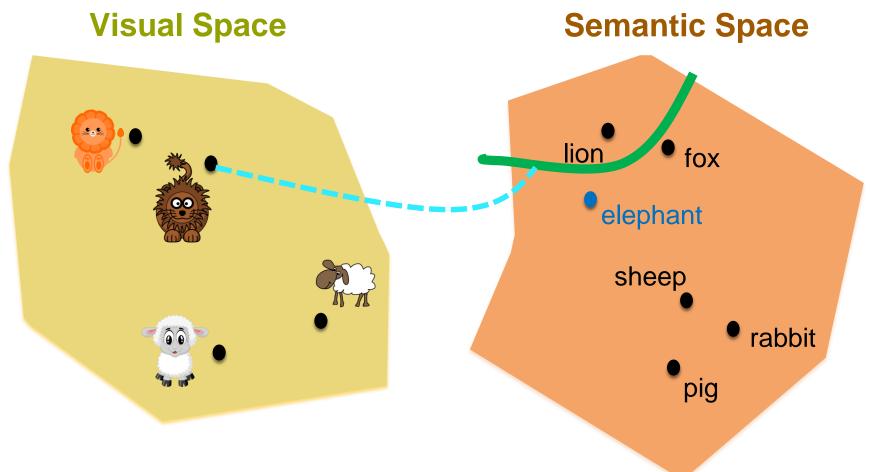
Inference is performed in the semantic space, the visual space, or a common space.

Existing Embedding-Based Methods



Learn the correspondence between a binary one-versus-rest image classifier and its class prototype in the semantic space

Drawbacks


- Using a single image classifier for each class is restrictive because the manner for separating classes in both visual and semantic spaces would not be unique.
- The scale of training data for learning the correspondence is constrained to be the number of class labels.
- Each class is represented by only a single class prototype to determine where images of that class collapse inevitably.

The Proposed Method

Learn the correspondence between an image and its corresponding label classifier!

The Proposed Method

Learn the correspondence between an image and its corresponding label classifier!

Highlights of the Proposed Method

- Learns a semantic classifier from one image
- Adaptive: Label classification is conducted by an imageconditioned semantic classifier whose weights are generated on the fly.
- Has very few hyperparameters
- Can be trained end-to-end
- Compact yet powerful
- Alleviates the hubness problem

Experimental Results on Benchmark Datasets

	SUN			CUB			AWA2			aPY		
Method	acc_u	acc_s	H	acc_u	acc_s	H	acc_u	acc_s	H	acc_u	acc_s	H
LATEM [9]	14.7	28.8	19.5	15.2	57.3	24.0	11.5	77.3	20.0	1.3	71.4	2.6
DEVISE [4]	16.9	27.4	20.9	23.8	53.0	32.8	17.1	74.7	27.8	3.5	78.4	6.7
ESZSL [8]	11.0	27.9	15.8	14.7	56.5	23.3	5.9	77.8	11.0	2.4	70.1	4.6
SYNC [20]	7.9	43.3	13.4	11.5	70.9	19.8	9.7	89.7	17.5	7.4	66.3	13.3
SP-AEN [18]	24.9	38.6	30.3	34.7	70.6	46.6	23.3	90.9	37.1	13.7	63.4	22.6
PSR [13]	20.8	37.2	26.7	24.6	54.3	33.9	20.7	73.8	32.3	13.5	51.4	21.4
DCN [6]	25.5	37.0	30.2	28.4	60.7	38.7	_	_	_	14.2	75.0	23.9
AREN [21]	19.0	38.8	25.5	38.9	78.7	52.1	5.6	92.9	26.7	9.2	76.9	16.4
DAZLE [22]	21.7	31.9	25.8	42.0	65.3	51.1	25.7	82.5	39.2	_	_	_
IGSC	39.4	31.3	34.9	40.8	60.2	48.7	25.7	83.6	39.3	23.1	58.9	33.2

Our approach outperformed state-of-the-art embedding-based methods on most benchmark datasets!

Generalized Zero-Shot Recognition through Image-Guided Semantic Classification

Fang Li and Mei-Chen Yeh

More information:

http://www.csie.ntnu.edu.tw/~myeh