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Revenue from footwear segment
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Predicting the popularity of sneakers

* Objective
— Rate a sneaker in terms of popularity
* Applications
— Fashion analysis
— Product search: relevance and quality
— Product recommendation

solecollector.com
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Dataset

* Collected from solecollector.com

* 1913 products released from December 2010
to October 2013

* Population data (no sampling)
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Sneaker design vs. COP score
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A multimodality approach

Sneaker
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Feature extraction

Textual features

* Sneakers name & description: *
Bag-of-words model (873-d)

* Price (scalar)
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Visual features

Color: Histogram of pixels in
HSV space (256-d)

* Shape: Histogram of
oriented gradients (40-d)
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Prediction model construction

* A regression problem:

Given a set of training samples D = {(x, y;), ..,
(xy, Ya)}, where x; = (x7, x, x¢, x°) and y;is the
desired score, find a solution for unknown
model parameters & that minimizes the
distortion between the measured and
predicted COP scores.

Kernel fusion + regression

Multiple-kernel support vector
regression
[ COP score ] 19={a, b, M}

N
f(x)= ak,(x x,)+b
n=1
M

[ Combined kernel ] k(x:Xn)ZZ/’lmkm(l!Xn)

[ Color kernel ][ Shape kernel ]"' Text kernel
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Text feature
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Sneaker
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Kernel functions

Textual features Visual features

* Bag-of-words model * Color: Histogram of pixels in
chi-square kernel HSV space (256-d)

* Price (scalar) radial basis function kernel

b p * Shape: Histogram of
k (XP XP)— %[M+1J oriented gradients (40-d)
p ' )T
C

histogram intersection kernel

Research questions

* Which feature mostly affects the COP score?

* Does using kernel fusion result in a better
prediction performance?

* Do customized kernels perform better than
Radial Basis Function (RBF) kernels?
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Experiment: Setup

* Dataset

— 1913 products collected from solecollector.com
— Training: 1703 (between Dec. 2010 and Aug. 2013)
— Testing: 210 (between Sep. 2013 and Oct. 2013)

e Evaluation metrics
— Pearson coefficient

Results: feature comparison

Pearson Coefficient

Text Price Color  Shape



Results: model comparison
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Conclusion

We obtained a satisfactory prediction result by
using a few different facets to describe
sneakers.

Textual features play an important role.

Compared with an early fusion approach, we
show that a late fusion approach is more
effective.

Customized kernels in general perform better
than the RBF kernels.
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More information:
http://www.csie.ntnu.edu.tw/~myeh/
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