

A Multimodality Approach to Predicting the Popularity of Sneakers

Mei-Chen Yeh^{*} and Shao-Ting Yang Department of Computer Science and Information Engineering National Taiwan Normal University

June 6, 2015

Intelligent fashion analysis

Revenue from footwear segment (in billion U.S. dollars)

source: http://www.statista.com/

Sneaker design

Predicting the popularity of sneakers

- Objective
 - Rate a sneaker in terms of popularity
- Applications
 - Fashion analysis
 - Product search: relevance and quality
 - Product recommendation

solecollector.com

Dataset

- Collected from solecollector.com
- 1913 products released from December 2010 to October 2013
- Population data (no sampling)

Sneaker design vs. COP score

Brand vs. COP score

Product endorser vs. COP score

A multimodality approach

Feature extraction

Textual features

- ٠ Sneakers name & description: • Color: Histogram of pixels in Bag-of-words model (873-d)
- Price (scalar) ٠

Visual features

- HSV space (256-d)
- Shape: Histogram of oriented gradients (40-d)

Prediction model construction

• A regression problem:

Given a set of training samples $D = \{(x_1, y_1), ..., (x_N, y_N)\}$, where $x_i = (x^T, x^P, x^C, x^S)$ and y_i is the desired score, find a solution for unknown model parameters ϑ that minimizes the distortion between the measured and predicted COP scores.

Kernel fusion + regression

Kernel functions

Textual features

• Bag-of-words model

chi-square kernel

• Price (scalar)

$$k_p\left(x^P, x_n^P\right) = \frac{1}{\left(\frac{\left|x^P - x_n^P\right|}{c} + 1\right)}$$

Visual features

• Color: Histogram of pixels in HSV space (256-d)

radial basis function kernel

 Shape: Histogram of oriented gradients (40-d)
histogram intersection kernel

Research questions

- Which feature mostly affects the COP score?
- Does using kernel fusion result in a better prediction performance?
- Do customized kernels perform better than Radial Basis Function (RBF) kernels?

Experiment: Setup

- Dataset
 - 1913 products collected from solecollector.com
 - Training: 1703 (between Dec. 2010 and Aug. 2013)
 - Testing: 210 (between Sep. 2013 and Oct. 2013)
- Evaluation metrics
 - Pearson coefficient

Results: feature comparison

Results: model comparison

Conclusion

- We obtained a satisfactory prediction result by using a few different facets to describe sneakers.
- Textual features play an important role.
- Compared with an early fusion approach, we show that a late fusion approach is more effective.
- Customized kernels in general perform better than the RBF kernels.

A Multimodality Approach to Predicting the Popularity of Sneakers

More information: <u>http://www.csie.ntnu.edu.tw/~myeh/</u>