

Assessing the Aesthetic Quality of Photographs through Group Comparison

Mei-Chen Yeh* and Chun-Hui Chuang
Department of Computer Science and Information Engineering
National Taiwan Normal University

May 26, 2014

Which photo do you like better?

Figures from: Yiwen Luo and Xiaoou Tang, "Photo and Video Quality Evaluation: Focusing on the Subject", ECCV 2008.

Which photo do you like better?

- Subjective
- Differentiating professional and amateur photos may be natural to a human, but difficult to a computer.

Aesthetic quality assessment

- Objective
 - Rate the aesthetic quality of a photograph
- Applications
 - Image search: relevance and quality
 - Creation of personal albums/collage pictures
 - Key frame selection

Online resources

· DPChallenge.com

ACQUINE

A generic approach

- Formulates a machine learning problem
 - Given a gallery of photos and the associated human ratings, design a grader that evaluates the image aesthetic quality.
- · Maps visual features to a quality score

Existing work on feature extraction

- Low-level feature
 - Image processing: degree of noise, distortion, artifacts [Wang et al. 2004, Sheikh et al. 2005]
 - Image retrieval: low-level visual features, i.e. color, shape, texture [Datta et al. 2006]
- High-level feature / photographic composition
 - Rule of thirds, golden ratio, blur, color distribution [Ke et al. 2006, Yeh et al. 2010, Bhattacharya et al. 2010]
- · Subject-driven feature
 - Foreground, face region [Luo and Tang 2006, Li et al. 2010]

Features extracted solely from the image under evaluation

Research problems

 Do a group of similar photos help the quality assessment problem?

Group features

Input: m photos, type-k features $\{f_i\}$, i = 1..mOutput: type-k relative/deviation features $\{r_i\}$, d_k

$$r_i = \frac{\sum_{j \neq i} (f_j - f_i)}{m - 1}$$
 $d_k = \sqrt{\frac{\sum_{k=1}^m (f_k - \overline{f_k})^2}{m - 1}}$

The computation of relative features is performed on a group basis!

Experiment

- Dataset
 - 99,000 images (9000 test photos crawled from Photo.net. For each test photo we retrieved top 10 similar ones by using Google Image Search)
- · Evaluation metrics
 - Spearman and Pearson coefficients, 5-fold cross validation
- Features
 - Texture (32-d)
 - Clarity (1-d)
- Rating models
 - RankSVM [Chapelle, Neural Computation '07]

Results

Method	Spearman correlation	Pearson correlation
Baseline	0.3234	0.3216
Baseline + Relative	0.3580	0.3591
Baseline + Deviation	0.3540	0.3551
All	0.3622	0.3631
Yeh et al [ICIP '12]	0.3258	0.3238

Conclusion

- Exploring the use of *multiple images* as basic atoms for rating photos
- Introducing the *group features*: simple, computational efficient
- Demonstrating the benefits of group evaluation through experiments

Future work

 Exploration of group comparisons to not only feature extraction, but learning the grader

Questions?

More information:

http://www.csie.ntnu.edu.tw/~myeh/