

The Thirty-First Annual Conference on Innovative Applications of Artificial Intelligence (IAAI-19)

Jan. 31, 2019

Early Detection of Vacant Parking Spaces Using Dashcam Videos

Ming-Che Wu and Mei-Chen Yeh

Dept. of Computer Science and Information Engineering National Taiwan Normal University

Where to Park?

- No. of registered vehicles: 811,465
- No. of parking spaces: 752,773

Taipei City
(Statistics on 2018/05)

Existing parking guidance systems

Sensors

- Costly
- Limited in indoor parking lots

Surveillance cameras

Assuming the availability of a camera monitoring system

Detecting parking spaces using dashcam videos

Early detection is important

 Predict the availability of a parking space when it is partially observed or even completely occluded

Alarm the availability of the parking lot!

Early detection of parking space using dashcam videos

Outline

- Introduction
- Approach
 - Dataset
 - Problem formulation
 - Network architectures
- Experiments
- Conclusion

Neural network approaches

- Supervised learning setting
- Two architectures
 - 1. 3D convolutional neural network (3D CNN)
 - 2. Recurrent neural network with long short-term memory cells (LSTM)

Dataset

- 5,800 annotated 5-seconds driver's view videos
 - Collected using a dashboard camera
 - Collected at 22 different places (10 indoor and 12 outdoor) during 5 months
 - Containing parallel, perpendicular, angled and on-street parking spaces
- Empty: the fifth second of the clip captures a vacant parking spot
- Full: the clip contains no parking spot

Empty (outdoor)

Full (outdoor)

Empty (indoor)

Full (indoor)

Problem formulation

- Given a one-second video clip, predict whether a parking space is available "ahead."
- Input: $D = \{(X_1, y_1), (X_2, y_2), ..., (X_n, y_n)\}$

$$X_i = [x_1, x_2, ..., x_m]$$

- $y_i = 0$ (full) or 1 (empty)
- Output: $f(x_i, \theta)$

Goal: Detect a vacant parking space as early as possible given the observations $(x_1, x_2, ..., x_t)$ | t < m before reaching the spot at frame m

Training the detector θ

- The detection should be more reliable when the driver is approaching an empty parking space.
- Minimize the detection loss (2 terms):

$$L_{conf}(X_i) = \frac{1}{m-1} \sum_{t=2}^{m} \left(\max \left(0, l \times (f(x_{t-1}) - f(x_t)) \right) \right)^2$$

$$l = \begin{cases} 1 & \text{if } y_i = 1 \\ -1 & \text{if } y_i = 0. \end{cases}$$

Training the detector θ

- The detection should be more reliable when the driver is approaching an empty parking space.
- Minimize the detection loss (2 terms):

$$L_{acc}(X_i) = \frac{1}{m} \sum_{t=1}^{m} (y_i - f(x_t))^2$$

$$\sum_{X_i \in D} \left(L_{conf}(X_i) + \alpha \cdot L_{acc}(X_i) \right)$$

Network architecture: 3D CNN

Network architecture: 3D CNN+LSTM

Outline

- Introduction
- Approach
 - Dataset
 - Problem formulation
 - Network architectures
- Experiments
- Conclusion

Experiment: Setup

- Data (5,800 video clips):
 - Training: 5,000
 - Validation: 400
 - Testing: 400

Training and testing clips capture completely different places.

Baseline models: 3D CNN and 3D CNN
 +LSTM models with the cross entropy loss and the MSE loss

Experiment: Measurement

- On the basis of the correctness of classifying a 5-s video clip
- Precision
- Recall
- Classification accuracy

Experiment: Loss comparison

The proposed loss function consistently outperforms MSE and cross entropy.

Experiment: Model comparison

3D CNN slightly improves 3D CNN + LSTM

Experiment: Early detection

Time to Parking Lot	3 s	2 s	1 s	0 s
Cross Entropy	63.5%	68.5%	75.5%	82.0%
MSE	67.0%	72.5%	78.0%	83.0%
Ours	80.0%	87.5%	93.0%	97.0%

Our method can predict an empty parking spot 3 seconds before reaching it with 80% recall and 82.5% precision.

Outline

- Introduction
- Approach
 - Dataset
 - Problem formulation
 - Network architectures
- Experiments
- Conclusion

Conclusion

- Early detection of vacant parking spaces can be achieved using dashcam videos.
 - Introduced the first dashcam video dataset for studying early detection of parking spaces
 - Proposed a new loss function for early detection: constraining the subsequent detection scores can considerably improve the detection results
- To be implemented in a dashcam system and to extend the method for parking space localization

The Thirty-First Annual Conference on Innovative Applications of Artificial Intelligence (IAAI-19)

Jan. 31, 2019

Early Detection of Vacant Parking Spaces Using Dashcam Videos

More information:

http://www.csie.ntnu.edu.tw/~myeh