

THE FIFTH IEEE CONFERENCE ON MULTIMEDIA BIG DATA (BigMM-19)

Photo Filter Recommendation Through Analyzing Objects, Scenes and Aesthetics

Yi-Ning Chen and **Mei-Chen Yeh** Dept. of Computer Science and Information Engineering National Taiwan Normal University

Social Media for Photo Sharing

- Monthly actives 800M+
- Daily posts 40M+
- Half of photos are filtered.

Photo Filter

Photo Filter Recommendation

Filter recommendation: Challenges

A subjective task

Collecting a large corpus of labeled data for training a recommendation approach is highly expensive.

Contributions

Demonstrate how filtered images on Instagram can be used for training a filter recommendation model

Use high level image representations for predicting proper filters

Achieve 51.87% top-1 accuracy on FACD

Outline

Introduction

Approach

- Instagram Filtered Image Dataset
- □ Filter Recommendation Network
- Experiments

Conclusion

Instagram Filtered Image Dataset

19 filters

- 68,400 photos (3,600 photos per filter)
- No photo duplication
- No noisy filter categorization (manual inspection)

Filter Aesthetic Comparison Dataset (FACD)

- 1,280 reference images
 1,120 images for training
 - □160 images for evaluation
- 28,160 filtered images created from 22 filters

42,240 filtered image pairs with aesthetic comparison labels

W. -T. Sun, T. -H. Chao, Y. -H. Kuo, Winston H. Hsu. Photo Filter Recommendation by Category-Aware Aesthetic Learning. *IEEE Trans. on Multimedia*, 2017.

Instagram vs. FACD

	Pros	Cons
Instagram dataset	Low cost of collectionHigh diversity	 No original photo One filter per photo (decided by user)
FACD	 Original photo available Multiple filters per photo (decided by AMT) 	High cost of ground truth constructionLow quantity

Selection of photo filters depends on photo content

Food Soft color 1977, Aden, Sutro

Selfie Bright color Hefe, Slumber Natural scene Strong contrast Amaro, Brooklyn

Filter Recommendation Network

Why grayscale inputs?

- Training images are *filtered images*.
- Filter recommendation vs. Filter categorization
- Extract *style-invariant* image features

Object Detection Network

Mask R-CNN + MS COCO (80 classes)

Model	AP ^{bb}	AP ^{bb} 50	AP ^{bb} ₇₅
Mask R-CNN	38.2	60.3	41.7
Grayscale Mask R-CNN	33.9	51.4	37.4

[Mask R-CNN] Kaiming He, Georgia Gkioxari, Piotr Dollár, Ross Girshick. Mask R-CNN. arXiv:1703.06870, 2017.

[MS COCO] Tsung-Yi Lin, Michael Maire, Serge Belongie, Lubomir Bourdev, Ross Girshick, James Hays, Pietro Perona, Deva Ramanan, C. Lawrence Zitnick, Piotr Dollár. Microsoft COCO: Common Objects in Context. *ECCV*, 2014.

Scene Recognition Network

Resnet-18 + Places365

Model	Top-1 acc.	Top-5 acc.
ResNet-18	54.74%	85.08%
Grayscale ResNet-18	51.00%	82.00%

[Resnet] Kaiming He, Xiangyu Zhang, Shaoqing Ren, Jian Sun. Deep Residual Learn-ing for Image Recognition. arXiv:1512.03385, 2015.

[Places365] B. Zhou, A. Lapedriza, J. Xiao, A. Torralba, and A. Oliva. Learning Deep Features for Scene Recognition using Places Database. *NIPS*, 2014.

Aesthetic Analysis Network

NIMA + AVA

Model	Top-1 acc.
NIMA	57.84%
Grayscale NIMA	56.43%

[NIMA] Hossein Talebi, Peyman Milanfar. NIMA: Neural Image Assessment. arXiv:1709.054242017. [AVA] Naila Murray, Luca Marchesotti, Florent Perronnin. AVA: A large-scale da-tabase for aesthetic visual analysis. *CVPR*, 2012.

From Image Representations to Filter Category

Two fully connected layers, with 128 neurons in each layer

Batch normalization

Dropout

Outline

- Introduction
- Approach
 - Instagram Filtered Image Dataset
 - Filter Recommendation Network
- Experiments
- Conclusion

Setting

FACD

□ Training: 960 (for fine-tuning the fc layers)

- Validation: 160
- Testing: 160

Instagram filtered image dataset for training three sub-networks

Recommendation Results

Model	Top-1 Accuracy (%)	Top-3 Accuracy (%)
AlexNet [3]	33.13	70.63
RAPID net [4]	37.50	72.50
Category-aware learning (AlexNet) [2]	41.25	80.00
Category-aware learning (RAPID) [2]	41.88	79.50
Ours (Scene + Aesthetics)	51.25	80.00

The proposed method achieved the best performances in both of top-1 and top-3 predictions. The gain was significant on the top-1 accuracy (over 9%).

Effects of Features

	•	
Model	Top-1 Accuracy (%)	Top-3 Accuracy (%)
Object	43.75	76.25
Scene	48.12	79.37
Aesthetics	51.25	75.62
Object + Scene	45.00	75.62
Object + Aesthetics	51.87	77.50
Scene + Aesthetics	51.25	80.00
Object + Scene + Aesthetics	46.87	75.00

Our approach using a single type of feature outperformed previous approaches; scenes and the aesthetics outperformed objects.

Does Instagram filtered images help?

The use of Instagram filtered images alleviated the filter recommendation task.

Outline

- Introduction
- Approach
 - Instagram Filtered Image Dataset
 - Filter Recommendation Network
- Experiments

Conclusion

Conclusion

We present a new filter recommendation method using voluminous filtered images on Instagram.

Experimental results using the FACD benchmark dataset show the effectiveness of

- High-level image representations
- Using Instagram images for training the model

Photo Filter Recommendation Through Analyzing Objects, Scenes and Aesthetics

More information: http://www2.csie.ntnu.edu.tw/~myeh