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• Monthly actives 800M+

• Daily posts 40M+

• Half of photos are filtered.
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Social Media for Photo Sharing



Photo Filter 
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Photo Filter Recommendation 
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Filter recommendation: 
Challenges
 A subjective task

 Collecting a large corpus of labeled data for 
training a recommendation approach is  
highly expensive.
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Contributions
 Demonstrate how filtered images on 
Instagram can be used for training a filter 
recommendation model

 Use high level image representations for 
predicting proper filters

 Achieve 51.87% top-1 accuracy on FACD
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Outline
 Introduction

 Approach
 Instagram Filtered Image Dataset

 Filter Recommendation Network

 Experiments

 Conclusion
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Instagram Filtered Image 
Dataset
 19 filters 

 68,400 photos  (3,600 photos per filter)

 No photo duplication

 No noisy filter categorization (manual 
inspection)
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Filter Aesthetic Comparison 
Dataset (FACD)
 1,280 reference images
1,120 images for training 

160 images for evaluation

 28,160 filtered images created from 22 filters

 42,240 filtered image pairs with aesthetic 
comparison labels
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W. -T. Sun, T. -H. Chao, Y. -H. Kuo, Winston H. Hsu. Photo Filter Recommendation 

by Category-Aware Aesthetic Learning. IEEE Trans. on Multimedia, 2017.



Instagram vs. FACD
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Pros Cons

Instagram 

dataset

• Low cost of collection

• High diversity

• No original photo

• One filter per photo

(decided by user)

FACD • Original photo available

• Multiple filters per photo 

(decided by AMT)

• High cost of ground 

truth construction

• Low quantity



Selection of photo filters 
depends on photo content
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Food

Soft color

1977, Aden, Sutro

Natural scene

Strong contrast

Amaro, Brooklyn

Selfie

Bright color

Hefe, Slumber



Filter Recommendation 
Network
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Why grayscale inputs?
 Training images are filtered images.

 Filter recommendation vs. Filter 
categorization

 Extract style-invariant image features 
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Object Detection Network
Mask R-CNN + MS COCO (80 classes) 
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[Mask R-CNN] Kaiming He, Georgia Gkioxari, Piotr Dollár, Ross Girshick. Mask R-CNN.

arXiv:1703.06870, 2017.

[MS COCO] Tsung-Yi Lin, Michael Maire, Serge Belongie, Lubomir Bourdev, Ross Girshick,

James Hays, Pietro Perona, Deva Ramanan, C. Lawrence Zitnick, Piotr Dollár. Microsoft COCO:

Common Objects in Context. ECCV, 2014.

Model APbb APbb
50 APbb

75

Mask R-CNN 38.2 60.3 41.7

Grayscale Mask R-CNN 33.9 51.4 37.4



Scene Recognition Network
Resnet-18 + Places365
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[Resnet] Kaiming He, Xiangyu Zhang, Shaoqing Ren, Jian Sun. Deep Residual Learn-ing for 

Image  Recognition. arXiv:1512.03385, 2015.

[Places365] B. Zhou, A. Lapedriza, J. Xiao, A. Torralba, and A. Oliva. Learning Deep Features 

for Scene Recognition using Places Database. NIPS, 2014.

Model Top-1 acc. Top-5 acc.

ResNet-18 54.74% 85.08%

Grayscale 

ResNet-18 51.00% 82.00%



Aesthetic Analysis Network
NIMA + AVA
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[NIMA] Hossein Talebi, Peyman Milanfar. NIMA: Neural Image Assessment. arXiv:1709.054242017.

[AVA] Naila Murray, Luca Marchesotti, Florent Perronnin. AVA: A large-scale da-tabase for aesthetic 

visual analysis. CVPR, 2012.

Model Top-1 acc.

NIMA 57.84%

Grayscale NIMA 56.43%



From Image Representations 
to Filter Category
 Two fully connected layers, with 128 
neurons in each layer

 Batch normalization

 Dropout
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Setting
 FACD
 Training: 960 (for fine-tuning the fc layers)

 Validation: 160

 Testing: 160 

 Instagram filtered image dataset for 
training three sub-networks 
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Recommendation Results 

The proposed method achieved the best performances in 
both of top-1 and top-3 predictions. The gain was significant 
on the top-1 accuracy (over 9%).
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Effects of Features
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Our approach using a single type of feature outperformed 
previous approaches; scenes and the aesthetics 
outperformed objects.



Does Instagram filtered 
images help?
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The use of Instagram filtered images alleviated the filter 
recommendation task.
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Conclusion
We present a new filter recommendation 
method using voluminous filtered images on 
Instagram.

 Experimental results using the FACD 
benchmark dataset show the effectiveness of
 High-level image representations

 Using Instagram images for training the model
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