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Multi-label classification

Goal: Recognize one or multiple objects in one image

Seen classes



https://pixabay.com/

Generalized zero-shot learning

Goal: Recognize objects whose instances may not have been
seen during training

Seen classes



https://pixabay.com/

Multi-label generalized zero-
shot learning

Goal: Recognize one or multiple objects whose instances may
not have been seen during training ,
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Visual and semantic embeddings
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Generative methods for GZSL

e Synthesize training samples for unseen classes

e Real (seen) + synthesized (unseen) visual features => fully-
observed training set for both seen and unseen classes

e Successful for single-label GZSL

e Not trivial for multi-label setting because the location of
each label in one image is now known

e How to synthesize multi-label visual features from
multi-label images?



Contributions

e We present a new approach based on the generative
paradigm for multi-label GZSL.

e We apply the concept of converting an image into a label
classifier. The adaptive nature of the method facilitates
the integration of a single-label feature generating

model for creating multi-label features from multi-label
images.



Approach
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IAC

Image-adaptive label classifier

r Semantic Classifier Weights
® o
o o
N\ ® @® people ﬁ
N O
‘\
dog ™ \. O IAC J
- b
Semantic Space W
X

@ positive seen labels

@® negative seen labels Backbonei |

® unseen labels




IAC
Highlights

e Flexible: images of the same class can have different
semantic classifiers!

e Facilitate the task of feature generation

e Decompose a multi-label training sample into
multiple image-label pairs

® Process a label at a time
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Experimental results
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Summary

e We propose image-adaptive classification (IAC) to
address the multi-label GZSL problem.

e |AC can adaptively emphasize the most discriminating
dimension in semantic features to deal with intra-class
visual discrepancies.

e |AC also facilities the multi-label feature generating task
by a simple decomposition approach.

e The proposed method improves the state-of-the-arts on
two benchmark datasets.



Questions?

More information:
http://www.csie.ntnu.edu.tw/~myeh/
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