

Generative and Adaptive Multi-Label Generalized Zero-Shot Learning

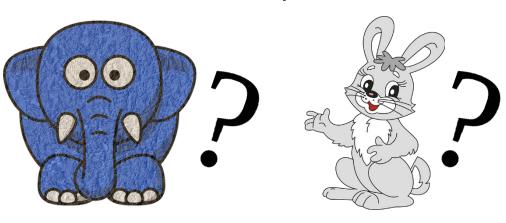
Kuan-Ying Chen and Mei-Chen Yeh

Department of Computer Science and Information Engineering National Taiwan Normal University

Multi-label classification

Goal: Recognize one or multiple objects in one image

Seen classes

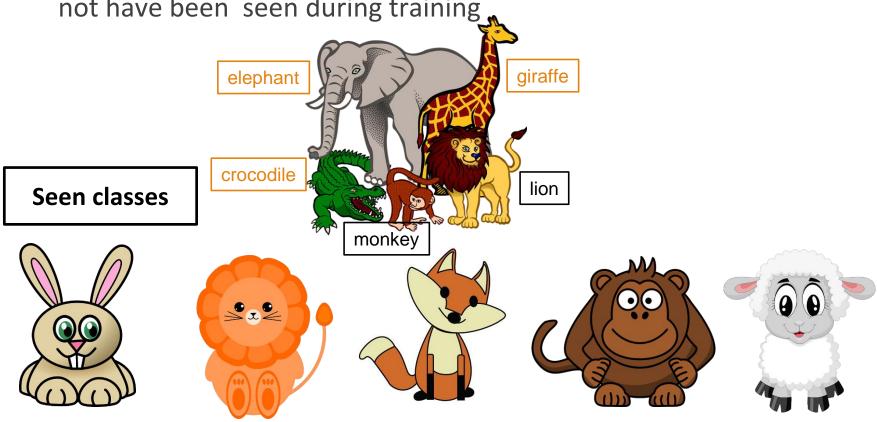


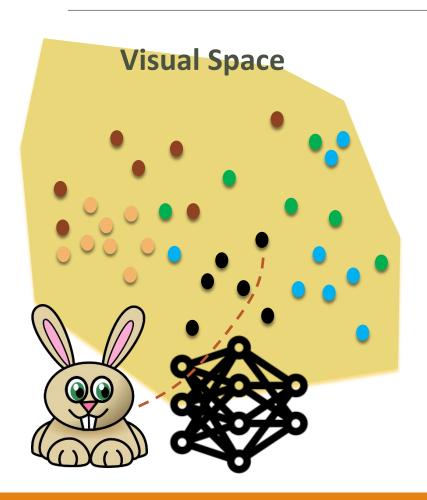
Generalized zero-shot learning

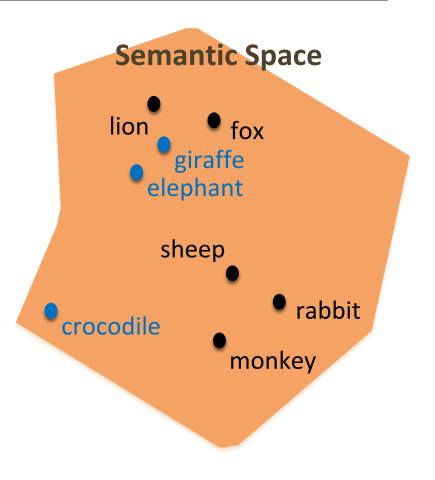
Goal: Recognize objects whose instances may not have been

seen during training

Seen classes

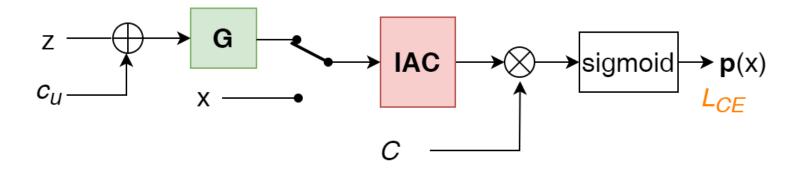





Multi-label generalized zeroshot learning

Goal: Recognize one or multiple objects whose instances may not have been seen during training.

Visual and semantic embeddings


Generative methods for GZSL

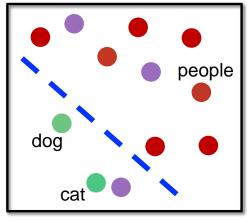
- Synthesize training samples for unseen classes
- Real (seen) + synthesized (unseen) visual features => fullyobserved training set for both seen and unseen classes
- Successful for single-label GZSL
- Not trivial for multi-label setting because the location of each label in one image is now known
- How to synthesize multi-label visual features from multi-label images?

Contributions

- We present a new approach based on the generative paradigm for multi-label GZSL.
- We apply the concept of converting an image into a label classifier. The adaptive nature of the method facilitates the integration of a single-label feature generating model for creating multi-label features from multi-label images.

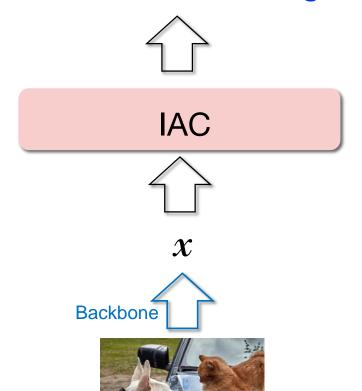
Approach

- ⊕ concatenating operation
- ⊗ matrix multiplication


G Visual feature generator

IAC

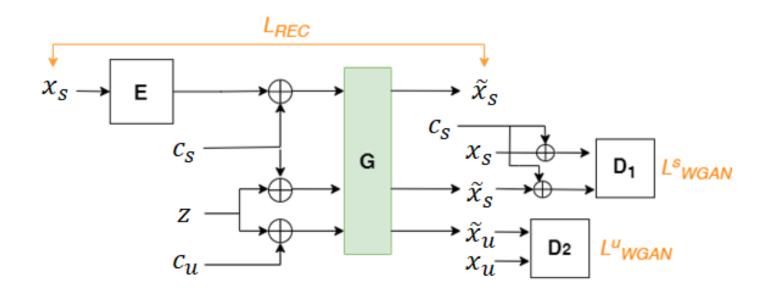
Image-adaptive label classifier


Image-adaptive label classifier

Semantic Space W

- positive seen labels
- negative seen labels
- unseen labels

Semantic Classifier Weights



Highlights

- Flexible: images of the same class can have different semantic classifiers!
- Facilitate the task of feature generation
 - Decompose a multi-label training sample into multiple image-label pairs
 - Process a label at a time

Visual feature generator

Yongqin Xian, Sauabh Sharma, Bernt Schiele, and Zeynep Akata, "F-VAEGAN-D2: A feature generating framework for any-shot learning," in *IEEE CVPR*, 2019.

Experimental results

PASCAL VOC

NUS-WIDE

Method	Task	MiAP	mi-F1	ma-F1	
CONSE [22]	ZSL	49.98	30.8	27.57	
	GZSL	64.10	42.11	32.29	
LabelEM [14]	ZSL	52.45	35.32	36.69	
	GZSL	66.46	43.11	32.37	
DMP [23]	ZSL	53.52	36.70	40.44	
	GZSL	67.79	43.97	34.13	
Fast0Tag [6]	ZSL	52.39	35.01	36.76	
	GZSL	67.34	43.54	33.31	
TAEP-C [18]	ZSL	59.22	39.84	43.77	
	GZSL	69.87	44.75	35.62	
Our Approach	ZSL	62.83	44.63	44.11	
	GZSL	70.19	50.46	52.58	

Method	Task	K = 3			K = 5			mAP
		P	R	F1	P	R	F1	ШАТ
CONSE [22]	ZSL	17.5	28.0	21.6	13.9	37.0	20.2	9.4
	GZSL	11.5	5.1	7.0	9.6	7.1	8.1	2.1
LabelEM [14]	ZSL	15.6	25.0	19.2	13.4	35.7	19.5	7.1
	GZSL	15.5	6.8	9.5	13.4	9.8	11.3	2.2
Fast0Tag [6]	ZSL	22.6	36.2	27.8	18.2	48.4	26.4	15.1
	GZSL	18.8	8.3	11.5	15.9	11.7	13.5	3.7
One Attention per Label [24]	ZSL	20.9	33.5	25.8	16.2	43.2	23.6	10.4
	GZSL	17.9	7.9	10.9	15.6	11.5	13.2	3.7
LESA (M=10) [20]	ZSL	25.7	41.1	31.6	19.7	52.5	28.7	19.4
	GZSL	23.6	10.4	14.4	19.8	14.6	16.8	5.6
Our Approach	ZSL	26.0	41.1	31.9	19.9	52.3	28.8	26.3
	GZSL	30.2	13.1	18.3	25.2	18.3	21.2	11

- We propose image-adaptive classification (IAC) to address the multi-label GZSL problem.
- IAC can adaptively emphasize the most discriminating dimension in semantic features to deal with intra-class visual discrepancies.
- IAC also facilities the multi-label feature generating task by a simple decomposition approach.
- The proposed method improves the state-of-the-arts on two benchmark datasets.

Questions?

More information:

http://www.csie.ntnu.edu.tw/~myeh/