A Topological Data Analysis Approach to Video Summarization

September 24, 2019

Chuan-Shen Hu Department of Mathematics National Taiwan Normal University

Mei-Chen Yeh Department of Computer Science and Information Engineering National Taiwan Normal University

1 / 30

Goal : Summrization by Topology

2 Simplicial Complexes & 1-Homologies

3 Algorithm Details

2 / 30

Problem Statement

Definition

Video Summarization is a technique that provides a condensed and interesting storyline of a video.

Why is it challenging?

- Unlimited contents;
- Subjective;
- "Relation" is abstract for computing.

Contributions

Contributions

For video analysis :

• Summarize videos by using TDA techniques.

For TDA :

- Approach for sequential data;
- Not only Betti numbers but also locations of 1-homologies.

Why Simplicial Complexes?

Simplicial complexes

Simplicial complexes were widely used for approximating objects by using edges, triangles etc. (*e.g.* meshes in computer graphics)

Simplicial Complexes & 1-Homologies

Why Simplicial Complexes?

Simplicial Complexes & 1-Homologies

Why Simplicial Complexes?

Simplicial Complexes & 1-Homologies

Why Simplicial Complexes?

Motivation

Meaning of holes in videos

Motivation

Meaning of holes in videos (anchor frames)

Motivation

Meaning of holes in videos (events as 1-homologies)

- Step 1 : Sub-sampling of frames and extract CNN features;
- Step 2 : Simplicial complex representation;
- Step 3 : Summarize videos via 1-homologies.

Step 1 : Frame Representation

Sub-sampling & Features

- Sample one frame per 400 milliseconds;
- Each sampled frame is summarized into a fixed length feature vector (fc7) using ImageNet-trained AlexNet in \mathbb{R}^{4096} .

Step 2 : Simplicial Complex

Step 2-1 : (Topological) Vertex clustering

Step 2 : Simplicial Complex

Step 2-2 : Edge augmentation

Step 2 : Simplicial Complex

Step 2-2 : Edge augmentation

Step 3 : Clustering Score & Summarization

Step 3-1 : 1-Homology detection (javaplex)

Step 3 : Clustering Score & Summarization

Definition (Anchor clusters)

Algorithm Details

After augmentation, define **repeat number** of a cluster σ by

 $r(\sigma) = \#\{v : v \text{ appears in a } 1 - \text{homology}\}.$

Cluster who have maximal repeat number are called an anchor clusters.

Definition (Cluster scores)

Given anchor clusters $\sigma_{i_1},...,\sigma_{i_k}$, define interestness score of σ by

$$s(\sigma) = \frac{1}{k} \cdot \left(\sum_{j=1}^{k} \operatorname{dist}(\sigma, \sigma_{i_j})\right) \cdot 0.95^{r(\sigma)}$$

Step 3 : Clustering Score & Summarization

Step 3-2 : Cluster scoring

Algorithm Details

Visualization : Anchor Frames

Hosts, main interviewees or reporters

98MovGZKHXc

akl8YFiEmUw

b626MiF1ew4

eQu1rNs0an0

EYqVtl9YWJA

LRw_obCPUt0

fWutDQy1nnY

HI-__g2gn_A

iVt07TCkFM0

sTEELN-vY30

WG0MBPpPC6I

kLxoNp-Uchl

xxdtq8mxegs

qqR6AEXwxoQ

Yi4li2NM7U4

i3wAGJaaktw

Visualization : 1-homologies

Examples : Events, actions or motions

HI-__g2gn_A_frame0109

HI-__g2gn_A_frame0110

HI-__g2gn_A_frame0111

HI-__g2gn_A_frame0112

HI-__g2gn_A_frame0113

HI-__g2gn_A_frame0114

HI-__g2gn_A_frame0115

Visualization : 1-homologies

Examples : Events, actions or motions

b626MiF1ew4 frame0085

b626MiF1ew4 frame0086

b626MiF1ew4 frame0087

b626MiF1ew4 frame0088

b626MiF1ew4 frame0089

Visualization : 1-homologies

Examples : Events, actions or motions

i3wAGJaaktw frame0100

i3wAGJaaktw frame0115

i3wAGJaaktw_frame0120

i3wAGJaaktw_frame0125

i3wAGJaaktw frame0111

i3wAGJaaktw frame0116

i3wAGJaaktw_frame0121

i3wAGJaaktw_frame0126

i3wAGJaaktw frame0112

i3wAGJaaktw frame0117

i3wAGJaaktw_frame0122

i3wAGJaaktw frame0113

i3wAGJaaktw frame0118

i3wAGJaaktw_frame0123

i3wAGJaaktw frame0114

i3wAGJaaktw frame0119

i3wAGJaaktw_frame0124

Step 3 : Clustering Score & Summarization

Step 3-3 : Segmentation

TVSum50 benchmark

- Provided by Y. Song et al. (2015)
- 50 videos collected from YouTube
- 10 categories (e.g. Dog Show (DS), Vehicle Tire (VT))
- Each category contains 5 videos
- In average, 20 summaries by people per video

25 / 30

Experiments

Evaluation Metric

Evaluation

- Input datatype : segments and their interesting scores
- Metric : pairwise F_{β} -measure, defined by

$$\widetilde{F}_{\beta} = \frac{1}{N} \cdot \sum_{i=1}^{n} \frac{(1+\beta^2) \cdot p_i \cdot r_i}{(\beta^2 \cdot p_i) + r_i}$$

- n : gold-standard summaries
- p_i : precision, r_i : recall, $\beta = 1$
- Code : evaluation toolkit provided by TVSum50

Experiments

Result

Result

non-deep learning	
Song [5]	0.50
deep learning	
LSTM [6]	0.55
Supervised tessellation [7]	0.64
Unsupervised tessellation [7]	0.63
Sup. adversarial LSTM [8]	0.56
Unsup. adversarial LSTM [8]	0.52
non-learning	
LiveLight [4]	0.46
Ours	0.66

Conclusion

Conclusion & Future Directions

Conclusion

- Videos may contain topological structures and those features can benefit video summarization task.
- TDA may provide additional information in ML models.

Future directions

- We currently try to improve the scoring method, and so far get promising result (a lifting from 0.66 to \tilde{F}_1 -measure **0.73**).
- Determine anchor frames by distribution of 1-homologies;
- Combine these features to machine learning models.

Conclusion

Selected references

Selected references

- 1 Ngo, Ma, and Zhang, IEEE TCSVT, 2005.
- 2 Gygli, Grabner, Riemenschneider and Gool, ECCV, 2014.
- 3 Panda, Kuanar, and Chowdhury, ICPR, 2014.
- 4 Zhao and Xing, CVPR, 2014.
- 5 Song, Vallmitjana, Stent and Jaimes, CVPR, 2015.
- 6 Zhang, Chao, Sha and Grauman, ECCV, 2016.
- 7 Kaufman, Levi, Hassner and Wolf, in arXiv:1612.06950, 2017.
- 8 Mahasseni, Lam and Todorovic, CVPR, 2017.
- 9 Zhu, IJCAI, 2013.

Thank you for your attention!

Vertex Clustering Algorithm (Modification for Witness Complex)

Algorithm

- (Input) Given feature vectors $v_1, v_2, ..., v_m$ an R > 0;
- 1. Exhibit cluster $\{v_1\}$.
- 2-0. Given $\sigma = \{v_1, ..., v_k\}$ and v;
- 2-1. If more than half of $\{v_1, ..., v_k\}$ satisfies $||v_i v|| \le R$ (*), then set $\sigma \leftarrow \sigma \cup \{v\}$.
- 3. Given v_k , $k \in \{2, ..., m\}$ and clusters $\sigma_1, \sigma_2, ... \sigma_s$. If no cluster satisfies (*), construct new cluster $\sigma_{s+1} = \{v_k\}$.
- (Output) Collection $\widetilde{\mathcal{K}} = \{\sigma_1, ..., \sigma_l\}$ of disjoint clusters.

Vertex Clustering Algorithm

Remark

- Radius *R* can be determined automatically by WCC (Witness Complex Construction) algorithm;
- By viewing each $\sigma \in \widetilde{\mathcal{K}}$ as a sorted array of integers, $\sigma[0]$ denotes the moment that σ was born. This index also denotes a moment of a new scene occurs;
- Each cluster σ was viewed as a high dimensional simplex of dimension $|\sigma| 1$.

32 / 34

Segmentation Algorithm

Segmentation

- For each cluster σ in $\widetilde{\mathcal{K}}$, choose sample frame $\sigma[0]$ as the representative of the cluster;
- extend it bidirectionally (in time) with $\lfloor \mathcal{F}/F \rfloor$ frames;
- $\mathcal{F} =$ number of total frames;
- F = number of sampled frames.

33 / 34

Visualization : Anchor Frames

Opening/Closing credits, TV-show logos

PJrm840pAUI

ViiWGsYPnAX8

XkqCExn6_Us

gzDbaEs1Rlg

(Failure cases) Important events or objects

0tmA C6XwfM

4wU LUiG5ld

esJrBWi2d8

J0nA4VanoCo

WxtbiNsCO8A