
Chapter 4 Macro Processors

Professor Gwan-Hwan Hwang
Dept. Computer Science and Information Engineering

National Taiwan Normal University
9/17/20099/ / 009

1

Introduction

• A macro instruction (abbreviated to macro) is
i l i l i f hsimply a notational convenience for the

programmer.
• A macro represents a commonly used group of

statements in the source programming language
• Expanding a macros

– Replace each macro instruction with the corresponding p p g
group of source language statements

2

Introduction (Cont’d)

• E.g.
– On SIC/XE requires a sequence of seven instructions to

save the contents of all registers
W it t t t lik SAVERGS• Write one statement like SAVERGS

• A macro processor is not directly related to the
hit t f th t hi h it i tarchitecture of the computer on which it is to run

• Macro processors can also be used with high-level
programming languages, OS command languages,
etc.

3

Basic Macro Processor Functions

A program with A i h

Expanded program

Macro
Processor

A program with
Macro definitions and

Macro invocations

A program without
Macro definitions

Assembler

Object program

4

Basic Macro Processor Functions

• Macro Definition
– Two new assembler directives

• MACRO
• MEND

– A pattern or prototype for the macro instructionA pattern or prototype for the macro instruction
• Macro name and parameters

See figure 4 1– See figure 4.1

5

6

Basic Macro Processor Functions

• Macro invocation
Oft f d t ll– Often referred to as a macro call

• Need the name of the macro instruction begin invoked and the
arguments to be used in expanding the macro

• Expanded program
– Figure 4.2g
– No macro instruction definitions
– Each macro invocation statement has been expanded

into the statements that form the body of the macro,
with the arguments from the macro invocation
substituted for the parameters in the prototype

7

substituted for the parameters in the prototype

8

Basic Macro Processor Functions

• Macro invocations and subroutine calls are
different

• Note also that the macro instructions haveNote also that the macro instructions have
been written so that the body of the macro
contains no labelcontains no label
– Why?

9

Macro Processor Algorithm andMacro Processor Algorithm and
Data StructuresData Structures

• It is easy to design a two-pass macro processor
– Pass 1:

• All macro definitions are processed

P 2– Pass 2:
• All macro invocation statements are expanded

H t ld t• However, a two-pass macro processor would not
allow the body of one macro instruction to contain
d fi iti f thdefinitions of other macros
– See Figure 4.3

10

11

Macro Processor Algorithm andMacro Processor Algorithm and
Data StructuresData Structures

• Sub-Macro definitions are only processed
when an invocation of their Super-Macros
are expanded p
– See Figure 4.3: RDBUFF

A th t• A one-pass macro processor that can
alternate between macro definition and
macro expansions able to handle macros
like those in Figure 4.3

12

g

Macro Processor Algorithm andMacro Processor Algorithm and
Data StructuresData Structures

• Because of the one-pass structure, the
definition of a macro must appear in the
source program before any statements that p g y
invoke that macro

• Three main data structures involved in an• Three main data structures involved in an
one-pass macro processor
– DEFTAB, NAMTAB, ARGTAB

13

14

15

16

Machine Independent MacroMachine-Independent Macro
Processor FeatureProcessor Feature

• Concatenation of Macro Parameters
• Generation of Unique Labels
• Conditional Macro Expansion• Conditional Macro Expansion
• Keyword Macro Parameters

17

Concatenation of MacroConcatenation of Macro
ParametersParameters

• Most macro processors allow parameters to
be concatenated with other character strings
– The need of a special catenation operatorThe need of a special catenation operator

• LDA X&ID1
• LDA X&IDLDA X&ID

– The catenation operator
• LDA X&ID1• LDA X&ID1

• See figure 4.6
18

19

Generation of Unique Labels

• It is in general not possible for the body of a
macro instruction to contain labels of the usualmacro instruction to contain labels of the usual
kind

Leading to the use of relative addressing at the source– Leading to the use of relative addressing at the source
statement level

• Only be acceptable for short jumps

• Solution:
– Allowing the creation of special types of labels within

macro instructions
– See Figure 4.7

20

21

Generation of Unique Labels

• Solution:
– Allowing the creation of special types of labels

within macro instructions
– See Figure 4.7

• Labels used within he macro body begin with theLabels used within he macro body begin with the
special character $

– Programmers are instructed no to use $ in theirProgrammers are instructed no to use $ in their
source programs

22

Conditional Macro Expansion

• Most macro processors can modify the
sequence of statements generated for a
macro expansion, depending on the p , p g
arguments supplied in the macro invocation

• See Figure 4 8• See Figure 4.8

23

24

25

Conditional Macro ExpansionConditional Macro Expansion
• Most macro processors can modify the sequenceMost macro processors can modify the sequence

of statements generated for a macro expansion,
depending on the arguments supplied in the macro
invocation

• See Figure 4.8
– Macro processor directive

• IF, ELSE, ENDIF
SET• SET

– Macro-time variable (set symbol)
• WHILE ENDW• WHILE-ENDW

– See Figure 4.9

26

27

Keyword Macro Parameters

• Positional parameters
– Parameters and arguments were associated with

each other according to their positions in the g p
macro prototype and the macro invocation
statement

– Consecutive commas is necessary for a null
argumentargument

GENER ,,DIRECT,,,,,,3

28

Keyword Macro Parameters

• Keyword parameters
– Each argument value is written with a keyword

that names the corresponding parameterp g p
– A macro may have a large number of

parameters , and only a few of these are givenparameters , and only a few of these are given
values in a typical invocation

GENER TYPE=DIRECT, CHANNEL=3GENER TYPE DIRECT, CHANNEL 3

29

30

31

Macro Processor Design Optionsg p
• Recursive Macro Expansion

– In Figure 4.3, we presented an example of the
definition of on macro instruction by another.y

• We have not dealt with the invocation of one macro
by another (nested macro invocation)

– See Figure 4.11

32

33

Macro Processor Design Optionsg p
• Recursive Macro Expansion Applying

Al ith f Fi 4 5Algorithm of Fig. 4.5
• Problem:

– The processing would proceed normally until line 50,
which contains a statement invoking RDCHAR

– In addition, the argument from the original macro add t o , t e a gu e t o t e o g a ac o
invocation (RDBUFF) would be lost because the values in
ARGTAB were overwritten with the arguments from the
invocation of RDCHARinvocation of RDCHAR

• Solution:
– These problems are not difficult to solve if the macroThese problems are not difficult to solve if the macro

processor is begin written in a programming language that
allows recursive call

34

General Purpose MacroGeneral-Purpose Macro
ProcessorsProcessors

• Macro processors have been developed for
some high-level programming languages

• These special-purpose macro processors areThese special purpose macro processors are
similar in general function and approach;
however the details differ from language tohowever, the details differ from language to
language

35

General Purpose MacroGeneral-Purpose Macro
ProcessorsProcessors

• The advantages of such a general-purpose
approach to macro processing are obvious
– The programmer does not need to learn about aThe programmer does not need to learn about a

different macro facility for each compiler or
assembler language, so much of the time and asse b e a guage, so uc o t e t e a d
expense involved in training are eliminated

– A substantial overall saving in software– A substantial overall saving in software
development cost

36

General Purpose MacroGeneral-Purpose Macro
ProcessorsProcessors

• In spite of the advantages noted, there are
still relatively few general-purpose macro
processors. Why?p y

1. In a typical programming language, there are
several situations in which normal macroseveral situations in which normal macro
parameter substitution should no occur

E g comments should usually be ignored by a– E.g. comments should usually be ignored by a
macro processor

37

General Purpose MacroGeneral-Purpose Macro
ProcessorsProcessors

2. Another difference between programming
l i l d h i f ili i flanguages is related to their facilities for
grouping together terms, expressions, or
statements
– E.g. Some languages use keywords such as begin

d d f i t t t Othand end for grouping statements. Others use
special characters such as { and }.

38

General Purpose MacroGeneral-Purpose Macro
ProcessorsProcessors

3. A more general problem involves the tokens
f h i lof the programming language

– E.g. identifiers, constants, operators, and
k dkeywords

– E.g. blanks

39

General Purpose MacroGeneral-Purpose Macro
ProcessorsProcessors

4. Another potential problem with general-
i l hpurpose macro processors involves the syntax

used for macro definitions and macro
i i Wi h i linvocation statements. With most special-
purpose macro processors, macro invocations

i il i f i hare very similar in form to statements in the
source programming language

40

41

