Chapter 4 Macro Processors

Professor Gwan-Hwan Hwang
Dept. Computer Science and Information Engineering
National Taiwan Normal University
9/17/2009

Introduction

* A macro Instruction (abbreviated to macro) Is
simply a notational convenience for the
programmer.

« A macro represents a commonly used group of
statements In the source programming language
e Expanding a macros

— Replace each macro instruction with the corresponding
group of source language statements

Introduction (Cont’d)

e E.Q.

— On SIC/XE requires a sequence of seven instructions to
save the contents of all registers

 Write one statement like SAVERGS
e A macro processor Is not directly related to the
architecture of the computer on which it is to run

e Macro processors can also be used with high-level

programming languages, OS command languages,
etc.

Basic Macro Processor Functions

Expanded program
A program with :
Macrg degfinitions and Macro 4{ A program without J
Macro invocations Processor Macro definitions

A 4

Assembler

A 4

[Object program}

Basic Macro Processor Functions

e Macro Definition

— Two new assembler directives
« MACRO
« MEND

— A pattern or prototype for the macro

*
q-
O
-

* Macro name and parameters
— See figure 4.1

Line Source statement

5 COPY START 0 COPY FILE FROM INPUT TO OUTPUT
10 ROBUFF MACRO &INDEV, &BUFADR, &RECLTH
15
20] MACRO TO READ RECORD INTO BUFFER
25 .
30 CLEAR X CLEAR LOOP COUNTER
35 CLEAR A
40 CLEAR 5
45 +LDT #4096 SET MAXIMUM RECORD LENGTH
50 D =X'&INDEV"' TEST INPUT DEVICE
55 JEQ =0 LOOP UNTIL READY
60 RD =X'&INDEV' READ CHARACTER INTO REG A
65 COMPR. A,B8 TEST FOR END OF RECORD
70 JEQ 1] EXIT LOOP IF EOR
5 STCH &BUFADR, X STORE CHARACTER IN BUFFER
80 TIXR iy LOOP UNLESS MAXIMUM LENGTH
85 JLT *-19 HAS BEEN REACHED
90 STX &RECLTH SAVE RECORD LENGTH
95 MEND
100 WRBUFF MACRO &OUTDEV, &BUFADR,, &RECLTH
105 .
110 i MACRO TO WRITE RECORD FROM BUFFER
115 ,
120 CLEAR X CLEAR LOOP COUNTER
125 LoT &RECLTH
130 LDCH &BUFADR, X GET CHARACTER FROM BUFFER
135 ™D =X ' &0OUTDEV ' TEST OUTFUT DEVICE
140 JEQ #=3 LOOP UNTIL READY
145 WD =X' &OUTDEV' WRITE CHARACTER
150 TIXR T LOOP UNTIL ALL CHARACTERS
155 JLT *~14 HAVE BEEN WRITTEN
160 MEND
165 .
170 : MAIN PROGRAM
175 ‘
180 FIRST STL RETADR SAVE RETURN ADDRESS
190 CLOOP RDBUFF F1,BUFFER,LENGTH READ RECORD INTO BUFFER
195 LDA LENGTH TEST FOR END CF FILE
200 COMP #0
205 JEQ ENDFIL EXIT IF EOF FOUND
210 WRBUFF 05, BUFFER, LENGTH WRITE OUTPUT RECORD
215 J CLOOP LOOP
220 ENDFIL WRBUFF 05, EOF, THREE INSERT EOF MARKER
225 J @RETADR
230 EOF BYTE C'EOF’
235 THREE WORD 3
240 RETADR RESW 1
245 LENGTH RESW i | LENGTH OF RECORD
250 BUFFER RESB 4096 4096-BYTE BUFFER AREA
255 END FIRST

Figure 4.1 Use of macros in a SIC/XE program.

Basic Macro Processor Functions

e Macro invocation

— Often referred to as a macro call

* Need the name of the macro instruction begin invoked and the
arguments to be used in expanding the macro

e Expanded program

— Figure 4.2
— No macro instruction definitions

— Each macro invocation statement has been expanded
Into the statements that form the body of the macro,
with the arguments from the macro invocation
substituted for the parameters in the prototype

Source statement

COPY START 0 COPY FILE FROM INPUT TO OUTPUT
FIRST STL RETADR SAVE RETURN ADDRESS
.CLOOP RDBUFF F1, BUFFER, LENGTH READ RECORD INTO BUFFER
CLOOP CLEAR X CLEAR LOOFP COUNTER
CLEAR A
CLEAR S
+LDT #4096 SET MAXIMUM RECORD LENGTH
D =X'F1’ TEST INPUT DEVICE
JEQ *=3 LOOF UNTIL READY
RD =X'F1°' READ CHARACTER INTO REG A
COMPR A,S TEST FOR END OF RECORD
JEQ *%11 EXIT LOOP IF EOR
STCH BUFFER, X STORE CHARACTER IN BUFFER
TIXR T LOOP UNLESS MAXIMUM LENGTH
JLT *~19 HAS BEEN REACHED
STX LENGTH SAVE RECORD LENGTH
LDA LENGTH TEST FOR END OF FILE
COoMP #0
JEQ ENDFIL EXIT IF EOF FOUND
WRBUFF 05,BUFFER,LENGTH WRITE OUTPUT RECORD
CLEAR X CLEAR LOOP COUNTER
Lor LENGTH
LDCH BUFFER, X GET CHARACTER FROM BUFFER
D =X'05" TEST OQUTPUT DEVICE
JEQ *~3 LOOP UNTIL READY
WD =X'05" WRITE CHARACTER
TIXR L LOOP UNTIL ALL CHARACTERS
JLT *—14 HAVE BEEN WRITTEN
J CLOOP LOOP
.ENDFIL WRBUFF 05, EOF, THREE INSERT EOF MARKER
ENDFIL CLEAR X CLEAR LOOP COUNTER
LoT THREE
LDCH EOF, X GET CHARACTER FROM BUFFER
™D =X'05" TEST OUTPUT DEVICE
JEQ *=3 . LOOP UNTIL READY
WD =X'05" WRITE CHARACTER
TIXR T LOOP UNTIL ALL CHARACTERS
JLT *-14 HAVE BEEN WRITTEN
J E@RETADR
EOF BYTE C'EQOF*
THREE WORD 3
RETADR RESW 1
LENGTH RESW 1 LENGTH OF RECORD
BUFFER RESBE 4096 4096-BYTE BUFFER AREA
END FIRST

Figure 4.2 Program from Fig. 4.1 with macros expanded.

Basic Macro Processor Functions

Macro invocations and subroutine calls are
different

Note also that the macro Instructions have

been written so that the body of the macro

contains no label

— Why?

Macro Processor Algorithm and
Data Structures

 [tis easy to design a two-pass macro processor

— Pass 1:
 All macro definitions are processed

— Pass 2:
« All macro invocation statements are expanded

 However, a two-pass macro processor would not
allow the body of one macro instruction to contain
definitions of other macros

— See Figure 4.3

10

2

W

B

w

MACROS MACRO
RDBUFF MACRO

WRBUFF MACRO

MACROX MACRO
RDBUFF MACRO

WRBUFF MACRO

Figure 4.3 Example of the definition of macros within a macro body.

{Defines SIC standard version macros}

&INDEV, &BUFADR, &RECLTH
{SIC standard version}

{End of RDBUFF}
&OUTDEV, &BUFADR, &RECLTH

{SIC standard version}

{End of WRBUFF}

{End of MACROS}

(@)

{Defines SIC/XE macros}
&INDEV, &BUFADR, &RECLTH

{SIC/XE version}

{End of RDBUFF}
&OUTDEV, &BUFADR,, &RECLTH

{SIC/XE version}

{End of WRBUFF}

{End of MACROX}

(b)

11

Macro Processor Algorithm and
Data Structures

« Sub-Macro definitions are only processed
when an invocation of their Super-Macros
are expanded

— See Figure 4.3: RDBUFF

« A one-pass macro processor that can
alternate between macro definition and
macro expansions able to handle macros
like those In Figure 4.3

12

Macro Processor Algorithm and
Data Structures

» Because of the one-pass structure, the
definition of a macro must appear In the
source program before any statements that

INvoke that macro

 Three main data structures involved In an
one-pass macro processor
— DEFTAB, NAMTAB, ARGTAB

13

NAMTAB DEFTAB

¥ .
$ 5
3
o L]
. 'ﬂ_,_,-——""i.' RDBUFF &INDEV,&BUFADR, &RECLTH
RDBUFF | *T o= GEEAR 2
CLEAR A
¥ CLEAR S
. +LDT #4096
D =Xx'?1’
JEQ *-3
RD =X'?1’
COMPR A.S
JEQ *+11
STCH 22, X
TIXR T
JLT *-19
STX 23
—»| uEND
.
5
ARGTAB (a)
F1
BUFFER
LENGTH

(b)

Figure 4.4 Contents of macro processor tables for the program in
Fig. 4.1: (a) entries in NAMTAB and DEFTAB defining macro RDBUFF,
(b) entries in ARGTAB for invocation of RDBUFF on line 190.

14

begin {macro processor}
EXPANDING := FALSE
while OPCODE # ’‘END’ do
begin
GETLINE
PROCESSLINE
end {while}
end {macro processor}

procedure PROCESSLINE
begin
search NAMTAB for OPCODE
if found then
EXPAND
else if OPCODE = 'MACRO’ then
DEFINE
else write source line to expanded file
end {PROCESSLINE}

Figure 4.5 Algorithm for a one-pass macro processor.

procedure DEFINE
begin
enter macro name into NAMTAB
enter macro prototype into DEFTAB
LEVEL =1
while LEVEL > 0 do
begin
GETLINE
if this is not a comment line then
begin
substitute positional notation for parameters
enter line into DEFTAB
if OPCODE = 'MACRO’ then
LEVEL := LEVEL + 1
else if OPCODE = 'MEND’ then
LEVEL := LEVEL - 1
end {if not comment}
end {while}
store in NAMTAB pointers to beginning and end of definition

end {DEFINE}

procedure EXPAND
begin

EXPANDING := TRUE
get first line of macro definition {prototype} from DEFTAB

set up arguments from macro invocation in ARGTAB
write macro invocation to expanded file as a comment
while not end of macro definition do
begin
GETLINE
PROCESSLINE
end {while}
EXPANDING := FALSE
end {EXPAND}

procedure GETLINE
begin
if EXPANDING then

begin
get next line of macro definition from DEFTAB

substitute arguments from ARGTAB for positional notation
end {if}

else
read next line from input file

end {GETLINE}

Figure 4.5 (contd)

Machine-Independent Macro
Processor Feature

Concatenation of Macro Parameters
Generation of Unique Labels
Conditional Macro Expansion
Keyword Macro Parameters

17

Concatenation of Macro
Parameters

e Most macro processors allow parameters to
be concatenated with other character strings

— The need of a special catenation operator
« LDA X&ID1
e LDA X&ID

— The catenation operator
e LDA X&ID—1

o See figure 4.6

18

O U1 W N
g

(b)

SUM

(c)

Figure 4.6 Concatenation of macro parameters.

&ID

X&ID—-1
X&ID—2
X&ID—3
X&ID—S

BETA

XBETA1
XBETAZ2
XBETA3
XBETAS

19

Generation of Unique Labels

 [tisin general not possible for the body of a
macro instruction to contain labels of the usual
kind

— Leading to the use of relative addressing at the source

statement level
* Only be acceptable for short jumps

e Solution:

— Allowing the creation of special types of labels within
macro instructions

— See Figure 4.7

20

25
30
35
40
45
50
55
60
65
70
75
80
85
90
95

30
35
40
45
50
735)
60
65
70
75
80
85
90

RDBUFF MACRO
CLEAR
CLEAR
CLEAR
+LDT
$LOOP TD
JEQ

COMPR
JEQ
STCH
TIXR

SEXIT STX

RDBUFF

&INDEV, &BUFADR, &RECLTH

X
A
S
#4096
=X'&INDEV'
$LOOP
=X'&INDEV'’
A,S
SEXIT

&BUFADR, X

A
$LOOP
&RECLTH

(a)

CLEAR LOOP COUNTER

SET MAXTMUM RECORD LENGTH

TEST INPUT DEVICE

LOOP UNTIL READY

READ CHARACTER INTO REG A

TEST FOR END OF RECORD

EXIT LOOP IF EOR

STORE CHARACTER IN BUFFER

LOOP UNLESS MAXTIMUM LENGTH
HAS BEEN REACHED

SAVE RECORD LENGTH

F1, BUFFER, LENGTH

=
A
S
#4096
=X'F1’
$SAALOOP
=XIPIr
A,S
SAAEXIT
BUFFER, X
T
SAALOOP
LENGTH

(b)

CLEAR LOQOP COUNTER

SET MAXIMUM RECORD LENGTH

TEST INPUT DEVICE

LOOP UNTIL READY

READ CHARACTER INTO REG A

TEST FOR END OF RECORD

EXIT LOOP IF EOR

STORE CHARACTER IN BUFFER

LOOP UNLESS MAXTMUM LENGTH
HAS BEEN REACHED

SAVE RECORD LENGTH

21

Figure 4.7 Generation of unique labels within macro expansion.

Generation of Unique Labels

e Solution:

— Allowing the creation of special types of labels
within macro Instructions

— See Figure 4.7

o Labels used within he macro body begin with the
special character $

— Programmers are instructed no to use $ in their
source programs

22

Conditional Macro Expansion

e Most macro processors can modify the
sequence of statements generated for a
macro expansion, depending on the
arguments supplied in the macro invocation

e See Figure 4.8

23

25
26
27
28
30
35
38
40
42
43
44
45
46
47
48
50
55
60
63
65
70
73
75
80
85
90
95

30
35
40
42
4
50
55
60
65
70
75
80
85
90

RDBUFF

&EORCK

$SLOOP

SEXIT

SAALOOP

SAAEXIT

MACRO
IF
SET
ENDIF
CLEAR
CLEAR
IF
LDCH
RMO
ENDIF
IF
+LDT
ELSE
+LDT
ENDIF
TD
JEQ
RD
IF
COMPR
JEQ
ENDIF
STCH
TIXR
JLT
STX
MEND

RDBUFF

CLEAR

&INDEV, &BUFADR, &RECLTH, &EOR , &MAXLTH

(&ECR NE ' ')

1

X CLEAR LOOP COUNTER

A

(&EORCK EQ 1)
=X’ &EOR’ SET EOR CHARACTER

A,S

(&MAXLTH EQ ‘')
#4096 SET MAX LENGTH = 4096
#S&MAXTTH SET MAXIMUM RECORD LENGTH
=X'&INDEV' TEST INPUT DEVICE

SLOOP LOOP UNTIL READY
=X'&INDEV' READ CHARACTER INTO REG A
(&EORCK EQ 1)

Al TEST FOR END OF RECORD
SEXIT EXIT LOOP IF EOR

&BUFADR, X STORE CHARACTER IN BUFFER
T LOOP UNLESS MAXIMUM LENGTH
$LOOP HAS BEEN REACHED
&RECLTH SAVE RECORD LENGTH

(a)

F3, BUF, RECL, 04,2048

X CLEAR LOOP COUNTER
A

=X'04' SET EOR CHARACTER

A,S

#2048 SET MAXIMUM RECORD LENGTH
=X'F3’ TEST INPUT DEVICE

SAATLOOP LOOP UNTIL READY

=X'F3’ READ CHARACTER INTO REG A

A,S TEST FOR END OF RECORD

SAAEXIT EXIT LOOP IF EOR

BUF, X STORE CHARACTER IN BUFFER

T LOOP UNLESS MAXIMUM LENGTH

$AALOOP HAS BEEN REACHED

RECL SAVE RECORD LENGTH 24

(b)

Figure 4.8 Use of macro-time conditional statements.

30
35
47
50
55
60
75
80
87
90

30
35
40
42
45
50
55
60
65
70
745
80
85
90

RDBUFF

CLEAR
CLEAR
+LDT
SABLOOP TD
JEQ
RD
STCH
TIXR

SABEXIT STX

RDBUFF

CLEAR
CLEAR
LDCH
RMO
+LDT
SACLOOP TD
JEQ
RD
COMPR
JEQ
STCH
TIXR
JLT
SACEXIT STX

Figure 4.8 (contd)

OE, BUFFER, LENGTH, , 80

#80

=X’ OE
$ABLOOP

=X’ OE
BUFFER, X

SABLOOP
LENGTH

(c)

CLEAR LOOP COUNTER

SET MAXIMUM RECORD LENGTH

TEST INPUT DEVICE

LOOP UNTIL READY

READ CHARACTER INTO REG A

STORE CHARACTER IN BUFFER

LOOP UNLESS MAXTIMUM LENGTH
HAS BEEN REACHED

SAVE RECORD LENGTH

F1, BUFF, RLENG, 04

X

A
=X'04"'
A,S
#4096
=X'F1'’
SACLOOP
=X'F1’
A, S
SACEXIT
BUFF, X
A
SACLOOP
RLENG

(d)

CLEAR LOOP COUNTER

SET EOR CHARACTER

SET MAX LENGTH = 4096

TEST INPUT DEVICE

LOOP UNTIL READY

READ CHARACTER INTO REG A

TEST FOR END OF RECORD

EXIT LOOP IF EOR

STORE CHARACTER IN BUFFER

LOOP UNLESS MAXIMUM LENGTH
HAS BEEN REACHED

SAVE RECORD LENGTH

25

Cnnditinnal N vNnan
wUliuiuy i Apdi

Arrn =
1 11IG1 IVIAuI VU

c
9

« Most macro processors can modify the sequence
of statements generated for a macro expansion,
depending on the arguments supplied in the macro

Invocation

e See Figure 4.8

— Macro processor directive
e IF, ELSE, ENDIF
e SET

— Macro-time variable (set symbol)

 WHILE-ENDW
— See Figure 4.9

26

25
27
30
35
45
50
55
60
63
64
65
70
71
73
75
80
85
90
100

30
35
45
50
1)
60
65
70
65
70
65
70
75
80
85
90

&INDEV, &BUFADR, &RECLTH, &EOR

CLEAR LOOP COUNTER

SET MAX LENGTH = 4096
TEST INPUT DEVICE

LOOP UNTIL READY

READ CHARACTER INTO REG A

STORE CHARACTER IN BUFFER

LOOP UNLESS MAXIMUM LENGTH
HAS BEEN REACHED

SAVE RECORD LENGTH

CLEAR LOOP COUNTER

SET MAX LENGTH = 4096
TEST INPUT DEVICE

LOOP UNTIL READY

READ CHARACTER INTO REG A

STORE CHARACTER IN BUFFER
LOOP UNLESS MAXIMUM LENGTH
HAS BEEN REACHED

RDBUFF MACRO
&EORCT SET $NITEMS (&EOR)
CLEAR X
CLEAR A
+LDT #4096
SLOOP TD =X'&INDEV'
JEQ SLOOP
RD =X' &INDEV'
&CTR SET 1
WHILE (&CTR LE &EORCT)
COMP =X’ 0000&EOR [&CTR] '
JEQ SEXIT
&CTR SET &CTR+1
ENDW
STCH &BUFADR, X
TIXR T
JLT $LOOP
SEXIT STX &RECLTH
MEND
(a)
RDBUFF F2,BUFFER, LENGTH, (00,03,04)
CLEAR X
CLEAR A
+LDT #4096
SAALOOP TD =X'F2'
JEQ $AALOOP
RD =X'F2’
COMP =X’000000"
JEQ SAAEXIT
COMP =X'000003"
JEQ SAAEXIT
COMP =X'000004"
JEQ SAAEXIT
STCH BUFFER, X
TIXR |
JLT SAATLOOP
SAAEXIT STX LENGTH

(b)

SAVE RECORD LENGTH

27

Figure 4.9 Use of macro-time looping statements.

Keyword Macro Parameters

 Positional parameters

— Parameters and arguments were assoclated with
each other according to thelir positions in the
macro prototype and the macro invocation
statement

— Consecutive commas Is necessary for a null
argument

GENER ,,DIRECT,,,,,,3

28

Keyword Macro Parameters

o Keyword parameters

— Each argument value is written with a keyword
that names the corresponding parameter

— A macro may have a large number of
parameters , and only a few of these are given
values In a typical invocation

GENER TYPE=DIRECT, CHANNEL=3

29

25
26
277
28
30
35
38
40
42
43
47
50
S}
60
63
65
70
73
75
80
85
90
95

30
35
40
42
47
50
55
60
65
70
75
80
85
90

RDBUFF MACRO
IF
&EORCK SET
ENDIF
CLEAR
CLEAR
IF
LDCH
RMO
ENDIF
+LDT
SLOOP D
JEQ
RD
IF
COMPR
JEQ
ENDIF
STCH
TIXR
JLT
SEXIT STX
MEND

RDBUFF

CLEAR
CLEAR

+LDT
SAALOOP TD
COMPR

STCH
TIXR

SAAEXIT STX

&INDEV=F1, &BUFADR=, &RECLTH=, &EOR=04 , &MAXLTH=4096
(&EOR NE ')

1

X CLEAR LOOP COUNTER

A

(&EORCK EQ 1)
=X'&EOR’ SET EOR CHARACTER

A,S
#EMAXLTH SET MAXIMUM RECORD LENGTH
=X'&INDEV' TEST INPUT DEVICE

SLOOP LOOP UNTIL READY
=X'&INDEV' READ CHARACTER INTO REG A
(&EORCK EQ 1)

A,S TEST FOR END OF RECORD
SEXIT EXIT LOOP IF EOR

&BUFADR, X STORE CHARACTER IN BUFFER
11 LOOP UNLESS MAXIMUM LENGTH
SLOOP HAS BEEN REACHED
&RECLTH SAVE RECORD LENGTH

(a)

BUFADR=BUFFER , RECLTH=LENGTH

X CLEAR LOOP COUNTER

A
=X'04’' SET EOR CHARACTER

A,S
#4096 SET MAXIMUM RECORD LENGTH
=X'F1’ TEST INPUT DEVICE

SAALOOP LOOP UNTIL READY

=X'F1’ READ CHARACTER INTO REG A
A,S TEST FOR END OF RECORD
SAREXIT EXIT LOOP IF EOR

BUFFER, X STORE CHARACTER IN BUFFER
o LOOP UNLESS MAXIMUM LENGTH
SAALOOP HAS BEEN REACHED
LENGTH SAVE RECORD LENGTH

(b)

Figure 4.10 Use of keyword parameters in macro instructions.

30

30
39
47
50
59
60
75
80
85
90

RDBUFF RECLTH=LENGTH, BUFADR=BUFFER, EOR=, INDEV=F3

CLEAR X

CLEAR A

+LDT #4096
SABLOOP TD eX E3!

JEQ SABLOOP

RD =% PR

STOH BUFFER, X

TIXR gl

JLT SABLOOP
SABEXIT STX LENGTH

(c)

Figure 4.10 (contd)

CLEAR LOOP COUNTER

SET MAXIMUM RECORD LENGTH

TEST INPUT DEVICE

LOOP UNTIL READY

READ CHARACTER INTO REG A

STORE CHARACTER IN BUFFER

LOOP UNLESS MAXIMUM LENGTH
HAS BEEN REACHED

SAVE RECORD LENGTH

31

Macro Processor Design Options

e Recursive Macro Expansion

— In Figure 4.3, we presented an example of the
definition of on macro instruction by another.

» \We have not dealt with the invocation of one macro
by another (nested macro invocation)

— See Figure 4.11

32

10
15
20
25
30
35
40
45
50
65
70
75
80
85
90
895

10
ih
20
25
30
35
40

RDBUFF

$LOOP

SEXIT

MACRO &BUFADR, &RECLTH, &INDEV

MACRO TO READ RECORD INTO BUFFER

CLEAR X CLEAR LOOP COUNTER

CLEAR A

CLEAR S

+LDT #4096 SET MAXIMUM RECORD LENGTH
RDCHAR &INDEV READ CHARACTER INTO REG A
COMPR A,S TEST FOR END OF RECORD
JEQ SEXIT EXIT LOOP IF EOR

STCH &BUFADR, X STORE CHARACTER IN BUFFER
TIXR 'F LOOP UNLESS MAXIMUM LENGTH
JLT SLOOP HAS BEEN REACHED

STX &RECLTH SAVE RECORD LENGTH

MEND
(a)
MACRO &IN

MACRO TO READ CHARACTER INTO REGISTER A

TD =X'&IN' TEST INPUT DEVICE
JEQ *-3 LOOP UNTIL READY
RD =X'&IN’ READ CHARACTER
MEND

(b)

RDBUFF BUFFER, LENGTH, F1

(c)

Figure 4.11 Example of nested macro invocation.

33

Macro Processor Design Options

« Recursive Macro Expansion Applying
Algorithm of Fig. 4.5

e Problem:

— The processing would proceed normally until line 50,
which contains a statement invoking RDCHAR

— In addition, the argument from the original macro
invocation (RDBUFF) would be lost because the values in
ARGTAB were overwritten with the arguments from the
invocation of RDCHAR

e Solution:

— These problems are not difficult to solve if the macro
processor is begin written in a programming language that
allows recursive call

34

General-Purpose Macro
Processors

* Macro processors have been developed for
some high-level programming languages

e These special-purpose macro processors are
similar in general function and approach;
however, the details differ from language to
language

35

General-Purpose Macro
Processors

* The advantages of such a general-purpose

approach to macro processing are obvious
— The programmer does not need to learn about a
different macro facility for each compiler or

assembler language, so much of the time and
expense involved In training are eliminated

— A substantial overall saving in software
development cost

36

General-Purpose Macro
Processors

In spite of the advantages noted, there are
still relatively few general-purpose macro
processors. Why?

1. Inatypical programming language, there are
several situations in which normal macro
parameter substitution should no occur

— E.g. comments should usually be ignored by a
macro processor

37

General-Purpose Macro
Processors

2. Another difference between programming
languages Is related to their facilities for
grouping together terms, expressions, or
statements

— E.g. Some languages use keywords such as begin
and end for grouping statements. Others use
special characters such as { and }.

38

General-Purpose Macro
Processors

3. A more general problem involves the tokens
of the programming language

— E.g. identifiers, constants, operators, and
keywords

— E.g. blanks

39

General-Purpose Macro
Processors

4. Another potential problem with general-
purpose macro processors involves the syntax
used for macro definitions and macro
Invocation statements. With most special-
purpose macro processors, macro invocations
are very similar in form to statements in the
source programming language

40

