Chapter 1 Background

Professor Gwan-Hwan Hwang
Dept. Computer Science and Information Engineering
National Taiwan Normal University
9/17/2009

Outlines

1.1 Introduction
1.2 System Software and Machine Architecture

1.3 The Simplified Instructional Computer (SIC)
— SIC Machine Architecture

— SIC/XE Machine Architecture

— SIC Programming Examples

1.4 Traditional (CISC) Machines
1.5 RISC Machines

Introduction

« Definition of System software

— System software consists of a variety of
programs that support the operation of a
computer

o Examples

— Text editor, compiler, loader or linker,
debugger, macro processors, operating system,
database management systems, software
engineering tools, etc.

System Software and Machine
Architecture

* One characteristic in which most system
software differs from application software Is
machine dependency

e System programs are intended to support
the operation and use of the computer itself,
rather than any particular application.

— E.g. Assemblers, compilers, operating systems

System Software and Machine
Architecture (Cont’d)

e There are some aspects of system software
that do not directly depend upon the type of
computing system being supported

— The second para. of Section 1.2

System Software and Machine
Architecture (Cont’d)

e Because most system software is machine-
dependent, we must include real machines
and real pieces of software in our study.

o Simplified Instructional Computer (SIC)

— SIC i1s a hypothetical computer that has been
carefully designed to include the hardware
features most often found on real machines,
while avoiding unusual or irrelevant

complexities

The Simplified Instructional
Computer (SIC)

 Like many other products, SIC comes in two
versions
— The standard model
— An XE version
o “extra equipments”, “extra expensive”
e The two versions has been designed to be upward
compatible

— An object program for the standard SIC machine will
also execute properly on a SIC/XE system

SIC Machine Architecture

 Memory
— Memory consists of 8-bit bytes
— Any 3 consecutive bytes form a word (24 bits)

— Total of 32768 (21°) bytes in the computer
memory

SIC Machine Architecture (Cont’d)

* Registers
— Five registers

— Each register is 24 bits in length

Mnemonic Number

Special use

A 0
X 1
L 2
PC 8
SW 9

Accumulator
Index register
Linkage register
Program counter

Status word

SIC Machine Architecture (Cont’d)

e Data Formats
— Integers are stored as 24-bit binary number

— 2’s complement representation for negative
values

— Characters are stored using 8-bit ASCII codes

— No floating-point hardware on the standard
version of SIC

10

SIC Machine Architecture (Cont’d)

e |nstruction Formats
— Standard version of SIC

— 24 bits
8 1 15
opcode | X address

The flag bit x is used to indicate indexed-addressing mode

11

SIC Machine Architecture (Cont’d)

e Addressing Modes

— There are two addressing modes available
o Indicated by x bit in the instruction

Mode Indication Target address calculation
Direct X=0 TA=address
Indexed x=1 TA=address+(X)

(X): the contents of register X

12

SIC Machine Architecture (Cont’d)

Instruction Set
— Load and store registers
« LDA, LDX, STA, STX, etc.

— Integer arithmetic operations
« ADD, SUB, MUL, DIV

« All arithmetic operations involve register A and a word in memory,
with the result being left in A

— COMP

— Conditional jump instructions
« JLT, JEQ,JGT

— Subroutine linkage
» JSUB, RSUB

See appendix A, Pages 495-498

13

SIC Machine Architecture (Cont’d)

 |nput and Output

— Input and output are performed by transferring
1 byte at a time to or from the rightmost 8 bits
of register A

e Test Device TD instruction
* Read Data (RD)
e Write Data (WD)

14

SIC/XE Machine Architecture

 Memory

— Maximum memory available on a SIC/XE
system is 1 megabyte (22° bytes)

15

SIC/XE Machine Architecture (Cont’d)

* Registers

— Additional registers are provided by SIC/XE

Mnemonic Number

Special use

B

S
T
F

3

A
5
9

General working register
General working register

Floating-point accumulator (48 bits)

16

SIC/XE Machine Architecture (Cont’d)

* There Is a 48-bit floating-point data type

1 11 36
S | exponent fraction

F*2(e-1024)

SIC/XE Machine Architecture (Cont’d)

e |nstruction Formats
— 15 bits in (SIC), 20 bits in (SIC/XE)

3
Format 1 (1 byte) op

3 4 4
Format 2 (2 bytes) op rl 2

Formats 1 and 2 are instructions that do not reference memory at all
18

SIC/XE Machine Architecture (Cont’d)
Format 3 (3 bytes)

§) 111111 12
op nii|x/bjpje disp
Format 4 (5 bytes)
§) 111111 20
op nii|x/b|ple address
Mode Indication Target address calculation

Base relative b=1,p=0 TA=(B)+disp (0<disp <4095)

Program-counter TA=(PC)+disp (-2048<disp <2047)

relative b=0,p=1

19

SIC/XE Machine Architecture (Cont’d)

e |nstruction Formats
— See Figure 1.1, P. 11.

20

(B) = 006000
- L]
. . (PC) = 003000
L] L]
- . (X) = 000090
3030 | 003600
. L]
. L]
- L]
3600 103000
. L]
L] L]
. -
L] L]
. L]
6390 | 00C303
. -
. -
- -
L] L]
L] -
L -
C303 003030
L] -
L] L]
L] L]
. L]
(a)
Machine instruction Value
: 1 loaded
Hex Binary into
— TR 1 Target register
op n' i o bl iple disp/address address A
032600 000000 o S o g s IS0 0 100000 =0000, 3600 103000
03C300 000000 1 1 1 Lt 0 0 0011 0000 0000 6390 00C303
022030 000000 1SS0 O S g S I8 S 0= 0000500110000, 3030 103000
010030 000000 0 1 0 0 0 0 0000 0011 0000 30 000030
003600 000000: R0 DF = ke SniE w1l S8 S 0N 0= 000040000 3600 103000
0310C303 000000 1- 1 s R0 H O B 0000110050011 20000-001.1 €303 003030
{b)

Figure 1.1 Examples of SIC/XE instructions and addressing modes.

21

SIC/XE Machine Architecture (Cont’d)

e |nstruction Set

— Instructions to load and store the new registers
 LDB, STB, etc.

— Floating-point arithmetic operations
 ADDF, SUBF, MULF, DIVF

— Register move instruction
« RMO

— Register-to-register arithmetic operations
 ADDR, SUBR, MULR, DIVR

— Supervisor call instruction
« SVC

SIC/XE Machine Architecture (Cont’d)

 |Input and Output

— There are 1/0O channels that can be used to
perform input and output while the CPU is
executing other instructions

23

SIC Programming Examples

Figure 1.2
— Sample data movement operations

Figure 1.3

— Sample arithmetic operations

Figure 1.4

— Sample looping and indexing operations
Figure 1.5

— Sample looping and indexing operations
Figure 1.6

- 1/0

Figure 1.7
— Subroutine call

24

ALPHA
FIVE
CHARZ
el

ALPHA
Cl

LDA
STA
LDCH
STCH

WORD
BYTE
RESB

RESB

FIVE
ALPHA
CHARZ
6 |

s BT g 6 =
N

#5
ALPHA
#90
¥ |

LOAD CONSTANT 5 INTO REGISTER A
STORE IN ALPHA

LOAD CHARACTER ’‘Z’ INTO REGISTER A
STORE IN CHARACTER VARIABLE C1l

ONE-WORD VARIABLE
ONE-WORD CONSTANT
ONE-BYTE CONSTANT
ONE-BYTE VARIABLE

C))

LOAD VALUE 5 INTO REGISTER A

STORE IN ALPHA

LOAD ASCII CODE FOR ’‘Z’ INTO REG A
STORE IN CHARACTER VARIABLE Cl

ONE-WORD VARIABLE
ONE-BYTE VARIABLE

(b)

Figure 1.2 Sample data movement operations for (a) SIC and

(b) SIC/XE.

ALPHA
BETA

DELTA
INCR

ALPHA
BETA

DELTA
INCR

ADDR

STA

ADDR

STA

ALPHA
INCR

I

ALPHA

S,A
#1

BETA

S,A
#1
DELTA

N

LOAD ALPHA INTO REGISTER A
ADD THE VALUE OF INCR
SUBTRACT 1

STORE IN BETA

LOAD GAMMA INTO REGISTER A
ADD THE VALUE OF INCR
SUBTRACT 1

STORE IN DELTA

ONE-WORD CONSTANT
ONE-WORD VARIABLES

(a)

LOAD VALUE OF INCR INTO REGISTER S
LOAD ALPHA INTO REGISTER A

ADD THE VALUE OF INCR

SUBTRACT 1

STORE IN BETA

LOAD GAMMA INTO REGISTER A

ADD THE VALUE OF INCR

SUBTRACT 1

STORE IN DELTA

ONE WORD VARIABLES

(b)

Figure 1.3 Sample arithmetic operations for (a) SIC and (b) SIC/XE.

26

MOVECH

STR1
STR2

ZERO
ELEVEN

MOVECH

STR1
STR2

STCH
TIX

BYTE
RESB

LDCH
STCH
TIXR

BYTE
RESB

Figure 1.4
(b) SIC/XE.

ZERO INITIALIZE INDEX REGISTER TO O

STR1, X LOAD CHARACTER FROM STR1 INTO REG A
STR2,X STORE CHARACTER INTO STR2

ELEVEN ADD 1 TO INDEX, COMPARE RESULT TO 11
MOVECH LOOP IF INDEX IS LESS THAN 11

C’TEST STRING' 11-BYTE STRING CONSTANT

11 11-BYTE VARIABLE

ONE-WORD CONSTANTS
0
11
(a)

#11 INITIALIZE REGISTER T TO 11
#0 INITIALIZE INDEX REGISTER TO 0

STR1, X LOAD CHARACTER FROM STR1 INTO REG A
STR2, X STORE CHARACTER INTO STR2

T ADD 1 TO INDEX, COMPARE RESULT TO 11
MOVECH LOOP IF INDEX IS LESS THAN 11

C’TEST STRING’ 11-BYTE STRING CONSTANT

] 11-BYTE VARIABLE

(b)
Sample looping and indexing operations for (a) SIC and 27

ADDLP LDX

ALPHA RESW
BETA RESW

ZERO WORD
K300 WORD

ADDLP LDA

ALPHA RESW
BETA RESW

ZERO

INDEX
ALPHA, X
BETA, X
GAMMA, X
INDEX

INDEX
K300
ADDLP

100
100
100

300

#3

#300

#0
ALPHA, X
BETA, X
GAMMA, X
S, X
X;m
ADDLP

100
100
100

INITIALIZE INDEX VALUE TO 0

LOAD INDEX VALUE INTO REGISTER X
LOAD WORD FROM ALPHA INTO REGISTER A
ADD WORD FROM BETA

STORE THE RESULT IN A WORD IN GAMMA
ADD 3 TO INDEX VALUE

COMPARE NEW INDEX VALUE TO 300
LOOP IF INDEX IS LESS THAN 300

ONE-WORD VARIABLE FOR INDEX VALUE
ARRAY VARIABLES--100 WORDS EACH

ONE-WORD CONSTANTS

(a)

INITIALIZE REGISTER S TO 3
INITIALIZE REGISTER T TO 300
INITIALIZE INDEX REGISTER TO 0

LOAD WORD FROM ALPHA INTO REGISTER A
ADD WORD FROM BETA

STORE THE RESULT IN A WORD IN GAMMA
ADD 3 TO INDEX VALUE

COMPARE NEW INDEX VALUE TO 300

LOOP IF INDEX VALUE IS LESS THAN 300

ARRAY VARTABLES--100 WORDS EACH

(b)

Figure 1.5 Sample indexing and looping operations for (a) SIC and

(b) SIC/XE.

28

INLOOP

OUTLP

INDEV
OUTDEV
DATA

JEQ

STCH

JEQ
LDCH

BYTE
BYTE
RESB

INDEV
INLOOP
INDEV
DATA

OUTDEV
OUTLP
DATA
OUTDEV

X'Fl'
RTUS!
1

TEST INPUT DEVICE

LOOP UNTIL DEVICE IS READY
READ ONE BYTE INTO REGISTER A
STORE BYTE THAT WAS READ

TEST OUTPUT DEVICE

LOOP UNTIL DEVICE IS READY
LOAD DATA BYTE INTO REGISTER A
WRITE ONE BYTE TO OUTPUT DEVICE

INPUT DEVICE NUMBER
OUTPUT DEVICE NUMBER
ONE-BYTE VARIABLE

Figure 1.6 Sample input and output operations for SIC.

LDX
RLOOP TD
JEQ
RD
STCH
TIX
JLT
RSUB
INDEV BYTE

RLOOP TD

INDEV BYTE
RECORD RESB

Figure 1.7 Sample subroutine call and record input operations for

ZERO
INDEV
RLOOP
INDEV
RECORD, X
K100
RLOOP

X'F1’
100

100

#0

#100
INDEV
RLOOP
INDEV
RECORD, X

RLOOP

X'Fl*
100

(a) SIC and (b) SIC/XE.

CALL READ SUEROUTINE

SUBROUTINE TO READ 100-BYTE RECCRD
INITIALIZE INDEX REGISTER TO 0
TEST INPUT DEVICE

LOOP IF DEVICE IS BUSY

READ ONE BYTE INTO REGISTER A
STORE DATA BYTE INTO RECORD

ADD 1 TO INDEX AND COMPARE TO 100
LOOP IF INDEX IS LESS THAN 100
EXIT FROM SUBROUTINE

INPUT DEVICE NUMBER
100-BYTE BUFFER FOR INPUT RECORD
ONE-WORD CONSTANTS

(a)

CALL READ SUBROUTINE

SUBROUTINE TO READ 100-BYTE RECORD
INITIALIZE INDEX REGISTER TO 0
INITIALIZE REGISTER T TO 100

TEST INPUT DEVICE

LOOP IF DEVICE IS BUSY

READ ONE BYTE INTO REGISTER A
STORE DATA BYTE INTO RECORD

ADD 1 TO INDEX AND COMPARE TO 100
LOOP IF INDEX IS LESS THAN 100
EXIT FROM SUBROUTINE

INPUT DEVICE NUMBER
100-BYTE BUFFER FOR INPUT RECORD

(b)
30

