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Chapter 6 Data Types



6.1 Introduction

• A data type defines a collection of data 
values and a set of predefined operations on 
those values.
– In pre-90 Fortrans, linked lists and binary trees 

were implemented with arrays
– ALGOL 68, provides a few basic types and a 

few flexible structure-defining operators that 
allow a programmer to design a data structure 
for each need.
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6.1 Introduction (Cont’d)

– Abstract data type supported by most 
programming languages designed since the 
mid-1980s.
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6.1 Introduction (Cont’d)

• Uses of type system in PL
– Error detection
– Program modularization
– Document

• The type system defines how a type is 
associated with each expression and 
includes its rule for type equivalence and 
type compatibility
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6.1 Introduction (Cont’d)

• Think of variables in terms of descriptors
– A descriptor is the collection of attributes of a 

variable
– Static descriptor & dynamic descriptor
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6.2 Primitive Data Types

• Numeric Types
– Integer
– Floating-point

• IEEE Floating-Point Standard 754 format
• See next page

– Complex
• Fortran and Python
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6.2 Primitive Data Types 
(Cont’d)

– Decimal
• To support business systems applications

– COBOL, C#, F#

• To precisely store decimal number
• binary coded decimal (BCD)

– Boolean Types
• Introduced in ALGOL 60
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6.2 Primitive Data Types 
(Cont’d)

• Character Types
– Traditionally, 8-bit code ASCII

• 0 to 127
– EASCII

• Extended ASCII, ISO 8859-1
• Allow 256 different characters

– See next slice.
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6.2 Primitive Data Types (Cont’d)
• UCS-2

– 16-bit character set
– Called Unicode
– Java was the first widely used language to use the Unicode

» JavaScript, Python, Perl, C#, F#
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6.2 Primitive Data Types (Cont’d)
• UTF-16

– An extension of UCS-2
» 2 or 4 bytes
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6.3 Character String Types

• A character string type is one in which the 
values consist of sequences of characters

• Design issues:
– Should strings be simply a special kind of 

character array or a primitive type?
– Should strings have static or dynamic length?
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6.3.2 Strings and Their Operations
• Most common string operations

– Assignment, catenation, substring reference, 
comparison, and pattern matching

• If strings are not defined as a primitive type
– Stored in arrays of single characters
– Taken by C and C++
– str is an array of char elements, specifically 
apple0, where 0 is the null charater.

char str[]=“apples”;
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6.3.2 Strings and Their Operations 
(Cont’d)

• The string manipulation functions of the C 
standard library, also available in C++ are 
inherently unsafe

• Consider the following situations,  
|dest|=20, and |src|=50:

strcopy (dest, src);

• C++ also supports string class.
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6.3.2 Strings and Their Operations 
(Cont’d)

• In Java,
– String class

• Constant string
• For each assignment to a String object, a new 

object should be created (instantiated). 
 String S1 = "abc";  

       For(int I = 0 ; I < 10000 ; I ++)          {  
              S1 + = "def";  
              S1 = "abc";  
      } 
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6.3.2 Strings and Their Operations 
(Cont’d)

• In Java,
– StringBuffer class

• Changeable 

StringBuffer Sb = new StringBuilder(“This is only 
a”).append(“simple”).append(“test”); 
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6.3.2 Strings and Their Operations 
(Cont’d)

• Building-in pattern-matching operations of 
strings
– Perl, JavaScript, Ruby, PHP…
– Regular expression

• E.g.
/[A-Za-z][A-za-z\d]+/    (name form in PL)
/\d+\.?\d* | \.\d+/      (numeric literal)

• Included in class libraries of pattern-
matching operations of strings
– C++, Java, Python, C#, F#
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Regular Expressions (補充教材)
• Tokens are built from symbols of a finite 

vocabulary.
• We use regular expressions to define 

structures of tokens.
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Regular Expressions
• The sets of strings defined by regular expressions 

are termed regular sets
• Definition of regular expressions

– Æ is a regular expression denoting the empty set

– l is a regular expression denoting the set that contains only the 
empty string

– A string s is a regular expression denoting a set containing only s

– if A and B are regular expressions, so are

• A | B (alternation)

• AB    (concatenation)

• A*     (Kleene closure)
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Regular Expressions (Cont’d)
some notational convenience

P+   == PP*
Not(A)   == V - A
Not(S)   ==  V* - S
AK         ==  AA …A (k copies)
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Regular Expressions (Cont’d)
• Some examples

Let D = (0 | 1 | 2 | 3 | 4 | ... | 9 )

      L = (A | B | ... | Z)

comment =  -- not(EOL)* EOL

decimal = D+ · D+

ident = L (L | D)* (_ (L | D)+)*

comments = ##((#| l )not(#))* ##



24

Regular Expressions (Cont’d)
• Is regular expression as power as CFG?

 { [i]i | i³1}



6.3.3 String Length Options

• Static length string
– Strings of Python, Java’s String class, C++, 

Ruby’s built-in String class, .NET class 
library

• Limited dynamic length strings
– Allow strings to have varying length up to a 

declared and fixed maximum set
• Strings in C
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6.3.3 String Length Options

• Dynamic length string
– Have varying length with no maximum

• JavaScript, Perl, Java’s StringBuffer

26



6.3.4 Evaluation

• The addition of strings as a primitive type to 
a language is not costly in terms of either 
language or compiler complexity.

• Providing strings through a standard library 
is nearly as convenient as having them as a 
primitive type.
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6.3.5 Implementation of Character 
String Types

• A descriptor for a static character string 
type, which is required only during 
compilation, has three fields.
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6.3.5 Implementation of 
Character String Types (Cont’d)

• Limited dynamic strings require a run-time 
descriptor to store both the fixed maximum 
length and the current length.
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6.3.5 Implementation of 
Character String Types (Cont’d)

• The limited dynamic strings of C does not 
require run-time descriptor
– End of a string is marked with the null 

character.
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6.3.5 Implementation of 
Character String Types (Cont’d)

• Dynamic length strings require more 
complex storage management
– (1) Strings can be stored in a linked list
– (2) Store strings as arrays of pointers to 

individual characters allocated in the heap
– (3) Store complete strings in adjacent storage 

cells
• How to deal when a string grows
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6.4 Enumeration Types

• An enumeration type is one in which all of 
the possible values, which are named 
constants, are provided, or enumerated, in 
the definition.
– Provides a way of defining and grouping 

collections of named constants
• Enumeration constants

32



6.4 Enumeration Types (Cont’d)

• C example
#include <stdio.h>

enum week{ sunday, monday, tuesday, wednesday, 
thursday, friday, saturday};

int main(){
    enum week today;

    today=wednesday;
    printf("%d day\n",today+1);

    return 0;
   }

Output: 4 day
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6.4.1 Design issues

• Design issues
– Is an enumeration constant allowed to appear in 

more than one type definition, and if so, how is 
the type of an occurrence of that constant 
checked?

– Are enumeration values coerced to integer?
– Any other type coerced to an enumeration type?
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6.4.2 Designs

• Why enumeration type?
– We can simulate them with integer values

int red=0, blue=1;

– The problem is we have not defined a type for 
our colors.

• No type checking when they are used.
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6.4.2 Designs (Cont’d)

• Why enumeration type?
– We can simulate them with integer values

int red=0, blue=1;

– The problem is we have not defined a type for 
our colors.

• No type checking when they are used.
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6.4.2 Designs (Cont’d)

• C and Pascal were the first widely used 
languages to include an enumeration data 
type. 
– C++ includes C’s enumeration types

•myColor++; Þ legal
•myColor=4; Þ illegal
•int i=myColor; Þ legal (called coerce)
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6.4.2 Designs (Cont’d)

• Java 
– Enumeration type was added to Java in Java 5.0
– No expression of any other type can be 

assigned to an enumeration variable
– An enumeration variable is never coerced to 

any other type. (See next slice)
• C#

– Like those of C++, except that they are never 
coerced to any other type.
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public enum Day {

    SUNDAY, MONDAY, TUESDAY, WEDNESDAY,

    THURSDAY, FRIDAY, SATURDAY 

}

public class EnumTest {

    Day day;

    

    public EnumTest(Day day) {

        this.day = day;

    }

    

    public void tellItLikeItIs() {

        switch (day) {

            case MONDAY:

                System.out.println("Mondays are bad.");
                break;

                    

            case FRIDAY:

                System.out.println("Fridays are better.");

                break;

                         

            case SATURDAY: case SUNDAY:

                System.out.println("Weekends are best.");

                break;

                        

            default:

                System.out.println("Midweek days are so-so.");

                break;

        }

    }
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    public static void main(String[] args) {

        EnumTest firstDay = new EnumTest(Day.MONDAY);

        firstDay.tellItLikeItIs();

        EnumTest thirdDay = new EnumTest(Day.WEDNESDAY);

        thirdDay.tellItLikeItIs();

        EnumTest fifthDay = new EnumTest(Day.FRIDAY);

        fifthDay.tellItLikeItIs();

        EnumTest sixthDay = new EnumTest(Day.SATURDAY);

        sixthDay.tellItLikeItIs();

        EnumTest seventhDay = new EnumTest(Day.SUNDAY);

        seventhDay.tellItLikeItIs();

    }

}

The output is:

Mondays are bad.

Midweek days are so-so.

Fridays are better.

Weekends are best.

Weekends are best.



6.4.3 Evaluation

• Enumeration types can provide advantages 
in both 
– Readability and 
– Reliability

• In Ada, C#, F#, and Java 5.0
– No arithmetic operations are legal
– No enumeration variable can be assigned a value outside 

its defined range (See footnote)
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6.5 Array Types

• An array is a homogeneous aggregate of 
data elements in which an individual 
element is identified by its position in the 
aggregate, related to the first element
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6.5.1 Design issues

• What types are legal for subscripts?
• Are subscripting expressions in element references range 

checked?
• When are subscript ranges bound?
• When does allocation take place?
• Are ragged or rectangular multidimensional arrays 

allowed, or both?
• What is the maximum number of subscripts?
• Can array objects be initialized?
• Are any kind of slices supported?

42



6.5.2 Arrays and Indices

• Specific elements of an array are referenced 
by means of a two-level syntactic 
mechanism, where the first part is the 
aggregate name, and the second part is a 
possible dynamic selector consisting of one 
or more items known as subscripts or 
indices
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6.5.2 Arrays and Indices (Cont’d)
• The syntax of array references is fairly 

universal
– The array name is followed by the list of 

subscripts which is surrounded by either 
parentheses or brackets

• In Ada
   Sum:=Sum+B(I);

• Most languages other then Fortran and Ada 
use brackets to delimit their array indices
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6.5.2 Arrays and Indices (Cont’d)
• Two distinct types are involved in an array 

type
– The element type
– The type of subscript
Type Week_Day_Type is (Mon, Tue, Wed, Thu, Fri);

Type Sales is array (Week_Day_Type) of Float;
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6.5.2 Arrays and Indices (Cont’d)
• Early programming languages did not 

specify that subscript ranges must be 
implicitly checked
– Range errors in subscripts are common
– Unreliable
– Java, ML, and C# do

• Java may generate 
java.lang.ArrayIndexOutOfBoundsException
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6.5.3 Subscript Bindings and 
Array Categories

• The binding of the subscript type to an array 
variable is usually static, but the subscript 
value ranges are sometimes dynamically 
bound

• In some language, the lower bound of the 
subscript range is implicit
– C-based languages, fixed at 0
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6.5.3 Subscript Bindings and 
Array Categories (Cont’d)

• The are five categories of arrays, based on the 
binding to script ranges, the binding to storage, 
and from where the storage is allocated
– Static array
– Fixed stack-dynamic array
– Stack-dynamic array
– Fixed heap-dynamic array
– Heap-dynamic array
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6.5.3 Subscript Bindings and 
Array Categories (Cont’d)

• C and C++ arrays that include static modifier are 
static

• C and C++ arrays without static modifier are fixed 
stack-dynamic

• C and C++ provide fixed heap-dynamic arrays
• C# includes a second array class ArrayList that 

provides fixed heap-dynamic
• Perl, JavaScript, Python, and Ruby support heap-

dynamic arrays
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6.5.4 Array Initialization
• Some language allow initialization at the 

time of storage allocation
– C, C++, Java, C# example
int list [] = {4, 5, 7, 83} 

– Character strings in C and C++
char name [] = ″freddie″;

– Arrays of strings in C and C++
char *names [] = {″Bob″, ″Jake″, ″Joe″];

– Java initialization of String objects
String[] names = {″Bob″, ″Jake″, ″Joe″};
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6.5.4 Array Initialization
• Ada

– List1 : array (1..5) of Integer :=
    (1, 2, 3, 4, 5);

– List2 : array (1..5) of Integer :=
    (1 => 17, 3 => 34, others => 0);
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6.5.6 Rectangular and Jagged Arrays
• A rectangular array is a multidimensional 

array in which all of the rows have the same 
number of elements and all of the columns 
have the same number of elements
– int arr[100][50]; 

• A jagged array is one in which the lengths 
of the rows need not be the same.
– C does not support jagged array

• To implement a jagged array, programmers must 
manually use an array of pointers along with 
malloc/free. 
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6.5.6 Rectangular and Jagged Arrays
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// C program to show the
// implementation of Jagged Arrays

#include <stdio.h>
#include <stdlib.h>

int main()
{

int row0[4] = { 1, 2, 3, 4 };
int row1[2] = { 5, 6 };

int* jagged[2] = { row0, row1 };

// Array to hold the size of each row
int Size[2] = { 4, 2 }, k = 0;

// To display elements of Jagged array
for (int i = 0; i < 2; i++) {

// pointer to hold the address of the row
int* ptr = jagged[i];

for (int j = 0; j < Size[k]; j++) {
printf("%d ", *ptr);

// move the pointer to the
// next element in the row
ptr++;

}

printf("\n");
k++;

// move the pointer to the next row
jagged[i]++;

}

return 0;
}



6.5.6 Rectangular and Jagged Arrays
• In Java you cannot specify array sizes in the variable 

declaration itself- so the following statement is illegal 
– int b[10];

– int a[10][100];

• Java multi-dimensional arrays are really arrays of arrays, 
not one contiguous block of memory
– int[] b = new int[10];

– int[][] a = new int[10][100];

• Java multi-dimensional arrays are really arrays of arrays, 
not one contiguous block of memory. Even when you write 
new int[10][100], the JVM allocates one int[] of length 10, 
then for each of those 10 slots it allocates a separate 
int[100]. 
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6.5.6 Rectangular and Jagged Arrays
• The jagged-array model ties directly into how the garbage 

collector works. Consider the following Java codes:
– int[][] a = new int[10][100];

• The JVM actually allocates 11 separate objects:
– One int[][] of length 10
– Ten int[] sub-arrays of length 100 each
– All 11 live on the heap and are individually tracked by the GC.

• If you later do
– a[5] = null;
– then that one int[100] becomes unreachable and can be collected, 

while the rest of a remains intact. 
– A true contiguous “rectangular” block would have been a single object, 

so you couldn’t free part of it without freeing the whole.
– Java’s GC is designed to manage objects, not arbitrary chunks of 

memory.
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6.6 Associative Arrays

• An associative array is an unordered 
collection of data elements that are indexed 
by an equal number of values call keys
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6.6.1 Structure and Operations

• In Perl, associative arrays are called hashes
– Names begin with %; literals are delimited by 

parentheses
%hi_temps = ("Mon" => 77, "Tue" => 79, "Wed" 
=> 65, …);

• Subscripting is done using braces and keys
$hi_temps{"Wed"} = 83;

– Elements can be removed with delete
 delete $hi_temps{"Tue"};
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6.6.2 Implementing Associative 
Arrays

• A 32-bit hash value is computed for each 
entry and is stored with the entry
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6.7 Record Types

• A record is an aggregate of data elements 
in which the individual elements are 
identified by names and accessed through 
offsets from the beginning of the structure

• In C, C++, and C#, records are supported 
with the struct data type
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struct Student_PersonalData {

    char name[4];

    int age;

    char address[30];

} SP_Data;
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#include <stdio.h>
#include <string.h>
void main() {
    struct Student_Personal_Data {
        char name[10];
        int age;
        char address[50];
    }  stu;
    strcpy(stu.name,“My name");
    stu.age = 35;
    strcpy(stu.address, “Dept. CSIE, NTNU");
    printf("The student's name is: %s\n", stu.name);
    printf("The student's age is: %d\n", stu.age);
    printf("The student's address is: %s\n", stu.address);
}
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6.7 Record Types

• Design issues:
– What is the syntactic form of references to the 

field? 
– Are elliptical references allowed
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6.7.1 Definitions of Records

• Record elements, or fields, are not 
referenced by indices.
– Fields are named with identifiers, and 

references to the fields are made using these 
identifiers
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6.7.1 Definitions of Records

• COBOL uses level numbers to show nested 
records; others use recursive definition
01 EMP-REC.

   02 EMP-NAME.

      05 FIRST PIC X(20).

      05 MID   PIC X(10).

      05 LAST  PIC X(20).

   02 HOURLY-RATE PIC 99V99.
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6.7.1 Definitions of Records

• Record structures are indicated in an 
orthogonal way

 type Employee_Name_Type is record

  First: String (1..20);
  Mid: String (1..10);
  Last: String (1..20);
 end record;
       type Employee_Record_Type is record 
  Employee_Name: Employee_Name_Type ;
   Hourly_Rate: Float;
 End record; 
  Employee_Record: Employee_Record_Type;
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6.7.2 References to Record Fields

• COBOL field references have the form:
field_name OF record_name_1 OF ... OF record_name_n

• Most of the other languages use dot 
notation
record_name_1.record_name_2. ... record_name_n.field_name
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6.7.2 References to Record Fields
• A fully qualified reference to a record field is 

one in which all intermediate record names, from 
the largest enclosing record to the specific field, 
are named in the reference.

• Elliptical reference (Pascal as an example)
employee.name=“bob”;

employee.age=42;

with employee do
  begin

    name=“Bob”;
    age=42;

  end
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6.7.3 Evaluation

• Field names are like literal, or constant, 
subscripts
– Because they are static, they provide very 

efficient access to the fields
– Dynamic subscripts could be used to access 

record fields, but it would disallow type 
checking and would also be slower
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6.7.4 Implementation of Record 
Types

• The fields of records are 
stored in adjacent memory 
locations
– Offset address, relative to 

the beginning of the record, 
is associated with each field

– Field accesses are all 
handled using these field
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6.8 Tuple Types
• A tuple is a data type that is similar to a record, 

except that the elements are not named
• Used in Python, ML, and F# to allow functions to 

return multiple values
– Python

• Closely related to its lists, but immutable
• Create with a tuple literal
    myTuple = (3, 5.8, ′apple′)
   Referenced with subscripts (begin at 1)
Catenation with + and deleted with del
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6.8 Tuple Types (Cont’d)
• ML
     val myTuple = (3, 5.8, ′apple′);
  - Access as follows:
    #1(myTuple) is the first element
  - A new tuple type can be defined
     type intReal = int * real;
• F#
    let tup = (3, 5, 7)
   let a, b, c = tup  This assigns a tuple to a 

tuple pattern (a, b, c)
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6.9 List Types

• Python Lists
– The list data type also serves as Python’s arrays
– Unlike Scheme, Common Lisp, ML, and F#, 

Python’s lists are mutable
– Elements can be of any type
– Create a list with an assignment
    myList = [3, 5.8, "grape"]
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6.9 List Types (Cont’d)
• Python Lists (continued)

– List elements are referenced with subscripting, with 
indices beginning at zero

    x = myList[1]    Sets x to 5.8
– List elements can be deleted with del
    del myList[1]
– List Comprehensions – derived from set notation
    [x * x for x in range(6) if x % 3 == 0]
     range(6) creates [0, 1, 2, 3, 4, 5, 6]
    Constructed list: [0, 9, 36]
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6.10 Union Types
• A union is a type whose variables may 

store different type values at different times 
during program execution
union customer

{
   char person[30];

   char company[30];
 };
 union customer c1;

 
 struct Data {

        union customer myCustomer;
        char address[50];

 };
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6.10.1 Design Issues

• The problem of type checking union types
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6.10.2 Discriminated Versus Free 
Unions

• C and C++ provide union constructs in 
which there is no language support for type 
checking
– Free union

union flexType {
  int intE1;

  float floatE1; };
union flexType el1;

float x;
…
el1.intE1=27;

x=el1.floatE1;   //non-sense
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6.10.2 Discriminated Versus Free 
Unions

• Type checking of unions requires that each 
union construct include a type indicator
– Tag, discriminant
– Discriminated union

• ALGOL 68, Ada, ML, Haskell, F#
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6.10.3 Unions in F#
• Defined with a type statement using OR ( | )
    type intReal =
       | IntValue of int

       | RealValue of float;;

    intReal is the new type
    IntValue and RealValue are constructors

   To create a value of type intReal:
    let ir1 = IntValue 17;;
  let ir2 = RealValue 3.4;;
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6.10.3 Unions in F# (Cont’d)
• Accessing the value of a union is done with
   pattern matching
    match pattern with
       | expression_list1 -> expression1

       | …
       | expression_listn -> expressionn

 
   - Pattern can be any data type
   - The expression list can have wild cards (_)
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6.10.3 Unions in F# (Cont’d)

Example:
   let a = 7;;
   let b = ″grape″;;
   let x = match (a, b) with
        | 4, ″apple″ -> apple

        | _, ″grape″ -> grape

        | _ -> fruit;;
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6.10.3 Unions in F# (Cont’d)
To display the type of the intReal union:
  let printType value = 
     match value with
         | IntVale value -> printfn ″int″

         | RealValue value -> printfn ″float″;;

If ir1 and ir2 are defined as previously, 
  printType ir1 returns int
  printType ir2 returns float
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6.10.5 Evaluation

• Unions are potentially unsafe constructs in 
some languages
– Thus, C and C++ are not strongly typed

• Neither Java nor C# includes unions
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6.11 Pointer and Reference Types

• A pointer type is one in which the variables 
have a range of values that consists of 
memory addresses and a special value, nil.

• Two distinct kinds of uses:
– Indirect addressing
– Manage dynamic storage

• Heap
– Dynamic variables
– Anonymous variables
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6.11.1 Design Issues
• What are the scope of and lifetime of a pointer 

variable?
• What is the lifetime of a heap-dynamic variable?
• Are pointers restricted as to the type of value to 

which they can point?
• Are pointers used for dynamic storage 

management, indirect addressing, or both?
• Should the language support pointer types, 

reference types, or both?
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6.11.2 Pointer Operations
• Two fundamental 

pointer operations
– Assignment
– Dereferencing

• Takes a reference 
through one level of 
indirection

• Can be either explicit 
or implicit
j=*ptr
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6.11.2 Pointer Operations

• In C and C++, there are two ways a pointer 
to a record can be used to reference a field 
in that record

i=(*p).age;

i=P->age;
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6.11.2 Pointer Operations

• Management of heap must include an 
explicit allocation operation
– In C, 

•malloc, free

– In C++,
•new, delete
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6.11.3 Pointer Problems

• The use of pointer could lead to several 
kinds of programming errors
– Some recent languages, such as Java, have 

replaced pointers completely with reference 
types

• Implicit deallocation (Automatic garbage 
collections)

• A pointer with restricted operations
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6.11.3.1 Dangling Pointers

• A dangling pointer, or dangling reference, is 
a pointer that contains the address of a 
heap-dynamic variable that has been 
deallocation

90



6.11.3.1 Dangling Pointers (Cont’d)
• The following sequence of operation creates a 

dangling pointer
– (1) A new heap-dynamic variable is created and pointer 
p1 is set to point at it

– (2) Pointer p2 is assigned p1’s value
– (3) Variable pointed by p1 is explicitly deallocated
Þp2 is now a dangling pointer

int * arrayPtr1 = new int[100];

int * arrayPtr2;

arrayPtr2=arrayPtr1;

delete [] arrayPtr1;
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6.11.3.2 Lost Heap-Dynamic 
Variables

• A lost heap-dynamic variable is an allocated heap-
dynamic variable that is no longer accessible to the 
user program
– Also called garbage
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6.11.3.2 Lost Heap-Dynamic 
Variables

• The following sequence of operation creates a lost 
heap-dynamic variables
– (1) Pointer p1 is set to point to a newly created heap-

dynamic variable
– (2) p1 is later set to point to another newly created heap-

dynamic variable

int * p1;

p1=new int[100];

p1=new int[200];
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6.11.4 Pointers in C and C++
• The design offers no solutions to the dangling 

pointer or lost heap-dynamic variable problems
• Pointers in C and C++ can point to functions

int addInt(int n, int m) {
    return n+m;
}

main()
{
...

int (*functionPtr)(int,int);

functionPtr = &addInt;
int sum = (*functionPtr)(2, 3); 
...
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6.11.5 Reference Types

• A reference type variable is similar to a 
pointer, with one important and 
fundamental difference
– A pointer refers to an address in memory, while 

a reference refers to an object or a value in 
memory.
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6.11.5 Reference Types

• C++ includes a special kind of reference 
type that is used primarily for the formal 
parameters in function definitions. 

int result=0;

int &ref_result=result;

…

ref_result=100; 
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6.11.5 Reference Types

Swap(int *a, int *b)  //using pointer

{ int t;

  t=*a; *a=*b;*b=t;}

Swap (int &x, int &y) //using reference

{ int t;

  t=x;x=y;y=t;}
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6.11.5 Reference Types

• Pointer as a parameters require explicit 
dereferencing, making the code less 
readable and less safe.

• Reference parameters are referenced in the 
called function exactly as are other 
parameters.
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6.11.5 Reference Types

• The designers of Java removed C++ style 
pointers altogether. 
– All Java class in stances are referenced by 

reference variables
• The only use of reference variables in Java

String str1;

…

str1=“This is a book”;
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6.11.5 Reference Types

• Because Java class instance are implicitly 
deallocated, there cannot be dangling 
references in Java.
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6.11.6 Evaluatin

• Pointers have been compared with the 
“goto.”

• Pointers are essential in some kinds of 
programming applications
– Writing device driver
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6.11.7 Implementation of Pointer 
and Reference Types

• In most languages, pointers are used in heap 
management
– The same is true for Java and C# reference,
– As well as variables in Smalltalk and Ruby
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6.11.8.1 Representations of 
Pointers and References

• Pointers and References are single values 
stored in memory cells.
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6.11.8.2 Solutions to Dangling-
Pointer Problem

• There have been several proposed solutions 
to dangling-pointer problem

• Tombstones
– Actual pointer variable pointers only at 

tombstones
– When a heap-dynamic variable is deallocated 

the tombstone remains but is set to nil.
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6.11.8.2 Solutions to Dangling-
Pointer Problem

• Locks-and-keys approach
– Used in UW-Pascal
– Pointer values => (key, address)
– When a heap-dynamic variable is allocated, a 

lock value is created and placed both in the lock 
cell of the variable and in the key cell of the 
pointer

– Every access to the dereferenced pointer 
compares the key value and the lock value
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6.12 Optional Type

• Some newer languages provide types that 
can have a normal value or a special value 
to indicate that their variable have no value.
– C#: type name with a question mark (?)

• int? x;
• It can be tested against null

– Swift: nil
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6.13 Type Checking

• For the discussion of type checking, the 
concept of operands and operators is 
generalized to include subprograms and 
assignment statements.

• Type checking is the activity of ensuring 
that the operands of an operator are of 
compatible types
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6.13 Type Checking (Cont’d)

• A compatible type is one that either
– is legal for the operator, or
– is allowed under language rules to be implicitly 

converted by compiler-generated code to a legal 
type

• Coercion
– Automatic conversion
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6.13 Type Checking (Cont’d)

• A type error is the application of an 
operator to an operand of an inappropriate
type

• Static and dynamic type checking
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6.14 Strong Typing

• One of the ideas in language design that 
became prominent in the so-called 
structured-programming revolution of the 
1970s was 
– strong typing 

• A highly valuable language characterstics
• Only loosely defined
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6.14 Strong Typing (Cont’d)

• A programming language is strongly typed 
if type errors are always detected
– Static time or run time detection
– C and C++ are not strongly typed because 

“union” types.
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6.14 Strong Typing (Cont’d)

• Java and C#,
– Types can be explicitly cast, which could result 

in a type error
– See next slice
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//X is a supper class of Y and Z which are sibblings.
public class RunTimeCastDemo {
  public static void main(String args[]) {
    X x = new X();
    Y y = new Y();
    Z z = new Z();
    X xy = new Y(); // compiles ok (up the hierarchy)
    X xz = new Z(); // compiles ok (up the hierarchy)
    // Y yz = new Z();   incompatible type (siblings)
    // Y y1 = new X();   X is not a Y
    // Z z1 = new X();   X is not a Z
    X x1 = y; // compiles ok (y is subclass of X)
    X x2 = z; // compiles ok (z is subclass of X)
    Y y1 = (Y) x; // compiles ok but produces runtime error
    Z z1 = (Z) x; // compiles ok but produces runtime error
    Y y2 = (Y) x1; // compiles and runs ok (x1 is type Y)
    Z z2 = (Z) x2; // compiles and runs ok (x2 is type Z)
  
    Object o = z;
    Object o1 = (Y) o; //compiles ok but produces runtime error }
}
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Type Equivalence
• Type compatibility

– The type of an operand can be implicitly 
converted by the compiler or run-time system 
to make it acceptable to the operator

• Structure types are complex to make type 
compatible
– Coercion is rare
– The issue is not type compatibility, but type 

equivalence

114



Type Equivalence (Cont’d)
• Two types are equivalent if an operand of 

one type in an expression is substituted 
from one of the other type without coercion
– Without coercion

• There are two approaches to defining type 
equivalence
– Name type equivalence
– Structure type equivalence
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Type Equivalence (Cont’d)
• Name type equivalence is easy to 

implement but is more restrictive.
– Defined either in the same declaration or in 

declarations that use the same type name
typedef int fahrenheit;
typedef int celsius;
fahrenheit f;
celsius c;
c = f; // type error in C++

• A variable whose type is a subrange of the integers 
would not be equivalent to an integer type variable.
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Type Equivalence (Cont’d)
• Structure type equivalence is more flexible 

than name type equivalence
– Difficult to implement
– Entire structures of two types must be 

compared
– Disallow differentiating between types with the 

same structure
type Celsius = Float;
     Fahrenheit = Float; 

117



Type Equivalence (Cont’d)
• Ada uses a restrictive form of name type 

equivalence but provides two type 
constructs for avoiding the problems 
associated with name type equivalence,
– Subtypes and derived type
– A derived type is a new type which it is not 

equivalent, although it may have identical 
structure
type Celsius is new Float;
     Fahrenheit is new Float; 
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Type Equivalence (Cont’d)
• An Ada subtype is a possibly range-

constrained version of an existing type
– A subtype is type equivalent with its parent 

type

// Compatible
subtype Small_type is Integer range 0..99

// Not compatible
type Derived_Small_type is Integer range 0..99
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Type Equivalence (Cont’d)
• For variable of an Ada unconstrained array 

type, structure type equivalence is used

// Vector_1 and Vector_2 is equivalent
type Vector is array (Integer range<>) of Integer;
Vector_1: Vector (1:10);

Vector_2: Vector (11:20);
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Type Equivalence (Cont’d)
• For constrained anonymous types, Ada uses 

a highly restrictive form of name type 
equivalence. 
// A and B would be of anonymous but distinct 
and not equivalent types
A : array (1:10) of Integer;

B : array (1:10) of Integer;

// C and D would be of anonymous but distinct and  
// not equivalent types
C, D : array (1:10) of Integer;

// F and G would be equivalent

type list_10 is array (1:10) of Integer;
F, G: List_10;
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Type Equivalence (Cont’d)
• C uses both name and structure type 

equivalence
– Every struct, enum, and union declaration 

creates a new type that is not equivalent to any 
other type

– Other nonscalar types use structure type 
equivalence

• Array 
– Any type defined with typedef is type 

equivalent to its parent type
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Type Equivalence (Cont’d)
• Object-oriented languages such as Java and 

C++ bring another kind of type 
compatibility issue with them
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