Chapter 6 Data Types

6.1 Introduction

* A data type defines a collection of data
values and a set of predefined operations on
those values.

— In pre-90 Fortrans, linked lists and binary trees
were implemented with arrays

— ALGOL 68, provides a few basic types and a
few flexible structure-defining operators that
allow a programmer to design a data structure
for each need.

6.1 Introduction (Cont’d)

— Abstract data type supported by most
programming languages designed since the

mid-1980s.

6.1 Introduction (Cont’d)

* Uses of type system 1n PL
— Error detection
— Program modularization

— Document

* The type system defines how a type 1s
associated with each expression and
includes 1ts rule for type equivalence and
type compatibility

6.1 Introduction (Cont’d)

* Think of variables in terms of descriptors

— A descriptor 1s the collection of attributes of a
variable

— Static descriptor & dynamic descriptor

6.2 Primitive Data Types

* Numeric Types
— Integer
— Floating-point
 IEEE Floating-Point Standard 754 format
* See next page

— Complex
 Fortran and Python

Figure 6.1 8 bits 23 bits

IEEE floating-point Exponent Fraction
formats: (a) single 1
b) double ey -
recion,
P (a)
11 bits 52 bits
Exponent Fraction

tSign bit

(b)

6.2 Primitive Data Types
(Cont’d)

— Decimal

e To support business systems applications
— COBOL, C#, F#

* To precisely store decimal number
* binary coded decimal (BCD)

— Boolean Types
* Introduced in ALGOL 60

6.2 Primitive Data Types
(Cont’d)

* Character Types

— Traditionally, 8-bit code ASCII
* 0to 127
— EASCII

* Extended ASCII, ISO 8859-1
o Allow 256 different characters

— See next slice.

128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143

& Q2

[+ L~ L~ H o D

D O

<o

144
145
146
147
1438
149
150
151
152
153
154
155
156
157
158
159

P o OO & 200 oy

160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175

- T = - I =N = N

(=]

2
Ya

«

»

176
177
178
179
130
181
132
183
134
185
186
187
188
139
190
191

192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207

o

- -

== T + |

I === IF =

- ==

208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223

=

224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239

“H == 9 r 4 A

™0 W

Source: www.LookupTables.com

W e g o N EF D E QGMAE 2R

)

240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255

A IV H

u

51

10

6.2 Primitive Data Types (Cont’d)

« UCS-2
— 16-bit character set
— Called Unicode

— Java was the first widely used language to use the Unicode
» JavaScript, Python, Perl, C#, F#

W UCS-2 Encoding Example

UCS-2 always uses 2 bytes per character. It only supports the Basic Multilingual

Plane (BMP).
text
npn => U+0041 => [00 41]
"t => U+4E2D => [4E 2D]

"@" => U+1F60A => X Cannot be encoded (outside BMP)

11

6.2 Primitive Data Types (Cont’d)

e UTF-16
— An extension of UCS-2

» 2 or 4 bytes

Feature

Encoding length

Unicode range

Supports emoji

Supports ancient

scripts

Uses surrogate

pairs

Status

UCS-2

Fixed: 2 bytes per

character

U+0000 to U+FFFF

(BMP only)
X No
X No

X No

Legacy / obsolete

UTF-16

Variable: 2 or 4 bytes
U+0000 to U+10FFFF (includes
Supplementary Planes)

Yes (via surrogate pairs)

Yes

Yes

Widely used (Windows, Java, etc.)

12

7£ UTF-16 # » #8iB 16 it (BD#BiB U+FFFF) RUMBEAER TMCIBY¥ (surrogate pair)) KR > 3B
EEMEEY 16-bit T (BMP EE) RE—IEHR - RIBREENETERERAFT - tEEMES
ERNFT » FEHRE?

ERE ' UTF-16 SEHIFMEREER - EER M"FHAREE) RERES -

4 FAsEsREt - (EH TREE (surrogate range) |
UTF-16 MR EERISAAT ¢

et #EE (16-bit 4558) R
SHRE (High Surrogate) D800 — DBFF #—(& 16-bit BT
{EARIXI2 (Low Surrogate) DCOO — DFFF & 16-bit BT

iEME 2048 fE{E (15 D8ee ~ DFFF RVEEE) FHPIREBALEHER - BMP RASLIRELHEIES
ER/FT -

FRTR A B FIiER 2

ERISREE—1E 16-bit BEITh -

1. MRERTE D800 ~ DFFF Z[-
> ERE—EEIIN BMP =5t (40 : 0041 2 A) °

2. WIRETE D800 ~ DBFF ZfH -
> EE{EHN TSARIE) - BiBRSHRE T —EREANE (DCoo ~ DFFF) °

3. WRFEECERIENIRIE » FAEHEM—EFT (4 Emoji) °
4. MRBXER BINECURERRESMUR) L SSREREVAERFT -

13

6.3 Character String Types

* A character string type 1s one in which the
values consist of sequences of characters

* Design 1ssues:

— Should strings be simply a special kind of
character array or a primitive type?

— Should strings have static or dynamic length?

14

6.3.2 Strings and Their Operations

* Most common string operations

— Assignment, catenation, substring reference,
comparison, and pattern matching

 [If strings are not defined as a primitive type

— Stored 1n arrays of single characters

— Taken by C and C++

— str 1s an array of char elements, specifically
apple0, where O 1s the null charater.

char str[]=“apples”;

15

6.3.2 Strings and Their Operations
(Cont’d)

* The string manipulation functions of the C
standard library, also available in C++ are
inherently unsafe

* Consider the following situations,
|dest|=20, and |src|=50:

strcopy (dest, src);

* C++ also supports string class.

16

6.3.2 Strings and Their Operations
(Cont’d)

 In Java,
— String class

 Constant string

 For each assignment to a St ring object, a new
object should be created (instantiated).
String S1 = "abc";
For(int T = 0 ; I < 10000 ; I ++) {

S1 + = "def";
S1 = "abc";

17

6.3.2 Strings and Their Operations
(Cont’d)

 In Java,

- StringBuffer class
e Changeable

StringBuffer Sb = new StringBuilder (“This 1is only
a’”) .append (“simple”) .append (“test”) ;

18

6.3.2 Strings and Their Operations
(Cont’d)
* Building-in pattern-matching operations of
strings
— Perl, JavaScript, Ruby, PHP...

— Regular expression

 BE.g.
/[A-Za-z] [A-za-z\d]+/ (name form in PL)
/\d+\.?2\d* | \.\d+/ (numeric literal)

* Included in class libraries of pattern-
matching operations of strings

— C++, Java, Python, C#, F#

19

Regular Expressions (f 58 2087)

» Tokens are built from symbols of a finite
vocabulary.

» We use regular expressions to define
structures of tokens.

20

Regular Expressions

* The sets of strings defined by regular expressions
are termed regular sets
* Definition of regular expressions

— O is aregular expression denoting the empty set

— A 1s aregular expression denoting the set that contains only the
empty string

— A string s 1s a regular expression denoting a set containing only s
— 1f A and B are regular expressions, so are

* A | B (alternation)

« AB (concatenation)

« A* (Kleene closure)

Regular Expressions (Cont’d)

some notational convenience
PT == PPpP*
Not(A) =V -A
Not(S) == V*-S
AR == AA ...A (k copies)

22

Regular Expressions (Cont’d)

- Some examples

LetD=(011
_=(AIB

213141..19)
.. 12)

comment = -- not(EOL)* EOL
decimal = D+ - D*

ident=L (L1 D)* (_ (LID)¥*
comments = ##((#| L)not(#))* ##

23

Regular Expressions (Cont’d)

* |s regular expression as power as CFG?

{[T1i=1}

24

6.3.3 String Length Options

 Static length string

— Strings of Python, Java’s String class, C++,
Ruby’s built-in String class, .NET class

library
* Limited dynamic length strings

— Allow strings to have varying length up to a
declared and fixed maximum set

* Strings in C

25

6.3.3 String Length Options

* Dynamic length string

— Have varying length with no maximum
 JavaScript, Perl, Java’s StringBuffer

26

6.3.4 Evaluation

* The addition of strings as a primitive type to
a language 1s not costly 1n terms of either
language or compiler complexity.

* Providing strings through a standard library
1s nearly as convenient as having them as a
primitive type.

27

6.3.5 Implementation of Character
String Types
* A descriptor for a static character string

type, which 1s required only during
compilation, has three fields.

Figure 6.2 -
Static string

Compile-time descriptor

for static strings Length

Address

6.3.5 Implementation of
Character String Types (Cont’d)

* Limited dynamic strings require a run-time
descriptor to store both the fixed maximum
length and the current length.

Figure 6.3
& Limited dynamic string

Run-time descriptor for

limited dynamic strings Maximum length

Current length

Address

29

6.3.5 Implementation of
Character String Types (Cont’d)

* The limited dynamic strings of C does not
require run-time descriptor

— End of a string 1s marked with the null
character.

30

6.3.5 Implementation of
Character String Types (Cont’d)

* Dynamic length strings require more
complex storage management
— (1) Strings can be stored 1n a linked list

— (2) Store strings as arrays of pointers to
individual characters allocated in the heap

— (3) Store complete strings 1n adjacent storage
cells

 How to deal when a string grows

31

6.4 Enumeration Types

* An enumeration type 1s one in which all of
the possible values, which are named
constants, are provided, or enumerated, in
the definition.

— Provides a way of defining and grouping
collections of named constants

e Enumeration constants

32

6.4 Enumeration Types (Cont’d)

* C example
#include <stdio.h>

enum week{ sunday, monday, tuesday, wednesday,
thursday, friday, saturday};

int main () {
enum week today;
today=wednesday;
printf ("%d day\n", today+1l);
return O;

}
Output: 4 day

33

6.4.1 Design 1ssues

* Design 1ssues

— Is an enumeration constant allowed to appear in
more than one type definition, and 1f so, how 1s

the type of an occurrence of that constant
checked?

— Are enumeration values coerced to integer?

— Any other type coerced to an enumeration type?

34

6.4.2 Designs

Why enumeration type?

— We can simulate them with integer values
int red=0, blue=1;

— The problem 1s we have not defined a type for
our colors.

* No type checking when they are used.

35

6.4.2 Designs (Cont’d)

Why enumeration type?

— We can simulate them with integer values
int red=0, blue=1;

— The problem 1s we have not defined a type for
our colors.

* No type checking when they are used.

36

6.4.2 Designs (Cont’d)

* C and Pascal were the first widely used
languages to include an enumeration data

type.

— C++ 1ncludes C’s enumeration types
emyColor++; = legal
e myColor=4; = illegal
« int i=myColor; = legal (called coerce)

37

6.4.2 Designs (Cont’d)

e Java
— Enumeration type was added to Java in Java 5.0

— No expression of any other type can be
assigned to an enumeration variable

— An enumeration variable 1s never coerced to
any other type. (See next slice)

¢ C#

— Like those of C++, except that they are never

coerced to any other type. N

public enum Day {
SUNDAY, MONDAY, TUESDAY, WEDNESDAY,
THURSDAY, FRIDAY, SATURDAY

public class EnumTest {

Day day;

public EnumTest (Day day) {
this.day = day;

public void tellItLikeItIs() {
switch (day) {
case MONDAY:
System.out.println("Mondays are bad.");
break;

case FRIDAY:
System.out.println("Fridays are better.");
break;

case SATURDAY: case SUNDAY:
System.out.println ("Weekends are best.");
break;

default:
System.out.println("Midweek days are so-so.");
break;

public static void main(String[] args) {
EnumTest firstDay = new EnumTest (Day.MONDAY) ;
firstDay.tellItLikeItIs();
EnumTest thirdDay = new EnumTest (Day.WEDNESDAY) ;
thirdDay.tellItLikeItIs();
EnumTest fifthDay = new EnumTest (Day.FRIDAY) ;
fifthDay.tellItLikeItIs();
EnumTest sixthDay = new EnumTest (Day.SATURDAY) ;
sixthDay.tellItLikeItIs();
EnumTest seventhDay = new EnumTest (Day.SUNDAY) ;
seventhDay.tellItLikeItIs();

The output is:

Mondays are bad.
Midweek days are so-so.
Fridays are better.
Weekends are best.

Weekends are best.

39

6.4.3 Evaluation

* Enumeration types can provide advantages
in both
— Readability and
_ Reliability
* In Ada, C#, F#, and Java 5.0

— No arithmetic operations are legal

— No enumeration variable can be assigned a value outside
its defined range (See footnote)

40

6.5 Array Types

* An array is a homogeneous aggregate of
data elements 1n which an individual
element 1s 1dentified by its position in the
aggregate, related to the first element

41

6.5.1 Design 1ssues

What types are legal for subscripts?

Are subscripting expressions in element references range
checked?

When are subscript ranges bound?
When does allocation take place?

Are ragged or rectangular multidimensional arrays
allowed, or both?

What 1s the maximum number of subscripts?
Can array objects be 1nitialized?

Are any kind of slices supported?
42

6.5.2 Arrays and Indices

* Specific elements of an array are referenced
by means of a two-level syntactic
mechanism, where the first part 1s the
aggregate name, and the second part 1s a
possible dynamic selector consisting of one
or more 1items known as subscripts or
indices

43

6.5.2 Arrays and Indices (Cont’d)

* The syntax of array references 1s fairly
universal

— The array name 1s followed by the list of
subscripts which 1s surrounded by either
parentheses or brackets

e In Ada
Sum:=Sum+B (1) ;

* Most languages other then Fortran and Ada
use brackets to delimit their array indices

44

6.5.2 Arrays and Indices (Cont’d)

* Two distinct types are involved 1n an array
type
— The element type
— The type of subscript

Type Week Day Type 1s (Mon, Tue, Wed, Thu, Fri);
Type Sales 1s array (Week Day Type) of Float;

45

6.5.2 Arrays and Indices (Cont’d)

» Early programming languages did not
specify that subscript ranges must be
implicitly checked

— Range errors in subscripts are common
— Unreliable
— Java, ML, and C# do

e Java may generate
java.lang.ArrayIndexOutOfBoundsException

46

6.5.3 Subscript Bindings and
Array Categories

* The binding of the subscript type to an array
variable 1s usually static, but the subscript
value ranges are sometimes dynamically
bound

* In some language, the lower bound of the
subscript range 1s implicit
— C-based languages, fixed at 0

47

6.5.3 Subscript Bindings and
Array Categories (Cont’d)

* The are five categories of arrays, based on the
binding to script ranges, the binding to storage,
and from where the storage 1s allocated

— Static array

— Fixed stack-dynamic array
— Stack-dynamic array

— Fixed heap-dynamic array

— Heap-dynamic array

48

6.5.3 Subscript Bindings and
Array Categories (Cont’d)
C and C++ arrays that include static modifier are

static

C and C++ arrays without static modifier are fixed
stack-dynamic

C and C++ provide fixed heap-dynamic arrays

C# 1includes a second array class ArrayList that
provides fixed heap-dynamic

Perl, JavaScript, Python, and Ruby support heap-

dynamic arrays
49

6.5.4 Array Initialization

* Some language allow 1nitialization at the
time of storage allocation

— C, C++, Java, C# example
int list [] = {4, 5, 7, 83}

— Character strings in C and C++

char name [] = "freddie”;

— Arrays of strings in C and C++

char *names [] = {"Bob", "Jake", "Joe"];

— Java 1nitialization of String objects

String[] names = {"Bob'", "Jake", "Joe"};

6.5.4 Array Initialization

 Ada

— Listl : array (l..5) of Integer :
(L, 2, 3, 4, 5);

— List2 : array (l..5) of Integer :=
(1 => 17, 3 => 34, others => 0);

51

6.5.6 Rectangular and Jagged Arrays

* A rectangular array 1s a multidimensional
array 1n which all of the rows have the same
number of elements and all of the columns
have the same number of elements

—1nt arr[100][50];

* A jagged array 1s one 1n which the lengths
of the rows need not be the same.

— C does not support jagged array

 To implement a jagged array, programmers must
manually use an array of pointers along with

malloc/free.
52

6.5.6 Rectangular and Jagged Arrays

Example:

arr[]1[] = { {01 1, 2},

{6, 4},
{1l 7! 6' 8! g}l
{5}
b
s ™
Jagged Array
—arr[0][3]—1 O 2
arr[4][]—_) arr[1][2] —| 6
— arr[2][5] — 1 6189
L arr[3][1] —1 5
- SG/

53

// C program to show the
// implementation of Jagged Arrays

#include <stdio.h>

#include <stdlib.h>

int main()
int row0[4] ={1,2,3,4};
introwl[2]=1{5,6};

int* jagged[2] = { row0, row1 };

// Array to hold the 51ze of each row
int Slze 2]1={4,2}.k

// To display elements of Jagged array
for (inti=0;1<2;1++) {

// pointer to hold the address of the row
int* ptr = jagged[i];

for (int j = 0; j < Size[k]; j++) {
printf("%d ", *ptr);

// move the pointer to the
// next element in the row
ptr++;

Erintf(”\n");
++;

// move the pointer to the next row
\ jagged[i]++;

return 0O;

54

6.5.6 Rectangular and Jagged Arrays

« In Java you cannot specify array sizes in the variable
declaration itself- so the following statement 1s 1llegal
— int b[10];
— int a[l10][100];

« Java multi-dimensional arrays are really arrays of arrays,
not one contiguous block of memory
— 1int[] b = new int[10];
— int[][] a = new int[10][100];

« Java multi-dimensional arrays are really arrays of arrays,
not one contiguous block of memory. Even when you write
new 1nt[10][100], the JVM allocates one int[] of length 10,

then for each of those 10 slots it allocates a separate
int[100].

55

6.5.6 Rectangular and Jagged Arrays

The jagged-array model ties directly into how the garbage

collector works. Consider the following Java codes:
— 1int[][] a = new int[10][1007];

e The JVM actually allocates 11 separate objects:
— One int[][] oflength 10
— Ten int [] sub-arrays of length 100 each

— All 11 live on the heap and are individually tracked by the GC.

« Ifyou later do
— ald5] = null;
— thenthatone int [100] becomes unreachable and can be collected,
while the rest of a remains intact.

— A true contiguous “rectangular’ block would have been a single object,
so you couldn’ t free part of it without freeing the whole.

— Java’ s GC is designed to manage objects, not arbitrary chunks of
memory.

56

6.6 Associative Arrays

* An associative array 1s an unordered
collection of data elements that are indexed
by an equal number of values call keys

57

6.6.1 Structure and Operations

 In Perl, associative arrays are called hashes

— Names begin with %; literals are delimited by

parentheses

$hi temps = ("Mon" => 77, "Tue" => 79, "Wed"
=> 065, ..);

* Subscripting 1s done using braces and keys
Shi temps{"Wed"} = 83;

— Elements can be removed with delete

delete Shi temps{"Tue"};

58

6.6.2 Implementing Associative
Arrays

* A 32-bit hash value 1s computed for each
entry and 1s stored with the entry

59

6.7 Record Types

* A record 1s an aggregate of data elements
in which the individual elements are
1dentified by names and accessed through
offsets from the beginning of the structure

* In C, C++, and C#, records are supported
with the st ruct data type

60

Name

age

address

struct Student PersonalData {
char name[4];
int age;
char address[30];

} SP Data;

61

#include <stdio.h>
#include <string.h>

void main () {
struct Student Personal Data {

char name[10];
int age;
char address[50];
} stu;
strcpy (stu.name, “My name") ;
stu.age = 35;
strcpy (stu.address, “Dept. CSIE, NTNU");

printf ("The student's name is: %s\n", stu.name);
printf ("The student's age is: %d\n", stu.age);

(
(
(
(

printf ("The student's address is: %s\n", stu.address);

62

6.7 Record Types

* Design 1ssues:

— What 1s the syntactic form of references to the
field?

— Are elliptical references allowed

63

6.7.1 Definitions of Records

 Record elements, or fields, are not
referenced by indices.
— Fields are named with 1dentifiers, and

references to the fields are made using these
1dentifiers

64

6.7.1 Definitions of Records

e COBOL uses level numbers to show nested

records; others use recursive definition
01 EMP-REC.

02 EMP-NAME.
05 FIRST PIC X (20).
05 MID PIC X (10).
05 LAST PIC X (20).
02 HOURLY-RATE PIC 99V99.

65

6.7.1 Definitions of Records

e Record structures are indicated 1in an

orthogonal way

type Employee Name Type 1is record

First: String (1..20);
Mid: String (1..10);
Last: String (1..20);

end record;

type Employee Record Type 1is record
Employee Name: Employee Name Type ;
Hourly Rate: Float;

End record;

Employee Record: Employee Record Type;

66

6.7.2 References to Record Fields

« COBOL field references have the form:

field name OF record name 1 OF ... OF record name n

* Most of the other languages use dot
notation

record name l.record name 2. ... record name n.field name

67

6.7.2 References to Record Fields

* A fully qualified reference to a record field 1s
one in which all intermediate record names, from

the largest enclosing record to the specific field,
are named 1n the reference.

 Elliptical reference (Pascal as an example)
employee.name="bob”;

employee.age=42;

with employee do
begin
name="Bob”;
age=42;

end

68

6.7.3 Evaluation

* Field names are like literal, or constant,

subscripts

— Because they are static, they provide very
efficient access to the fields

— Dynamic subscripts could
record fields, but 1t woulc

| be used to access
| disallow type

checking and would also |

be slower

69

6.7.4 Implementation of Record
Types

* The fields of records are N
stored 1n adjacent memory 0 e
locations |

Field1 < Type
— Offset address, relative to o
. . se
the beginning of the record, | 5
1s associated with each field
— Field accesses are all Name
handled using these field Fieldn < Type
Offset
Address

70

6.8 Tuple Types

* A tuple 1s a data type that 1s similar to a record,
except that the elements are not named

e Used in Python, ML, and F# to allow functions to
return multiple values

— Python
* Closely related to its lists, but immutable
 Create with a tuple literal
myTuple = (3, 5.8, 'apple')
Referenced with subscripts (begin at 1)
Catenation with + and deleted with del

71

6.8 Tuple Types (Cont’d)

« ML
val myTuple = (3, 5.8, 'apple');
- Access as follows:
#1 (myTuple) 18 the first element
- A new tuple type can be defined
type 1intReal = int * real;
o F#
let tup = (3, 5, 7)

let a, b, ¢ = tup This assigns a tuple to a

tuple pattern (a, b, c) 7

6.9 List Types

* Python Lists
— The list data type also serves as Python’s arrays

— Unlike Scheme, Common Lisp, ML, and F#,
Python’s lists are mutable

— Elements can be of any type
— Create a list with an assignment

myList = [3, 5.8, "grape"]

73

6.9 List Types (Cont’d)

e Python Lists (continued)

— List elements are referenced with subscripting, with
indices beginning at zero

x = myList[1] Setsxt05.8

— List elements can be deleted with ge1
del myList[1]

— List Comprehensions — derived from set notation
[x * x for x in range(6) if x $ 3 == 0]
range (6) creates [0, 1, 2, 3, 4, 5, 6]
Constructed list: [0, 9, 36]

74

6.10 Union Types

* A union 1s a type whose variables may

store different type values at different times

during program execution

union customer
{
char person[30];
char company[30];
i

union customer cl;

struct Data {

union customer myCustomer;
char address|[50];

75

6.10.1 Design Issues

* The problem of type checking union types

76

6.10.2 Discriminated Versus Free
Unions

* C and C++ provide union constructs in
which there 1s no language support for type
checking

— Free union
union flexType {
int 1ntE1l;
float floatEl; };
union flexType ell;
float x;

ell.intE1=27;

x=ell.floatEl; //non-sense
77

6.10.2 Discriminated Versus Free
Unions

* Type checking of unions requires that each
union construct include a type indicator

— Tag, discriminant

— Discriminated union
« ALGOL 68, Ada, ML, Haskell, F#

78

6.10.3 Unions 1n F#

* Defined with a type statement using OR (|)
type intReal =
| IntValue of 1nt
| RealValue of float;;
intReal 1s the new type

IntValue and RealValue are constructors

To create a value of type intReal:
let 1irl = IntValue 17;;
let 1r2 = RealValue 3.4;;

79

6.10.3 Unions in F# (Cont’d)

» Accessing the value of a union 1s done with
pattern matching
match pattern with
| expression list; -> expression,
...
| expression list, -> expression,,

- Pattern can be any data type

- The expression list can have wild cards ()

80

6.10.3 Unions in F# (Cont’d)

Example:
let a = 7;;
let b = "grape”;;

let x = match (a, b) with
4, "apple" -> apple

~, "grape" -> grape
-> fruit;;

81

6.10.3 Unions in F# (Cont’d)

To display the type of the intReal union:
let printType value =
match value with

| IntVale value -> printfn "int"

| RealValue value -> printfn "float”;;

If irl and ir2 are defined as previously,
printType 1rl returns int
printType 1rZ returns float

82

6.10.5 Evaluation

* Unions are potentially unsafe constructs in
some languages

— Thus, C and C++ are not strongly typed
* Neither Java nor C# includes unions

83

6.11 Pointer and Reference Types

* A pointer type 1s one 1n which the variables
have a range of values that consists of
memory addresses and a special value, nil.

* Two distinct kinds of uses:
— Indirect addressing

— Manage dynamic storage
* Heap

— Dynamic variables

— Anonymous variables
84

6.11.1 Design Issues

What are the scope of and lifetime of a pointer
variable?

What is the lifetime of a heap-dynamic variable?

Are pointers restricted as to the type of value to
which they can point?

Are pointers used for dynamic storage
management, indirect addressing, or both?

Should the language support pointer types,
reference types, or both?

85

6.11.2 Pointer Operations

Two fundamental
pointer operations
— Assignment

— Dereferencing

» Takes a reference
through one level of

indirection

« Can be either explicit
or implicit
J=*ptr

ptr

7080

206 An anonymous

l 7080

dynamic variable

86

6.11.2 Pointer Operations

* In C and C++, there are two ways a pointer
to a record can be used to reference a field
in that record

1=(*p) .age;
1=P->age;

87

6.11.2 Pointer Operations

 Management of heap must include an
explicit allocation operation
—In C,

malloc, free

— In C++,

* new, delete

88

6.11.3 Pointer Problems

* The use of pointer could lead to several
kinds of programming errors

— Some recent languages, such as Java, have
replaced pointers completely with reference
types

 Implicit deallocation (Automatic garbage
collections)

A pointer with restricted operations

89

6.11.3.1 Dangling Pointers

* A dangling pointer, or dangling reference, 1s
a pointer that contains the address of a
heap-dynamic variable that has been
deallocation

90

6.11.3.1 Dangling Pointers (Cont’d)

* The following sequence of operation creates a
dangling pointer

— (1) A new heap-dynamic variable 1s created and pointer
p1l 1s set to point at it

— (2) Pointer p2 is assigned p1’s value
— (3) Variable pointed by p1 is explicitly deallocated
—p2 1s now a dangling pointer

int * arrayPtrl = new 1nt[100];
int * arrayPtr2;
arrayPtrZ2=arrayPtrl;

delete [] arrayPtrl;

91

6.11.3.2 Lost Heap-Dynamic
Variables

* A lost heap-dynamic variable 1s an allocated heap-
dynamic variable that 1s no longer accessible to the
user program

— Also called garbage

92

6.11.3.2 Lost Heap-Dynamic
Variables

* The following sequence of operation creates a lost
heap-dynamic variables

— (1) Pointer p1 is set to point to a newly created heap-
dynamic variable

— (2) p1 1s later set to point to another newly created heap-
dynamic variable

int * pl;

pl=new 1int[100];
pl=new 1int[200];

93

6.11.4 Pointers in C and C++

* The design offers no solutions to the dangling
pointer or lost heap-dynamic variable problems

* Pointers in C and C++ can point to functions
int addInt (int n, int m) {

return n+m;

main ()

int (*functionPtr) (int,int);

functionPtr = &addInt;

int sum = (*functionPtr) (2, 3);

94

6.11.5 Reference Types

* A reference type variable 1s similar to a
pointer, with one important and
fundamental difference

— A pointer refers to an address in memory, while
a reference refers to an object or a value 1n
memory.

95

6.11.5 Reference Types

« C++1ncludes a special kind of reference
type that 1s used primarily for the formal
parameters 1n function definitions.

int result=0;

int &ref result=result;

ref result=100;

96

6.11.5 Reference Types

Swap (1nt *a, 1nt *Db)
{ 1nt t;
t:*a; *a:*b;*b:t;}

Swap (1nt &x, 1nt &vy)
{ 1nt t;
t=x;x=vy;y=t; }

//using pointer

//using reference

97

6.11.5 Reference Types

* Pointer as a parameters require explicit
dereferencing, making the code less
readable and less safe.

* Reference parameters are referenced 1n the
called function exactly as are other
parameters.

98

6.11.5 Reference Types

* The designers of Java removed C++ style
pointers altogether.

— All Java class 1n stances are referenced by
reference variables

* The only use of reference variables in Java
String strl;

str1="This 1s a book”;

99

6.11.5 Reference Types

* Because Java class instance are implicitly

deallocated, there cannot be dangling
references 1n Java.

100

6.11.6 Evaluatin

* Pointers have been compared with the
“gOtO.,,

* Pointers are essential in some kinds of
programming applications

— Writing device driver

101

6.11.7 Implementation of Pointer
and Reference Types

* In most languages, pointers are used 1n heap
management

— The same 1s true for Java and C# reference,

— As well as variables in Smalltalk and Ruby

102

6.11.8.1 Representations of
Pointers and References

* Pointers and References are single values
stored 1n memory cells.

103

6.11.8.2 Solutions to Dangling-
Pointer Problem

* There have been several proposed solutions
to dangling-pointer problem

e Tombstones

— Actual pointer variable pointers only at
tombstones

— When a heap-dynamic variable 1s deallocated
the tombstone remains but is set to nil.

104

6.11.8.2 Solutions to Dangling-
Pointer Problem

* Locks-and-keys approach
— Used in UW-Pascal
— Pointer values => (key, address)

— When a heap-dynamic variable is allocated, a
lock value 1s created and placed both 1n the lock
cell of the variable and 1n the key cell of the
pointer

— Every access to the dereferenced pointer

compares the key value and the lock value
105

6.12 Optional Type

* Some newer languages provide types that
can have a normal value or a special value
to indicate that their variable have no value.

— C#: type name with a question mark (?)
e Int? X;
e [t can be tested against null

— Swift: nil

106

6.13 Type Checking

* For the discussion of type checking, the
concept of operands and operators 1s
generalized to include subprograms and
assignment statements.

* Type checking 1s the activity of ensuring
that the operands of an operator are of
compatible types

107

6.13 Type Checking (Cont’d)

* A compatible type is one that either
— 1s legal for the operator, or

— 1s allowed under language rules to be implicitly
converted by compiler-generated code to a legal

type
e Coercion

— Automatic conversion

108

6.13 Type Checking (Cont’d)

* A type error 1s the application of an
operator to an operand of an inappropriate

type
 Static and dynamic type checking

109

6.14 Strong Typing

* One of the 1deas 1n language design that
became prominent in the so-called

structured-programming revolution of the
1970s was

— strong typing

A highly valuable language characterstics
e Only loosely defined

110

6.14 Strong Typing (Cont’d)

* A programming language 1s strongly typed
if type errors are always detected
— Static time or run time detection

— C and C++ are not strongly typed because
“union” types.

111

6.14 Strong Typing (Cont’d)

o Java and CH#,

— Types can be explicitly cast, which could result
in a type error

— See next slice

112

//X is a supper class of Y and Z which are sibblings.
public class RunTimeCastDemo
public static void main (String args([]) {
()
Y v = new Y ()
()
X xy = new Y(); // compiles ok (up the hierarchy)
)

X X = new X();
2 Z = new 42
X xz = new Z(); // compiles ok (up the hierarchy)
// Y yz = new Z(); incompatible type (siblings)
// Y vyl = new X(); X 1s not a Y

// Z z1 = new X(); X is not a Z
X x1 = vy; // compiles ok (y 1s subclass of X)

X x2 = z; // compiles ok (z i1s subclass of X)

Y vyl = (Y) x; // compiles ok but produces runtime error
Z z1 = (Z) x; // compiles ok but produces runtime error
Y y2 = (Y) x1; // compiles and runs ok (x1 is type Y)

Z z2 = (Z) x2; // compiles and runs ok (x2 1is type 7Z)

Object ol = (Y) o; //compiles ok but produces runtime error }

113

Type Equivalence

* Type compatibility
— The type of an operand can be implicitly

converted by the compiler or run-time system
to make 1t acceptable to the operator

« Structure types are complex to make type
compatible
— Coercion 1s rare

— The 1ssue 1s not type compatibility, but type
equivalence

114

Type Equivalence (Cont’d)

* Two types are equivalent 1f an operand of
one type 1n an expression 1s substituted
from one of the other type without coercion

— Without coercion

* There are two approaches to defining type
equivalence
— Name type equivalence

— Structure type equivalence

115

Type Equivalence (Cont’d)

* Name type equivalence 1s easy to
implement but 1s more restrictive.

— Detined either in the same declaration or in

declarations that use the same type name
typedef 1int fahrenheit;

typedef 1int celsius;
fahrenheit f£;
celsius c;

c = f; // type error in C++

A variable whose type 1s a subrange of the integers
would not be equivalent to an integer type variable.

116

Type Equivalence (Cont’d)

» Structure type equivalence 1s more flexible
than name type equivalence
— Dafficult to implement

— Entire structures of two types must be
compared

— Disallow differentiating between types with the
same structure
type Celsius = Float;
Fahrenhelt = Float;

117

Type Equivalence (Cont’d)

* Ada uses a restrictive form of name type
equivalence but provides two type
constructs for avoiding the problems
associated with name type equivalence,

— Subtypes and derived type

— A derived type 1s a new type which 1t 1s not
equivalent, although it may have 1dentical
structure

type Celsius 1s new Float;

Fahrenheit i1s new Float;

118

Type Equivalence (Cont’d)

* An Ada subtype 1s a possibly range-
constrained version of an existing type

— A subtype is type equivalent with 1ts parent
type

// Compatible
subtype Small type 1s Integer range 0..99

// Not compatible
type Derived Small type 1s Integer range 0..99

119

Type Equivalence (Cont’d)

* For variable of an Ada unconstrained array
type, structure type equivalence 1s used

// Vector 1 and Vector 2 is equivalent

type Vector is array (Integer range<>) of Integer;
Vector 1: Vector (1:10);

Vector 2: Vector (11:20);

120

Type Equivalence (Cont’d)

* For constrained anonymous types, Ada uses
a highly restrictive form of name type

equivalence.

// A and B would be of anonymous but distinct
and not equivalent types

A : array (1:10) of Integer;
B : array (1:10) of Integer;

// C and D would be of anonymous but distinct and
// not equivalent types
C, D : array (1:10) of Integer;

// F and G would be equivalent
type list 10 1is array (1:10) of Integer;
F, G: List 10;
121

Type Equivalence (Cont’d)

* C uses both name and structure type
equivalence

— Every struct, enum, and union declaration
creates a new type that 1s not equivalent to any
other type

— Other nonscalar types use structure type
equivalence

* Array

— Any type defined with typedef 1s type

equivalent to its parent type

122

Type Equivalence (Cont’d)

* Object-oriented languages such as Java and
C++ bring another kind of type
compatibility 1ssue with them

123

