
1

Chapter 6 Data Types

6.1 Introduction

• A data type defines a collection of data
values and a set of predefined operations on
those values.
– In pre-90 Fortrans, linked lists and binary trees

were implemented with arrays
– ALGOL 68, provides a few basic types and a

few flexible structure-defining operators that
allow a programmer to design a data structure
for each need.

2

6.1 Introduction (Cont’d)

– Abstract data type supported by most
programming languages designed since the
mid-1980s.

3

6.1 Introduction (Cont’d)

• Uses of type system in PL
– Error detection
– Program modularization
– Document

• The type system defines how a type is
associated with each expression and
includes its rule for type equivalence and
type compatibility

4

6.1 Introduction (Cont’d)

• Think of variables in terms of descriptors
– A descriptor is the collection of attributes of a

variable
– Static descriptor & dynamic descriptor

5

6.2 Primitive Data Types

• Numeric Types
– Integer
– Floating-point

• IEEE Floating-Point Standard 754 format
• See next page

– Complex
• Fortran and Python

6

7

6.2 Primitive Data Types
(Cont’d)

– Decimal
• To support business systems applications

– COBOL, C#, F#

• To precisely store decimal number
• binary coded decimal (BCD)

– Boolean Types
• Introduced in ALGOL 60

8

6.2 Primitive Data Types
(Cont’d)

• Character Types
– Traditionally, 8-bit code ASCII

• 0 to 127
– EASCII

• Extended ASCII, ISO 8859-1
• Allow 256 different characters

– See next slice.

9

10

6.2 Primitive Data Types (Cont’d)
• UCS-2

– 16-bit character set
– Called Unicode
– Java was the first widely used language to use the Unicode

» JavaScript, Python, Perl, C#, F#

11

6.2 Primitive Data Types (Cont’d)
• UTF-16

– An extension of UCS-2
» 2 or 4 bytes

12

13

6.3 Character String Types

• A character string type is one in which the
values consist of sequences of characters

• Design issues:
– Should strings be simply a special kind of

character array or a primitive type?
– Should strings have static or dynamic length?

14

6.3.2 Strings and Their Operations
• Most common string operations

– Assignment, catenation, substring reference,
comparison, and pattern matching

• If strings are not defined as a primitive type
– Stored in arrays of single characters
– Taken by C and C++
– str is an array of char elements, specifically
apple0, where 0 is the null charater.

char str[]=“apples”;
15

6.3.2 Strings and Their Operations
(Cont’d)

• The string manipulation functions of the C
standard library, also available in C++ are
inherently unsafe

• Consider the following situations,
|dest|=20, and |src|=50:

strcopy (dest, src);

• C++ also supports string class.

16

6.3.2 Strings and Their Operations
(Cont’d)

• In Java,
– String class

• Constant string
• For each assignment to a String object, a new

object should be created (instantiated).
 String S1 = "abc";

 For(int I = 0 ; I < 10000 ; I ++) {
 S1 + = "def";
 S1 = "abc";
 }

17

6.3.2 Strings and Their Operations
(Cont’d)

• In Java,
– StringBuffer class

• Changeable

StringBuffer Sb = new StringBuilder(“This is only
a”).append(“simple”).append(“test”);

18

6.3.2 Strings and Their Operations
(Cont’d)

• Building-in pattern-matching operations of
strings
– Perl, JavaScript, Ruby, PHP…
– Regular expression

• E.g.
/[A-Za-z][A-za-z\d]+/ (name form in PL)
/\d+\.?\d* | \.\d+/ (numeric literal)

• Included in class libraries of pattern-
matching operations of strings
– C++, Java, Python, C#, F#

19

20

Regular Expressions (補充教材)
• Tokens are built from symbols of a finite

vocabulary.
• We use regular expressions to define

structures of tokens.

21

Regular Expressions
• The sets of strings defined by regular expressions

are termed regular sets
• Definition of regular expressions

– Æ is a regular expression denoting the empty set

– l is a regular expression denoting the set that contains only the
empty string

– A string s is a regular expression denoting a set containing only s

– if A and B are regular expressions, so are

• A | B (alternation)

• AB (concatenation)

• A* (Kleene closure)

22

Regular Expressions (Cont’d)
some notational convenience

P+ == PP*
Not(A) == V - A
Not(S) == V* - S
AK == AA …A (k copies)

23

Regular Expressions (Cont’d)
• Some examples

Let D = (0 | 1 | 2 | 3 | 4 | ... | 9)

 L = (A | B | ... | Z)

comment = -- not(EOL)* EOL

decimal = D+ · D+

ident = L (L | D)* (_ (L | D)+)*

comments = ##((#| l)not(#))* ##

24

Regular Expressions (Cont’d)
• Is regular expression as power as CFG?

 { [i]i | i³1}

6.3.3 String Length Options

• Static length string
– Strings of Python, Java’s String class, C++,

Ruby’s built-in String class, .NET class
library

• Limited dynamic length strings
– Allow strings to have varying length up to a

declared and fixed maximum set
• Strings in C

25

6.3.3 String Length Options

• Dynamic length string
– Have varying length with no maximum

• JavaScript, Perl, Java’s StringBuffer

26

6.3.4 Evaluation

• The addition of strings as a primitive type to
a language is not costly in terms of either
language or compiler complexity.

• Providing strings through a standard library
is nearly as convenient as having them as a
primitive type.

27

6.3.5 Implementation of Character
String Types

• A descriptor for a static character string
type, which is required only during
compilation, has three fields.

28

6.3.5 Implementation of
Character String Types (Cont’d)

• Limited dynamic strings require a run-time
descriptor to store both the fixed maximum
length and the current length.

29

6.3.5 Implementation of
Character String Types (Cont’d)

• The limited dynamic strings of C does not
require run-time descriptor
– End of a string is marked with the null

character.

30

6.3.5 Implementation of
Character String Types (Cont’d)

• Dynamic length strings require more
complex storage management
– (1) Strings can be stored in a linked list
– (2) Store strings as arrays of pointers to

individual characters allocated in the heap
– (3) Store complete strings in adjacent storage

cells
• How to deal when a string grows

31

6.4 Enumeration Types

• An enumeration type is one in which all of
the possible values, which are named
constants, are provided, or enumerated, in
the definition.
– Provides a way of defining and grouping

collections of named constants
• Enumeration constants

32

6.4 Enumeration Types (Cont’d)

• C example
#include <stdio.h>

enum week{ sunday, monday, tuesday, wednesday,
thursday, friday, saturday};

int main(){
 enum week today;

 today=wednesday;
 printf("%d day\n",today+1);

 return 0;
 }

Output: 4 day

33

6.4.1 Design issues

• Design issues
– Is an enumeration constant allowed to appear in

more than one type definition, and if so, how is
the type of an occurrence of that constant
checked?

– Are enumeration values coerced to integer?
– Any other type coerced to an enumeration type?

34

6.4.2 Designs

• Why enumeration type?
– We can simulate them with integer values

int red=0, blue=1;

– The problem is we have not defined a type for
our colors.

• No type checking when they are used.

35

6.4.2 Designs (Cont’d)

• Why enumeration type?
– We can simulate them with integer values

int red=0, blue=1;

– The problem is we have not defined a type for
our colors.

• No type checking when they are used.

36

6.4.2 Designs (Cont’d)

• C and Pascal were the first widely used
languages to include an enumeration data
type.
– C++ includes C’s enumeration types

•myColor++; Þ legal
•myColor=4; Þ illegal
•int i=myColor; Þ legal (called coerce)

37

6.4.2 Designs (Cont’d)

• Java
– Enumeration type was added to Java in Java 5.0
– No expression of any other type can be

assigned to an enumeration variable
– An enumeration variable is never coerced to

any other type. (See next slice)
• C#

– Like those of C++, except that they are never
coerced to any other type.

38

public enum Day {

 SUNDAY, MONDAY, TUESDAY, WEDNESDAY,

 THURSDAY, FRIDAY, SATURDAY

}

public class EnumTest {

 Day day;

 public EnumTest(Day day) {

 this.day = day;

 }

 public void tellItLikeItIs() {

 switch (day) {

 case MONDAY:

 System.out.println("Mondays are bad.");
 break;

 case FRIDAY:

 System.out.println("Fridays are better.");

 break;

 case SATURDAY: case SUNDAY:

 System.out.println("Weekends are best.");

 break;

 default:

 System.out.println("Midweek days are so-so.");

 break;

 }

 }

39

 public static void main(String[] args) {

 EnumTest firstDay = new EnumTest(Day.MONDAY);

 firstDay.tellItLikeItIs();

 EnumTest thirdDay = new EnumTest(Day.WEDNESDAY);

 thirdDay.tellItLikeItIs();

 EnumTest fifthDay = new EnumTest(Day.FRIDAY);

 fifthDay.tellItLikeItIs();

 EnumTest sixthDay = new EnumTest(Day.SATURDAY);

 sixthDay.tellItLikeItIs();

 EnumTest seventhDay = new EnumTest(Day.SUNDAY);

 seventhDay.tellItLikeItIs();

 }

}

The output is:

Mondays are bad.

Midweek days are so-so.

Fridays are better.

Weekends are best.

Weekends are best.

6.4.3 Evaluation

• Enumeration types can provide advantages
in both
– Readability and
– Reliability

• In Ada, C#, F#, and Java 5.0
– No arithmetic operations are legal
– No enumeration variable can be assigned a value outside

its defined range (See footnote)

40

6.5 Array Types

• An array is a homogeneous aggregate of
data elements in which an individual
element is identified by its position in the
aggregate, related to the first element

41

6.5.1 Design issues

• What types are legal for subscripts?
• Are subscripting expressions in element references range

checked?
• When are subscript ranges bound?
• When does allocation take place?
• Are ragged or rectangular multidimensional arrays

allowed, or both?
• What is the maximum number of subscripts?
• Can array objects be initialized?
• Are any kind of slices supported?

42

6.5.2 Arrays and Indices

• Specific elements of an array are referenced
by means of a two-level syntactic
mechanism, where the first part is the
aggregate name, and the second part is a
possible dynamic selector consisting of one
or more items known as subscripts or
indices

43

6.5.2 Arrays and Indices (Cont’d)
• The syntax of array references is fairly

universal
– The array name is followed by the list of

subscripts which is surrounded by either
parentheses or brackets

• In Ada
 Sum:=Sum+B(I);

• Most languages other then Fortran and Ada
use brackets to delimit their array indices

44

6.5.2 Arrays and Indices (Cont’d)
• Two distinct types are involved in an array

type
– The element type
– The type of subscript
Type Week_Day_Type is (Mon, Tue, Wed, Thu, Fri);

Type Sales is array (Week_Day_Type) of Float;

45

6.5.2 Arrays and Indices (Cont’d)
• Early programming languages did not

specify that subscript ranges must be
implicitly checked
– Range errors in subscripts are common
– Unreliable
– Java, ML, and C# do

• Java may generate
java.lang.ArrayIndexOutOfBoundsException

46

6.5.3 Subscript Bindings and
Array Categories

• The binding of the subscript type to an array
variable is usually static, but the subscript
value ranges are sometimes dynamically
bound

• In some language, the lower bound of the
subscript range is implicit
– C-based languages, fixed at 0

47

6.5.3 Subscript Bindings and
Array Categories (Cont’d)

• The are five categories of arrays, based on the
binding to script ranges, the binding to storage,
and from where the storage is allocated
– Static array
– Fixed stack-dynamic array
– Stack-dynamic array
– Fixed heap-dynamic array
– Heap-dynamic array

48

6.5.3 Subscript Bindings and
Array Categories (Cont’d)

• C and C++ arrays that include static modifier are
static

• C and C++ arrays without static modifier are fixed
stack-dynamic

• C and C++ provide fixed heap-dynamic arrays
• C# includes a second array class ArrayList that

provides fixed heap-dynamic
• Perl, JavaScript, Python, and Ruby support heap-

dynamic arrays
49

6.5.4 Array Initialization
• Some language allow initialization at the

time of storage allocation
– C, C++, Java, C# example
int list [] = {4, 5, 7, 83}

– Character strings in C and C++
char name [] = ″freddie″;

– Arrays of strings in C and C++
char *names [] = {″Bob″, ″Jake″, ″Joe″];

– Java initialization of String objects
String[] names = {″Bob″, ″Jake″, ″Joe″};

50

6.5.4 Array Initialization
• Ada

– List1 : array (1..5) of Integer :=
 (1, 2, 3, 4, 5);

– List2 : array (1..5) of Integer :=
 (1 => 17, 3 => 34, others => 0);

51

6.5.6 Rectangular and Jagged Arrays
• A rectangular array is a multidimensional

array in which all of the rows have the same
number of elements and all of the columns
have the same number of elements
– int arr[100][50];

• A jagged array is one in which the lengths
of the rows need not be the same.
– C does not support jagged array

• To implement a jagged array, programmers must
manually use an array of pointers along with
malloc/free.

52

6.5.6 Rectangular and Jagged Arrays

53

54

// C program to show the
// implementation of Jagged Arrays

#include <stdio.h>
#include <stdlib.h>

int main()
{

int row0[4] = { 1, 2, 3, 4 };
int row1[2] = { 5, 6 };

int* jagged[2] = { row0, row1 };

// Array to hold the size of each row
int Size[2] = { 4, 2 }, k = 0;

// To display elements of Jagged array
for (int i = 0; i < 2; i++) {

// pointer to hold the address of the row
int* ptr = jagged[i];

for (int j = 0; j < Size[k]; j++) {
printf("%d ", *ptr);

// move the pointer to the
// next element in the row
ptr++;

}

printf("\n");
k++;

// move the pointer to the next row
jagged[i]++;

}

return 0;
}

6.5.6 Rectangular and Jagged Arrays
• In Java you cannot specify array sizes in the variable

declaration itself- so the following statement is illegal
– int b[10];

– int a[10][100];

• Java multi-dimensional arrays are really arrays of arrays,
not one contiguous block of memory
– int[] b = new int[10];

– int[][] a = new int[10][100];

• Java multi-dimensional arrays are really arrays of arrays,
not one contiguous block of memory. Even when you write
new int[10][100], the JVM allocates one int[] of length 10,
then for each of those 10 slots it allocates a separate
int[100].

55

6.5.6 Rectangular and Jagged Arrays
• The jagged-array model ties directly into how the garbage

collector works. Consider the following Java codes:
– int[][] a = new int[10][100];

• The JVM actually allocates 11 separate objects:
– One int[][] of length 10
– Ten int[] sub-arrays of length 100 each
– All 11 live on the heap and are individually tracked by the GC.

• If you later do
– a[5] = null;
– then that one int[100] becomes unreachable and can be collected,

while the rest of a remains intact.
– A true contiguous “rectangular” block would have been a single object,

so you couldn’t free part of it without freeing the whole.
– Java’s GC is designed to manage objects, not arbitrary chunks of

memory.
56

6.6 Associative Arrays

• An associative array is an unordered
collection of data elements that are indexed
by an equal number of values call keys

57

6.6.1 Structure and Operations

• In Perl, associative arrays are called hashes
– Names begin with %; literals are delimited by

parentheses
%hi_temps = ("Mon" => 77, "Tue" => 79, "Wed"
=> 65, …);

• Subscripting is done using braces and keys
$hi_temps{"Wed"} = 83;

– Elements can be removed with delete
 delete $hi_temps{"Tue"};

58

6.6.2 Implementing Associative
Arrays

• A 32-bit hash value is computed for each
entry and is stored with the entry

59

6.7 Record Types

• A record is an aggregate of data elements
in which the individual elements are
identified by names and accessed through
offsets from the beginning of the structure

• In C, C++, and C#, records are supported
with the struct data type

60

struct Student_PersonalData {

 char name[4];

 int age;

 char address[30];

} SP_Data;

61

Name

age

address

#include <stdio.h>
#include <string.h>
void main() {
 struct Student_Personal_Data {
 char name[10];
 int age;
 char address[50];
 } stu;
 strcpy(stu.name,“My name");
 stu.age = 35;
 strcpy(stu.address, “Dept. CSIE, NTNU");
 printf("The student's name is: %s\n", stu.name);
 printf("The student's age is: %d\n", stu.age);
 printf("The student's address is: %s\n", stu.address);
}

62

6.7 Record Types

• Design issues:
– What is the syntactic form of references to the

field?
– Are elliptical references allowed

63

6.7.1 Definitions of Records

• Record elements, or fields, are not
referenced by indices.
– Fields are named with identifiers, and

references to the fields are made using these
identifiers

64

6.7.1 Definitions of Records

• COBOL uses level numbers to show nested
records; others use recursive definition
01 EMP-REC.

 02 EMP-NAME.

 05 FIRST PIC X(20).

 05 MID PIC X(10).

 05 LAST PIC X(20).

 02 HOURLY-RATE PIC 99V99.

65

6.7.1 Definitions of Records

• Record structures are indicated in an
orthogonal way

 type Employee_Name_Type is record

 First: String (1..20);
 Mid: String (1..10);
 Last: String (1..20);
 end record;
 type Employee_Record_Type is record
 Employee_Name: Employee_Name_Type ;
 Hourly_Rate: Float;
 End record;
 Employee_Record: Employee_Record_Type;

66

6.7.2 References to Record Fields

• COBOL field references have the form:
field_name OF record_name_1 OF ... OF record_name_n

• Most of the other languages use dot
notation
record_name_1.record_name_2. ... record_name_n.field_name

67

6.7.2 References to Record Fields
• A fully qualified reference to a record field is

one in which all intermediate record names, from
the largest enclosing record to the specific field,
are named in the reference.

• Elliptical reference (Pascal as an example)
employee.name=“bob”;

employee.age=42;

with employee do
 begin

 name=“Bob”;
 age=42;

 end

68

6.7.3 Evaluation

• Field names are like literal, or constant,
subscripts
– Because they are static, they provide very

efficient access to the fields
– Dynamic subscripts could be used to access

record fields, but it would disallow type
checking and would also be slower

69

6.7.4 Implementation of Record
Types

• The fields of records are
stored in adjacent memory
locations
– Offset address, relative to

the beginning of the record,
is associated with each field

– Field accesses are all
handled using these field

70

6.8 Tuple Types
• A tuple is a data type that is similar to a record,

except that the elements are not named
• Used in Python, ML, and F# to allow functions to

return multiple values
– Python

• Closely related to its lists, but immutable
• Create with a tuple literal
 myTuple = (3, 5.8, ′apple′)
 Referenced with subscripts (begin at 1)
Catenation with + and deleted with del

71

6.8 Tuple Types (Cont’d)
• ML
 val myTuple = (3, 5.8, ′apple′);
 - Access as follows:
 #1(myTuple) is the first element
 - A new tuple type can be defined
 type intReal = int * real;
• F#
 let tup = (3, 5, 7)
 let a, b, c = tup This assigns a tuple to a

tuple pattern (a, b, c)
72

6.9 List Types

• Python Lists
– The list data type also serves as Python’s arrays
– Unlike Scheme, Common Lisp, ML, and F#,

Python’s lists are mutable
– Elements can be of any type
– Create a list with an assignment
 myList = [3, 5.8, "grape"]

73

6.9 List Types (Cont’d)
• Python Lists (continued)

– List elements are referenced with subscripting, with
indices beginning at zero

 x = myList[1] Sets x to 5.8
– List elements can be deleted with del
 del myList[1]
– List Comprehensions – derived from set notation
 [x * x for x in range(6) if x % 3 == 0]
 range(6) creates [0, 1, 2, 3, 4, 5, 6]
 Constructed list: [0, 9, 36]

74

6.10 Union Types
• A union is a type whose variables may

store different type values at different times
during program execution
union customer

{
 char person[30];

 char company[30];
 };
 union customer c1;

 struct Data {

 union customer myCustomer;
 char address[50];

 };
75

6.10.1 Design Issues

• The problem of type checking union types

76

6.10.2 Discriminated Versus Free
Unions

• C and C++ provide union constructs in
which there is no language support for type
checking
– Free union

union flexType {
 int intE1;

 float floatE1; };
union flexType el1;

float x;
…
el1.intE1=27;

x=el1.floatE1; //non-sense
77

6.10.2 Discriminated Versus Free
Unions

• Type checking of unions requires that each
union construct include a type indicator
– Tag, discriminant
– Discriminated union

• ALGOL 68, Ada, ML, Haskell, F#

78

6.10.3 Unions in F#
• Defined with a type statement using OR (|)
 type intReal =
 | IntValue of int

 | RealValue of float;;

 intReal is the new type
 IntValue and RealValue are constructors

 To create a value of type intReal:
 let ir1 = IntValue 17;;
 let ir2 = RealValue 3.4;;

79

6.10.3 Unions in F# (Cont’d)
• Accessing the value of a union is done with
 pattern matching
 match pattern with
 | expression_list1 -> expression1

 | …
 | expression_listn -> expressionn

 - Pattern can be any data type
 - The expression list can have wild cards (_)

80

6.10.3 Unions in F# (Cont’d)

Example:
 let a = 7;;
 let b = ″grape″;;
 let x = match (a, b) with
 | 4, ″apple″ -> apple

 | _, ″grape″ -> grape

 | _ -> fruit;;

81

6.10.3 Unions in F# (Cont’d)
To display the type of the intReal union:
 let printType value =
 match value with
 | IntVale value -> printfn ″int″

 | RealValue value -> printfn ″float″;;

If ir1 and ir2 are defined as previously,
 printType ir1 returns int
 printType ir2 returns float

82

6.10.5 Evaluation

• Unions are potentially unsafe constructs in
some languages
– Thus, C and C++ are not strongly typed

• Neither Java nor C# includes unions

83

6.11 Pointer and Reference Types

• A pointer type is one in which the variables
have a range of values that consists of
memory addresses and a special value, nil.

• Two distinct kinds of uses:
– Indirect addressing
– Manage dynamic storage

• Heap
– Dynamic variables
– Anonymous variables

84

6.11.1 Design Issues
• What are the scope of and lifetime of a pointer

variable?
• What is the lifetime of a heap-dynamic variable?
• Are pointers restricted as to the type of value to

which they can point?
• Are pointers used for dynamic storage

management, indirect addressing, or both?
• Should the language support pointer types,

reference types, or both?

85

6.11.2 Pointer Operations
• Two fundamental

pointer operations
– Assignment
– Dereferencing

• Takes a reference
through one level of
indirection

• Can be either explicit
or implicit
j=*ptr

86

6.11.2 Pointer Operations

• In C and C++, there are two ways a pointer
to a record can be used to reference a field
in that record

i=(*p).age;

i=P->age;

87

6.11.2 Pointer Operations

• Management of heap must include an
explicit allocation operation
– In C,

•malloc, free

– In C++,
•new, delete

88

6.11.3 Pointer Problems

• The use of pointer could lead to several
kinds of programming errors
– Some recent languages, such as Java, have

replaced pointers completely with reference
types

• Implicit deallocation (Automatic garbage
collections)

• A pointer with restricted operations

89

6.11.3.1 Dangling Pointers

• A dangling pointer, or dangling reference, is
a pointer that contains the address of a
heap-dynamic variable that has been
deallocation

90

6.11.3.1 Dangling Pointers (Cont’d)
• The following sequence of operation creates a

dangling pointer
– (1) A new heap-dynamic variable is created and pointer
p1 is set to point at it

– (2) Pointer p2 is assigned p1’s value
– (3) Variable pointed by p1 is explicitly deallocated
Þp2 is now a dangling pointer

int * arrayPtr1 = new int[100];

int * arrayPtr2;

arrayPtr2=arrayPtr1;

delete [] arrayPtr1;

91

6.11.3.2 Lost Heap-Dynamic
Variables

• A lost heap-dynamic variable is an allocated heap-
dynamic variable that is no longer accessible to the
user program
– Also called garbage

92

6.11.3.2 Lost Heap-Dynamic
Variables

• The following sequence of operation creates a lost
heap-dynamic variables
– (1) Pointer p1 is set to point to a newly created heap-

dynamic variable
– (2) p1 is later set to point to another newly created heap-

dynamic variable

int * p1;

p1=new int[100];

p1=new int[200];

93

6.11.4 Pointers in C and C++
• The design offers no solutions to the dangling

pointer or lost heap-dynamic variable problems
• Pointers in C and C++ can point to functions

int addInt(int n, int m) {
 return n+m;
}

main()
{
...

int (*functionPtr)(int,int);

functionPtr = &addInt;
int sum = (*functionPtr)(2, 3);
...

94

6.11.5 Reference Types

• A reference type variable is similar to a
pointer, with one important and
fundamental difference
– A pointer refers to an address in memory, while

a reference refers to an object or a value in
memory.

95

6.11.5 Reference Types

• C++ includes a special kind of reference
type that is used primarily for the formal
parameters in function definitions.

int result=0;

int &ref_result=result;

…

ref_result=100;

96

6.11.5 Reference Types

Swap(int *a, int *b) //using pointer

{ int t;

 t=*a; *a=*b;*b=t;}

Swap (int &x, int &y) //using reference

{ int t;

 t=x;x=y;y=t;}

97

6.11.5 Reference Types

• Pointer as a parameters require explicit
dereferencing, making the code less
readable and less safe.

• Reference parameters are referenced in the
called function exactly as are other
parameters.

98

6.11.5 Reference Types

• The designers of Java removed C++ style
pointers altogether.
– All Java class in stances are referenced by

reference variables
• The only use of reference variables in Java

String str1;

…

str1=“This is a book”;
99

6.11.5 Reference Types

• Because Java class instance are implicitly
deallocated, there cannot be dangling
references in Java.

100

6.11.6 Evaluatin

• Pointers have been compared with the
“goto.”

• Pointers are essential in some kinds of
programming applications
– Writing device driver

101

6.11.7 Implementation of Pointer
and Reference Types

• In most languages, pointers are used in heap
management
– The same is true for Java and C# reference,
– As well as variables in Smalltalk and Ruby

102

6.11.8.1 Representations of
Pointers and References

• Pointers and References are single values
stored in memory cells.

103

6.11.8.2 Solutions to Dangling-
Pointer Problem

• There have been several proposed solutions
to dangling-pointer problem

• Tombstones
– Actual pointer variable pointers only at

tombstones
– When a heap-dynamic variable is deallocated

the tombstone remains but is set to nil.

104

6.11.8.2 Solutions to Dangling-
Pointer Problem

• Locks-and-keys approach
– Used in UW-Pascal
– Pointer values => (key, address)
– When a heap-dynamic variable is allocated, a

lock value is created and placed both in the lock
cell of the variable and in the key cell of the
pointer

– Every access to the dereferenced pointer
compares the key value and the lock value

105

6.12 Optional Type

• Some newer languages provide types that
can have a normal value or a special value
to indicate that their variable have no value.
– C#: type name with a question mark (?)

• int? x;
• It can be tested against null

– Swift: nil

106

6.13 Type Checking

• For the discussion of type checking, the
concept of operands and operators is
generalized to include subprograms and
assignment statements.

• Type checking is the activity of ensuring
that the operands of an operator are of
compatible types

107

6.13 Type Checking (Cont’d)

• A compatible type is one that either
– is legal for the operator, or
– is allowed under language rules to be implicitly

converted by compiler-generated code to a legal
type

• Coercion
– Automatic conversion

108

6.13 Type Checking (Cont’d)

• A type error is the application of an
operator to an operand of an inappropriate
type

• Static and dynamic type checking

109

6.14 Strong Typing

• One of the ideas in language design that
became prominent in the so-called
structured-programming revolution of the
1970s was
– strong typing

• A highly valuable language characterstics
• Only loosely defined

110

6.14 Strong Typing (Cont’d)

• A programming language is strongly typed
if type errors are always detected
– Static time or run time detection
– C and C++ are not strongly typed because

“union” types.

111

6.14 Strong Typing (Cont’d)

• Java and C#,
– Types can be explicitly cast, which could result

in a type error
– See next slice

112

//X is a supper class of Y and Z which are sibblings.
public class RunTimeCastDemo {
 public static void main(String args[]) {
 X x = new X();
 Y y = new Y();
 Z z = new Z();
 X xy = new Y(); // compiles ok (up the hierarchy)
 X xz = new Z(); // compiles ok (up the hierarchy)
 // Y yz = new Z(); incompatible type (siblings)
 // Y y1 = new X(); X is not a Y
 // Z z1 = new X(); X is not a Z
 X x1 = y; // compiles ok (y is subclass of X)
 X x2 = z; // compiles ok (z is subclass of X)
 Y y1 = (Y) x; // compiles ok but produces runtime error
 Z z1 = (Z) x; // compiles ok but produces runtime error
 Y y2 = (Y) x1; // compiles and runs ok (x1 is type Y)
 Z z2 = (Z) x2; // compiles and runs ok (x2 is type Z)

 Object o = z;
 Object o1 = (Y) o; //compiles ok but produces runtime error }
}

113

Type Equivalence
• Type compatibility

– The type of an operand can be implicitly
converted by the compiler or run-time system
to make it acceptable to the operator

• Structure types are complex to make type
compatible
– Coercion is rare
– The issue is not type compatibility, but type

equivalence

114

Type Equivalence (Cont’d)
• Two types are equivalent if an operand of

one type in an expression is substituted
from one of the other type without coercion
– Without coercion

• There are two approaches to defining type
equivalence
– Name type equivalence
– Structure type equivalence

115

Type Equivalence (Cont’d)
• Name type equivalence is easy to

implement but is more restrictive.
– Defined either in the same declaration or in

declarations that use the same type name
typedef int fahrenheit;
typedef int celsius;
fahrenheit f;
celsius c;
c = f; // type error in C++

• A variable whose type is a subrange of the integers
would not be equivalent to an integer type variable.

116

Type Equivalence (Cont’d)
• Structure type equivalence is more flexible

than name type equivalence
– Difficult to implement
– Entire structures of two types must be

compared
– Disallow differentiating between types with the

same structure
type Celsius = Float;
 Fahrenheit = Float;

117

Type Equivalence (Cont’d)
• Ada uses a restrictive form of name type

equivalence but provides two type
constructs for avoiding the problems
associated with name type equivalence,
– Subtypes and derived type
– A derived type is a new type which it is not

equivalent, although it may have identical
structure
type Celsius is new Float;
 Fahrenheit is new Float;

118

Type Equivalence (Cont’d)
• An Ada subtype is a possibly range-

constrained version of an existing type
– A subtype is type equivalent with its parent

type

// Compatible
subtype Small_type is Integer range 0..99

// Not compatible
type Derived_Small_type is Integer range 0..99

119

Type Equivalence (Cont’d)
• For variable of an Ada unconstrained array

type, structure type equivalence is used

// Vector_1 and Vector_2 is equivalent
type Vector is array (Integer range<>) of Integer;
Vector_1: Vector (1:10);

Vector_2: Vector (11:20);

120

Type Equivalence (Cont’d)
• For constrained anonymous types, Ada uses

a highly restrictive form of name type
equivalence.
// A and B would be of anonymous but distinct
and not equivalent types
A : array (1:10) of Integer;

B : array (1:10) of Integer;

// C and D would be of anonymous but distinct and
// not equivalent types
C, D : array (1:10) of Integer;

// F and G would be equivalent

type list_10 is array (1:10) of Integer;
F, G: List_10;

121

Type Equivalence (Cont’d)
• C uses both name and structure type

equivalence
– Every struct, enum, and union declaration

creates a new type that is not equivalent to any
other type

– Other nonscalar types use structure type
equivalence

• Array
– Any type defined with typedef is type

equivalent to its parent type

122

Type Equivalence (Cont’d)
• Object-oriented languages such as Java and

C++ bring another kind of type
compatibility issue with them

123

