Chapter 3 Describing Syntax and
Semantics

3.1 Introduction

 Providing a concise yet understandable
description of a programming language Is
difficult but essential to the language’s
success.

— ALGOL 60 and ALGOL 68 were first.
 For programming language implementors
 Language reference manual

3.1 Introduction (Cont’d)

 Definition of Syntax and Semantics
— Syntax:
« Form, context-free

— Semantics:
« Meaning, context-sensitive

3.2 The General Problem of
Describing Syntax

 Alphabet, Strings, Sentences, Language
« Lexemes and Tokens

3.2.1 Language Recognizers

« R: Recognition device

el

IR R
Strings of L

characters

3.2.1 Language Recognizers

» G: Language generator

R — A sentence of L

3.3 Formal Methods of
Describing Syntax

e Backus-Naur Form and Context-free
Grammars

— Appeared in late 1950s

— Context-free Grammers

» Chomsky, a noted linguist, advised it.

— Context-free and regular grammars turned out to be useful
for describing the syntax of programming languages

» Context-free grammar: Syntax
» Regular grammar: Token

3.3 Formal Methods of
Describing Syntax

— Backus-Naur Form
 Shortly after Chomsky’s work
 John Backus and Peter Naur
 Describing the syntax of ALGOL 58
« BNF

Backus-Naur Form and Context-
free Grammars

 Fundamentals

— A metalanguage is a language that is used to
describe another language.

. E.g., BNF

Context-free grammar (CFG)

 CFG consists of a set of production rules,
A->BCD...Z

w e

LHS must be a single nonterminal

RHS consists 0 or more terminals or nonterminals

10

Context-free grammar (CFG)

Two kinds of symbols

— Nonterminals
* Delimited by < and >
 Represent syntactic structures

— Terminals
 Represent tokens

E.Q.

<program> — begin <statement list> end
Start or goal symbol
A . empty or null string

11

Context-free grammar (Cont’d)

* E.Q.

<statement list> — <statement><statement tail>

<statement tail> — A
<statement tail> — <statement><statement tail>

12

Context-free grammar (Cont’d)

« Extended BNF: some abbreviations

1. optional: [] Oorl

<stmt> — 1f <exp> then <stmt>

<stmt> — 1f <exp> then <stmt> else <stmt>

can be written as

<stmt> — 1f <exp> then <stmt> [else <stmt>]
2. repetition: {} O or more

<stmt list> — <stmt> <tail>

<tail> — A

<tail> — <stmt> <tail>

can be written as

<stmt list> — <stmt> { <stmt> }

Context-free grammar (Cont’d)

« Extended BNF: some abbreviations

3. alternative: | or
<stmt> — <assign>
<stmt> — <if stmt>

can be written as

<stmt> — <assign> | <if stmt>

« Extended BNF = BNF

— Either can be transformed to the other.

— Extended BNF is more compact and readable

14

a)
&2 telnet.csie.ntnu.edu.tw [88x23] f [
-gu BHO) REE) BWBV) BSW) HEO) BHEH)

GREP(1) GREP(1)

grep, egrep, fgrep, rgrep - print lines matching a pattern

SYNOPSIS
W grep [OPTIONS] PATTERN [FILE...]
* grep [OPTIONS] [-e PATTERN | -f FILE] [FILE...]

NDESCRIPTION

| grep searches the named input FILEs (or standard input if no files are named,
| or if a single hyphen-minus (-) is given as file name) for lines containing a
i match to the given PATTERN. By default, grep prints the matching lines.

In addition, three variant programs egrep, fgrep and rgrep are available.
egrep is the same as grep -E. fgrep is the same as grep -F. rgrep 1is the
same as grep -r. Direct invocation as either egrep or fgrep is deprecated,
but is provided to allow historical applications that rely on them to run
unmodified.

e W . @ Fxg .. P@ch6.. PJCha. ‘7 7 N, ol N A Rvi L ;:;f;;/i; [

15

10.
11.
12.
13.
14.

2 09 990 TR R 0 RO

The Syntax of Micro (Cont’d)

<program>
<statement list>
<statement>
<statement>
<statement>
<id list>

<expr list>
<expression>
<primary>
<primary>
<primary>
<add op>
<add op>
<system goal>

fbdele bk b bbb dd

begin <statement list> end
<statement> {<statement>}

ID = <expression> ;

read (<id list>) ;

write (<expr list>) ;

ID {, 1D}

<expressions {, <expression>}
<primary> {<add op> <primary>}
(<expression>)

ID

INTLITERAL

PLUSOP

MINUSOP

<program> SCANEOF

Figure 2.4 Extended CFG Defining Micro

 The derivation of

begin ID:= ID + (INTLITERAL — ID); end

<program>
= begin <statement list> end

= begin <statement> {<statement>} end

= begin <statement> end

= begin ID := <expression> ; end

= begin ID := <primary> {<add op> <primary>} ; end

= begin ID := <primary> <add op> <primary> ; end

= begin ID := <primary> + <primary> ; end

= begin ID := ID + <primary> ; end

= begin ID := ID + (<expression>) ; end

— begin ID := ID + (<primary> {<add op> <primary>}) ; end
= begin ID := ID + (<primary> <add op> <primary>) ; end
— begin ID := ID + (<primary> — <primary>) ; end

= begin ID := ID + (INTLITERAL — <primary>) ; end

= begin ID := ID + (INTLITERAL - ID) ; end

(Apply rule 1)
(Apply rule 2)
(Choose 0 repetitions)
(Apply rule 3)
(Apply rule 8)
(Choose 1 repetition)
(Apply rule 12)
(Apply rule 10)
(Apply rule 9)
(Apply rule 8)
(Choose 1 repetition)
(Apply rule 13)
(Apply rule 11)
(Apply rule 10)

17

Backus-Naur Form and Context-
free Grammars

 Describing Lists

— Variable-length lists in mathematics are often
written using an ellipsis (...)

— For BNF, the alternative Is recursion

<id 1list> — 1d
| 1d, <id list>

18

Backus-Naur Form and Context-
free Grammars

 Grammars and Derivations
— start symbol
— derivation

— sentential form & leftmost derivations
e See next slice

19

e A grammar

<program> — <stmts>
<stmts> — <stmt> | <stmt> ; <stmts>
<stmt> — <var> = <expr>
<var> > a | b | ¢ | d
<expr> — <term> + <term> | <term> - <term>

<term> — <var> | const

e A derivation

<program> => <stmts> => <stmt>
=> <var> = <expr>
=> a = <expr>

=> a = <term> + <term>
=> a = <var> + <term>
=> a = b + <term>
=> a = b + const

Backus-Naur Form and Context-
free Grammars

e Parse trees

— One of the most attractive features of grammars
IS that they naturally describe the hierarchical
syntactic structure of the sentences of the
languages they define.

* Internal node: nonterminal symbol
» Leaf node: terminal symbol

21

Figure 3.1 <asslgn>

A parse tree for the /R

simple statement <id> = <expr=
L =B * (L + O /‘\
A <id> * <exprs>
B (<exprs j
<= + <ENI=
L <=

22

Backus-Naur Form and Context-
free Grammars

« Ambiguity
— A grammar that generates a sentential form for

which there are two or more distinct parse tree
IS said to be ambiguous

 See next slice
— Why may ambiguity cause problem?
 Code generation for compilers

23

Figure 3.2

Two distinct parse trees
for the same sentence,
L =B + C * L

<assign:z

<assign:z
N I
<= = <exprs <id= = <expr=
I I T
R <expr= <exXpr= <EeXpr= <EexXpr=
/‘\ /A\
<id= <expr= <@Xpr> <exprs <expr> <id=
EB <id= <id= <id= <id= A

;;;;;

Backus-Naur Form and Context-
free Grammars

 Operator precedence
— The order of evaluation of operators

— Can the BNF demonstrate the operator
precedence?

e See EXAMPLE 3.4 and the derivation of
A=B+C *A

25

Figure 3.3

The unigque parse tree
forA = B + C * L
using an unambiguous
grammar

=dssIgnz=

e

<id= = <expr=
/R
A <eXpr= + <ferm:
/\
<term= <term:= * =factor=
=factor= <factor= <id=
<jd= <id= A

Backus-Naur Form and Context-
free Grammars

 Assoclativity of operators

— When an expression includes two operators that
have the same precedence, a semantic rule is
required to specify which should have
precedence

— The left recursion specifies left associativity

27

Figure 3.4 <assign:

A parse tree forh = B /\

+ © + A lllustrating <id> = <expr>

the associativity of ‘ M\

addition

A <EXPI=> + <terms

<expr> + <term> <factor=
<term: factor= <id=
<factor= <id= A
<l C

An unambiguous grammar for if-
then-else

« An Intuitive BNF for if-then-else

<if stmt> — 1if <logic expr> then <stmt>
| 1f <logilic expr> then <stmt> else <stmt>

29

Figure 3.5

Two distinct parse trees
for the same sentential

form

<if_stmt=

if <logic_expr= then <stmt= elae <stmt=

=if_stmt=

e

if <logic_expr> then <=stmts

=if_stmt=

\

if <logic_expr> then <stmt-

<if stmt=

\
\

if <logic_expr> then <stmt> else <stmts

SV

An unambiguous grammar for if-
then-else

* The unambiguous grammar

<stmt> — <matched> | <unmatched>
<matched>— 1if <logic expr> then <matched> else <matched>

| <any non-if statement>

<unmatched>— 1if <logic expr> then <stmt>
| if <logic expr> then <matched> else <unmatched>

31

