
1

Chapter 3 Describing Syntax and

Semantics

3.1 Introduction

• Providing a concise yet understandable

description of a programming language is

difficult but essential to the language’s

success.

– ALGOL 60 and ALGOL 68 were first.

• For programming language implementors

• Language reference manual

2

3.1 Introduction (Cont’d)

• Definition of Syntax and Semantics

– Syntax:

• Form, context-free

– Semantics:

• Meaning, context-sensitive

3

3.2 The General Problem of

Describing Syntax

• Alphabet, Strings, Sentences, Language

• Lexemes and Tokens

4

3.2.1 Language Recognizers

• R: Recognition device

5

R
Strings of

characters


L

L

3.2.1 Language Recognizers

• G: Language generator

6

R A sentence of L

3.3 Formal Methods of

Describing Syntax

• Backus-Naur Form and Context-free

Grammars

– Appeared in late 1950s

– Context-free Grammers

• Chomsky, a noted linguist, advised it.

– Context-free and regular grammars turned out to be useful

for describing the syntax of programming languages

» Context-free grammar: Syntax

» Regular grammar: Token

7

3.3 Formal Methods of

Describing Syntax

– Backus-Naur Form

• Shortly after Chomsky’s work

• John Backus and Peter Naur

• Describing the syntax of ALGOL 58

• BNF

8

Backus-Naur Form and Context-

free Grammars

• Fundamentals

– A metalanguage is a language that is used to

describe another language.

• E.g., BNF

9

10

Context-free grammar (CFG)

• CFG consists of a set of production rules,

AB C D Z

LHS must be a single nonterminal

RHS consists 0 or more terminals or nonterminals

LHS RHS

11

Context-free grammar (CFG)
• Two kinds of symbols

– Nonterminals

• Delimited by < and >

• Represent syntactic structures

– Terminals

• Represent tokens

• E.g.

<program>  begin <statement list> end

• Start or goal symbol

•  : empty or null string

12

Context-free grammar (Cont’d)

• E.g.

<statement list>  <statement><statement tail>

<statement tail>  

<statement tail>  <statement><statement tail>

13

Context-free grammar (Cont’d)

• Extended BNF: some abbreviations

1. optional: [] 0 or 1

<stmt>  if <exp> then <stmt>

<stmt>  if <exp> then <stmt> else <stmt>

can be written as

<stmt>  if <exp> then <stmt> [else <stmt>]

2. repetition: { } 0 or more

<stmt list>  <stmt> <tail>

<tail>  

<tail>  <stmt> <tail>

can be written as

<stmt list>  <stmt> { <stmt> }

14

Context-free grammar (Cont’d)

• Extended BNF: some abbreviations

3. alternative: | or

<stmt>  <assign>

<stmt>  <if stmt>

can be written as

<stmt>  <assign> | <if stmt>

• Extended BNF  BNF

– Either can be transformed to the other.

– Extended BNF is more compact and readable

15

16

The Syntax of Micro (Cont’d)

17

• The derivation of

begin ID:= ID + (INTLITERAL – ID); end



























Backus-Naur Form and Context-

free Grammars

• Describing Lists

– Variable-length lists in mathematics are often

written using an ellipsis (…)

– For BNF, the alternative is recursion

<id_list>  id

| id, <id_list>

18

Backus-Naur Form and Context-

free Grammars

• Grammars and Derivations

– start symbol

– derivation

– sentential form & leftmost derivations

• See next slice

19

• A grammar
<program>  <stmts>

<stmts>  <stmt> | <stmt> ; <stmts>

<stmt>  <var> = <expr>

<var>  a | b | c | d

<expr>  <term> + <term> | <term> - <term>

<term>  <var> | const

• A derivation
<program> => <stmts> => <stmt>

=> <var> = <expr>

=> a = <expr>

=> a = <term> + <term>

=> a = <var> + <term>

=> a = b + <term>

=> a = b + const

20

Backus-Naur Form and Context-

free Grammars

• Parse trees

– One of the most attractive features of grammars

is that they naturally describe the hierarchical

syntactic structure of the sentences of the

languages they define.

• Internal node: nonterminal symbol

• Leaf node: terminal symbol

21

22

Backus-Naur Form and Context-

free Grammars

• Ambiguity

– A grammar that generates a sentential form for

which there are two or more distinct parse tree

is said to be ambiguous

• See next slice

– Why may ambiguity cause problem?

• Code generation for compilers

23

Fig3.2

Backus-Naur Form and Context-

free Grammars

• Operator precedence

– The order of evaluation of operators

– Can the BNF demonstrate the operator

precedence?

• See EXAMPLE 3.4 and the derivation of

A=B+CA

25

Fig3.3

Backus-Naur Form and Context-

free Grammars

• Associativity of operators

– When an expression includes two operators that

have the same precedence, a semantic rule is

required to specify which should have

precedence

– The left recursion specifies left associativity

27

Fig3.4

An unambiguous grammar for if-

then-else

• An intuitive BNF for if-then-else

<if_stmt>  if <logic_expr> then <stmt>

| if <logic_expr> then <stmt> else <stmt>

29

30

An unambiguous grammar for if-

then-else

• The unambiguous grammar
<stmt>  <matched> | <unmatched>

<matched> if <logic_expr> then <matched> else <matched>

| <any_non-if_statement>

<unmatched> if <logic_expr> then <stmt>

| if <logic_expr> then <matched> else <unmatched>

31

