
Chapter 2

Evolution of the
Major Programming
Languages

TWELFTH EDITION
GLOBAL EDITION

Copyright © 2023 Pearson Education Ltd. All Rights Reserved.

Copyright © 2023 Pearson Education Ltd. All Rights Reserved. 1-2

Chapter 2 Topics

• Zuse’s Plankalkül
• Minimal Hardware Programming:

Pseudocodes
• The IBM 704 and Fortran
• Functional Programming: Lisp
• The First Step Toward Sophistication:

ALGOL 60
• Computerizing Business Records: COBOL
• The Beginnings of Timesharing: Basic

Copyright © 2023 Pearson Education Ltd. All Rights Reserved. 1-3

Chapter 2 Topics (continued)

• Everything for Everybody: PL/I
• Two Early Dynamic Languages: APL and

SNOBOL
• The Beginnings of Data Abstraction:

SIMULA 67
• Orthogonal Design: ALGOL 68
• Some Early Descendants of the ALGOLs
• Programming Based on Logic: Prolog
• History's Largest Design Effort: Ada

Copyright © 2023 Pearson Education Ltd. All Rights Reserved. 1-4

Chapter 2 Topics (continued)

• Object-Oriented Programming: Smalltalk
• Combining Imperative ad Object-Oriented

Features: C++
• An Imperative-Based Object-Oriented

Language: Java
• Scripting Languages
• The Flagship .NET Language: C#
• Markup/Programming Hybrid Languages

Copyright © 2023 Pearson Education Ltd. All Rights Reserved. 1-5

Genealogy of Common Languages

Copyright © 2023 Pearson Education Ltd. All Rights Reserved. 1-6

Zuse’s Plankalkül

• Designed in 1945, but not published until
1972

• Never implemented
• Advanced data structures

– floating point, arrays, records
• Invariants

Copyright © 2023 Pearson Education Ltd. All Rights Reserved. 1-7

Plankalkül Syntax

• An assignment statement to assign the
expression A[4] + 1 to A[5]

 | A + 1 => A
 V | 4 5 (subscripts)
 S | 1.n 1.n (data types)

Copyright © 2023 Pearson Education Ltd. All Rights Reserved. 1-8

Minimal Hardware Programming:
Pseudocodes

• What was wrong with using machine code?
– Poor readability
– Poor modifiability
– Expression coding was tedious
– Machine deficiencies--no indexing or floating

point

Copyright © 2023 Pearson Education Ltd. All Rights Reserved. 1-9

Pseudocodes: Short Code

• Short Code developed by Mauchly in 1949
for BINAC computers
– Expressions were coded, left to right
– Example of operations:

 01 – 06 abs value 1n (n+2)nd power
 02) 07 + 2n (n+2)nd root

 03 = 08 pause 4n if <= n

 04 / 09 (58 print and tab

Copyright © 2023 Pearson Education Ltd. All Rights Reserved. 1-10

Pseudocodes: Speedcoding

• Speedcoding developed by Backus in 1954
for IBM 701

– Pseudo ops for arithmetic and math functions
– Conditional and unconditional branching
– Auto-increment registers for array access
– Slow!
– Only 700 words left for user program

Copyright © 2023 Pearson Education Ltd. All Rights Reserved. 1-11

Pseudocodes: Related Systems

• The UNIVAC Compiling System
– Developed by a team led by Grace Hopper
– Pseudocode expanded into machine code

• David J. Wheeler (Cambridge University)
– developed a method of using blocks of re-

locatable addresses to solve the problem of
absolute addressing

Copyright © 2023 Pearson Education Ltd. All Rights Reserved. 1-12

IBM 704 and Fortran

• Fortran 0: 1954 - not implemented
• Fortran I:1957

– Designed for the new IBM 704, which had index registers
and floating point hardware

 - This led to the idea of compiled programming
languages, because there was no place to hide the cost of
interpretation (no floating-point software)

– Environment of development
• Computers were small and unreliable
• Applications were scientific
• No programming methodology or tools
• Machine efficiency was the most important concern

Copyright © 2023 Pearson Education Ltd. All Rights Reserved. 1-13

Design Process of Fortran

• Impact of environment on design of Fortran
I
– No need for dynamic storage
– Need good array handling and counting loops
– No string handling, decimal arithmetic, or

powerful input/output (for business software)

Copyright © 2023 Pearson Education Ltd. All Rights Reserved. 1-14

Fortran I Overview

• First implemented version of Fortran
– Names could have up to six characters
– Post-test counting loop (DO)
– Formatted I/O
– User-defined subprograms
– Three-way selection statement (arithmetic IF)
– No data typing statements

Copyright © 2023 Pearson Education Ltd. All Rights Reserved. 1-15

Fortran I Overview (continued)

• First implemented version of FORTRAN
– No separate compilation
– Compiler released in April 1957, after 18

worker-years of effort
– Programs larger than 400 lines rarely compiled

correctly, mainly due to poor reliability of 704
– Code was very fast
– Quickly became widely used

Copyright © 2023 Pearson Education Ltd. All Rights Reserved. 1-16

Fortran II

• Distributed in 1958
– Independent compilation
– Fixed the bugs

Copyright © 2023 Pearson Education Ltd. All Rights Reserved. 1-17

Fortran IV

• Evolved during 1960-62
– Explicit type declarations
– Logical selection statement
– Subprogram names could be parameters
– ANSI standard in 1966

Copyright © 2023 Pearson Education Ltd. All Rights Reserved. 1-18

Fortran 77

• Became the new standard in 1978
– Character string handling
– Logical loop control statement
– IF-THEN-ELSE statement

Copyright © 2023 Pearson Education Ltd. All Rights Reserved. 1-19

Fortran 90

• Most significant changes from Fortran 77
– Modules
– Dynamic arrays
– Pointers
– Recursion
– CASE statement
– Parameter type checking

Copyright © 2023 Pearson Education Ltd. All Rights Reserved. 1-20

Latest versions of Fortran

• Fortran 95 – relatively minor additions, plus
some deletions

• Fortran 2003 – support for OOP, procedure
pointers, interoperability with C

• Fortran 2008 – blocks for local scopes, co-
arrays, Do Concurrent

Copyright © 2023 Pearson Education Ltd. All Rights Reserved. 1-21

Fortran Evaluation

• Highly optimizing compilers (all versions
before 90)
– Types and storage of all variables are fixed

before run time
• Dramatically changed forever the way

computers are used

Copyright © 2023 Pearson Education Ltd. All Rights Reserved. 1-22

Functional Programming: Lisp

• LISt Processing language
– Designed at MIT by McCarthy

• AI research needed a language to
– Process data in lists (rather than arrays)
– Symbolic computation (rather than numeric)

• Only two data types: atoms and lists
• Syntax is based on lambda calculus

Copyright © 2023 Pearson Education Ltd. All Rights Reserved. 1-23

Representation of Two Lisp Lists

Representing the lists (A B C D)
and (A (B C) D (E (F G)))

Copyright © 2023 Pearson Education Ltd. All Rights Reserved. 1-24

Lisp Evaluation

• Pioneered functional programming
– No need for variables or assignment
– Control via recursion and conditional

expressions
• Still the dominant language for AI
• Common Lisp and Scheme are

contemporary dialects of Lisp
• ML, Haskell, and F# are also functional

programming languages, but use very
different syntax

Copyright © 2023 Pearson Education Ltd. All Rights Reserved. 1-25

Scheme

• Developed at MIT in mid 1970s
• Small
• Extensive use of static scoping
• Functions as first-class entities
• Simple syntax (and small size) make it ideal

for educational applications

Copyright © 2023 Pearson Education Ltd. All Rights Reserved. 1-26

Common Lisp

• An effort to combine features of several
dialects of Lisp into a single language

• Large, complex, used in industry for some
large applications

Copyright © 2023 Pearson Education Ltd. All Rights Reserved. 1-27

The First Step Toward Sophistication:
ALGOL 60

• Environment of development
– FORTRAN had (barely) arrived for IBM 70x
– Many other languages were being developed, all

for specific machines
– No portable language; all were machine-

dependent
– No universal language for communicating

algorithms
• ALGOL 60 was the result of efforts to

design a universal language

Copyright © 2023 Pearson Education Ltd. All Rights Reserved. 1-28

Early Design Process

• ACM and GAMM met for four days for
design (May 27 to June 1, 1958)

• Goals of the language
– Close to mathematical notation
– Good for describing algorithms
– Must be translatable to machine code

Copyright © 2023 Pearson Education Ltd. All Rights Reserved. 1-29

ALGOL 58
• Concept of type was formalized
• Names could be any length
• Arrays could have any number of subscripts
• Parameters were separated by mode (in & out)
• Subscripts were placed in brackets
• Compound statements (begin ... end)
• Semicolon as a statement separator
• Assignment operator was :=
• if had an else-if clause
• No I/O - “would make it machine dependent”

Copyright © 2023 Pearson Education Ltd. All Rights Reserved. 1-30

ALGOL 58 Implementation

• Not meant to be implemented, but
variations of it were (MAD, JOVIAL)

• Although IBM was initially enthusiastic, all
support was dropped by mid 1959

Copyright © 2023 Pearson Education Ltd. All Rights Reserved. 1-31

ALGOL 60 Overview

• Modified ALGOL 58 at 6-day meeting in
Paris

• New features
– Block structure (local scope)
– Two parameter passing methods
– Subprogram recursion
– Stack-dynamic arrays

– Still no I/O and no string handling

Copyright © 2023 Pearson Education Ltd. All Rights Reserved. 1-32

ALGOL 60 Evaluation

• Successes
– It was the standard way to publish algorithms

for over 20 years
– All subsequent imperative languages are

based on it
– First machine-independent language
– First language whose syntax was formally

defined (BNF)

Copyright © 2023 Pearson Education Ltd. All Rights Reserved. 1-33

ALGOL 60 Evaluation (continued)

• Failure
– Never widely used, especially in U.S.
– Reasons

• Lack of I/O and the character set made programs
non-portable

• Too flexible--hard to implement
• Entrenchment of Fortran
• Formal syntax description
• Lack of support from IBM

Copyright © 2023 Pearson Education Ltd. All Rights Reserved. 1-34

Computerizing Business Records: COBOL

• Environment of development
– UNIVAC was beginning to use FLOW-MATIC
– USAF was beginning to use AIMACO
– IBM was developing COMTRAN

Copyright © 2023 Pearson Education Ltd. All Rights Reserved. 1-35

COBOL Historical Background

• Based on FLOW-MATIC
• FLOW-MATIC features

– Names up to 12 characters, with embedded
hyphens

– English names for arithmetic operators (no
arithmetic expressions)

– Data and code were completely separate
– The first word in every statement was a verb

Copyright © 2023 Pearson Education Ltd. All Rights Reserved. 1-36

COBOL Design Process

• First Design Meeting (Pentagon) - May 1959
• Design goals

– Must look like simple English
– Must be easy to use, even if that means it will be less

powerful
– Must broaden the base of computer users
– Must not be biased by current compiler problems

• Design committee members were all from
computer manufacturers and DoD branches

• Design Problems: arithmetic expressions?
subscripts? Fights among manufacturers

Copyright © 2023 Pearson Education Ltd. All Rights Reserved. 1-37

COBOL Evaluation

• Contributions
– First macro facility in a high-level language
– Hierarchical data structures (records)
– Nested selection statements
– Long names (up to 30 characters), with hyphens
– Separate data division

Copyright © 2023 Pearson Education Ltd. All Rights Reserved. 1-38

COBOL: DoD Influence

• First language required by DoD (美國國防部)
– would have failed without DoD

• Still the most widely used business
applications language

Copyright © 2023 Pearson Education Ltd. All Rights Reserved. 1-39

The Beginning of Timesharing: Basic

• Designed by Kemeny & Kurtz at Dartmouth
• Design Goals:

– Easy to learn and use for non-science students
– Must be “pleasant and friendly”
– Fast turnaround for homework
– Free and private access
– User time is more important than computer time

• Current popular dialect: Visual Basic
• First widely used language with time

sharing

Copyright © 2023 Pearson Education Ltd. All Rights Reserved. 1-40

2.8 Everything for Everybody: PL/I

• Designed by IBM and SHARE
• Computing situation in 1964 (IBM's point

of view)
– Scientific computing

• IBM 1620 and 7090 computers
• FORTRAN
• SHARE user group

– Business computing
• IBM 1401, 7080 computers
• COBOL
• GUIDE user group

Copyright © 2023 Pearson Education Ltd. All Rights Reserved. 1-41

PL/I: Background

• By 1963
– Scientific users began to need more elaborate

I/O, like COBOL had; business users began to
need floating point and arrays for MIS

– It looked like many shops would begin to need
two kinds of computers, languages, and support
staff--too costly

• The obvious solution
– Build a new computer to do both kinds of

applications
– Design a new language to do both kinds of

applications

Copyright © 2023 Pearson Education Ltd. All Rights Reserved. 1-42

PL/I: Design Process

• Designed in five months by the 3 X 3
Committee
– Three members from IBM, three members from

SHARE
• Initial concept

– An extension of Fortran IV
• Initially called NPL (New Programming

Language)
• Name changed to PL/I in 1965

Copyright © 2023 Pearson Education Ltd. All Rights Reserved. 1-43

PL/I: Evaluation

• PL/I contributions
– First unit-level concurrency
– First exception handling
– Switch-selectable recursion
– First pointer data type
– First array cross sections

• Concerns
– Many new features were poorly designed
– Too large and too complex

Copyright © 2023 Pearson Education Ltd. All Rights Reserved. 1-44

Two Early Dynamic Languages: APL and
SNOBOL

• Characterized by dynamic typing and
dynamic storage allocation

• Variables are untyped
– A variable acquires a type when it is assigned a

value
• Storage is allocated to a variable when it is

assigned a value

Copyright © 2023 Pearson Education Ltd. All Rights Reserved. 1-45

APL: A Programming Language

• Designed as a hardware description
language at IBM by Ken Iverson around
1960
– Highly expressive (many operators, for both

scalars and arrays of various dimensions)
– Programs are very difficult to read

• Still in use; minimal changes

Copyright © 2023 Pearson Education Ltd. All Rights Reserved. 1-46

SNOBOL

• Designed as a string manipulation language
at Bell Labs by Farber, Griswold, and
Polensky in 1964

• Powerful operators for string pattern
matching

• Slower than alternative languages (and thus
no longer used for writing editors)

• Still used for certain text processing tasks

Copyright © 2023 Pearson Education Ltd. All Rights Reserved. 1-47

The Beginning of Data Abstraction:
SIMULA 67
• Designed primarily for system

simulation in Norway by Nygaard and
Dahl

• Based on ALGOL 60 and SIMULA I
• Primary Contributions

– Coroutines - a kind of subprogram
– Classes, objects, and inheritance

Copyright © 2023 Pearson Education Ltd. All Rights Reserved. 1-48

Orthogonal Design: ALGOL 68

• From the continued development of ALGOL
60 but not a superset of that language

• Source of several new ideas (even though
the language itself never achieved
widespread use)

• Design is based on the concept of
orthogonality
– A few basic concepts, plus a few combining

mechanisms

Copyright © 2023 Pearson Education Ltd. All Rights Reserved. 1-49

ALGOL 68 Evaluation

• Contributions
– User-defined data structures
– Reference types
– Dynamic arrays (called flex arrays)

• Comments
– Less usage than ALGOL 60
– Had strong influence on subsequent languages,

especially Pascal, C, and Ada

Copyright © 2023 Pearson Education Ltd. All Rights Reserved. 1-50

Pascal - 1971

• Developed by Wirth (a former member of
the ALGOL 68 committee)

• Designed for teaching structured
programming

• Small, simple, nothing really new
• Largest impact was on teaching

programming
– From mid-1970s until the late 1990s, it was the

most widely used language for teaching
programming

Copyright © 2023 Pearson Education Ltd. All Rights Reserved. 1-51

C - 1972

• Designed for systems programming (at Bell
Labs by Dennis Richie)

• Evolved primarily from BCLP and B, but also
ALGOL 68

• Powerful set of operators, but poor type
checking

• Initially spread through UNIX
• Though designed as a systems language, it

has been used in many application areas

Copyright © 2023 Pearson Education Ltd. All Rights Reserved. 1-52

Programming Based on Logic: Prolog

• Developed, by Comerauer and Roussel
(University of Aix-Marseille), with help from
Kowalski (University of Edinburgh)

• Based on formal logic
• Non-procedural
• Can be summarized as being an intelligent

database system that uses an inferencing
process to infer the truth of given queries

• Comparatively inefficient
• Few application areas

Copyright © 2023 Pearson Education Ltd. All Rights Reserved. 1-53

History’s Largest Design Effort: Ada

• Huge design effort, involving hundreds of
people, much money, and about eight
years

• Sequence of requirements (1975-1978)
– (Strawman, Woodman, Tinman, Ironman,

Steelman)
• Named Ada after Augusta Ada Byron, the

first programmer

Copyright © 2023 Pearson Education Ltd. All Rights Reserved. 1-54

Ada Evaluation

• Contributions
– Packages - support for data abstraction
– Exception handling - elaborate
– Generic program units
– Concurrency - through the tasking model

• Comments
– Competitive design
– Included all that was then known about software

engineering and language design
– First compilers were very difficult; the first really usable

compiler came nearly five years after the language design
was completed

Copyright © 2023 Pearson Education Ltd. All Rights Reserved. 1-55

Ada 95
• Ada 95 (began in 1988)

– Support for OOP through type derivation
– Better control mechanisms for shared data
– New concurrency features
– More flexible libraries

• Ada 2005
– Interfaces and synchronizing interfaces

• Popularity suffered because the DoD no
longer requires its use but also because of
popularity of C++

Copyright © 2023 Pearson Education Ltd. All Rights Reserved. 1-56

Object-Oriented Programming:
Smalltalk

• Developed at Xerox PARC, initially by Alan
Kay, later by Adele Goldberg

• First full implementation of an object-
oriented language (data abstraction,
inheritance, and dynamic binding)

• Pioneered the graphical user interface
design

• Promoted OOP

Copyright © 2023 Pearson Education Ltd. All Rights Reserved. 1-57

Combining Imperative and Object-
Oriented Programming: C++
• Developed at Bell Labs by Stroustrup in 1980
• Evolved from C and SIMULA 67
• Facilities for object-oriented programming, taken

partially from SIMULA 67
• A large and complex language, in part because it

supports both procedural and OO programming
• Rapidly grew in popularity, along with OOP
• ANSI standard approved in November 1997
• Microsoft’s version: MC++

– Properties, delegates, interfaces, no multiple inheritance

Copyright © 2023 Pearson Education Ltd. All Rights Reserved. 1-58

A Related OOP Language
• Swift – a replacement for Objective-C

– Released in 2014
– Two categories of types, classes and struct, like
 C#
– Used by Apple for systems programs

• Delphi – another related language
- A hybrid language, like C++
- Began as an object-oriented version of Pascal
- Designed by Anders Hejlsberg, who also

designed Turbo Pascal and C#

Copyright © 2023 Pearson Education Ltd. All Rights Reserved. 1-59

An Imperative-Based Object-Oriented
Language: Java
• Developed at Sun in the early 1990s

– C and C++ were not satisfactory for embedded
electronic devices

• Based on C++
– Significantly simplified (does not include
struct, union, enum, pointer arithmetic, and
half of the assignment coercions of C++)

– Supports only OOP
– Has references, but not pointers
– Includes support for applets and a form of

concurrency

Copyright © 2023 Pearson Education Ltd. All Rights Reserved. 1-60

Java Evaluation

• Eliminated many unsafe features of C++
• Supports concurrency
• Libraries for applets, GUIs, database access
• Portable: Java Virtual Machine concept, JIT

compilers
• Widely used for Web programming
• Use increased faster than any previous

language
• Most recent version, 8, released in 2014

Copyright © 2023 Pearson Education Ltd. All Rights Reserved. 1-61

Scripting Languages for the Web

• Perl
– Designed by Larry Wall—first released in 1987
– Variables are statically typed but implicitly declared
– Three distinctive namespaces, denoted by the first character of a
 variable’s name
– Powerful, but somewhat dangerous
– Gained widespread use for CGI programming on the Web
– Also used for a replacement for UNIX system administration language

• JavaScript
– Began at Netscape, but later became a joint venture of Netscape and Sun

Microsystems
– A client-side HTML-embedded scripting language, often used to create

dynamic HTML documents
– Purely interpreted
– Related to Java only through similar syntax

• PHP
– PHP: Hypertext Preprocessor, designed by Rasmus Lerdorf
– A server-side HTML-embedded scripting language, often used for form

processing and database access through the Web
– Purely interpreted

Scripting Languages for the Web

• Python
– An OO interpreted scripting language
– Type checked but dynamically typed
– Used for form processing
– Dynamically typed, but type checked
– Supports lists, tuples, and hashes

• Ruby
– Designed in Japan by Yukihiro Matsumoto (a.k.a, “Matz”)
– Began as a replacement for Perl and Python
– A pure object-oriented scripting language
 - All data are objects
– Most operators are implemented as methods, which can be redefined by

user code
– Purely interpreted

Copyright © 2023 Pearson Education Ltd. All Rights Reserved. 1-62

Copyright © 2023 Pearson Education Ltd. All Rights Reserved. 1-63

The Flagship .NET Language: C#

• Part of the .NET development platform
(2000)

• Based on C++ , Java, and Delphi
• Includes pointers, delegates, properties,

enumeration types, a limited kind of
dynamic typing, and anonymous types

• Is evolving rapidly

Copyright © 2023 Pearson Education Ltd. All Rights Reserved. 1-64

Markup/Programming Hybrid
Languages

• XSLT
– eXtensible Markup Language (XML): a metamarkup

language
– eXtensible Stylesheet Language Transformation (XSTL)

transforms XML documents for display
– Programming constructs (e.g., looping)

• JSP
– Java Server Pages: a collection of technologies to support

dynamic Web documents
– JSTL, a JSP library, includes programming constructs in the

form of HTML elements

Copyright © 2023 Pearson Education Ltd. All Rights Reserved. 1-65

Summary

• Development, development environment,
and evaluation of a number of important
programming languages

• Perspective into current issues in language
design

