
1



2

Chapter 1 Preliminary



1.1 Reasons for Studying Concepts of 

Programming Languages

• Increased capacity to express ideas

• Improved background for choosing appropriate 

languages

• Increased ability to learn new languages

• Better understanding of the significance of 

implementation

• Better use of languages that are already known

• Overall advancement of computing

3



1.2 Programming Domains

• Scientific Applications

– Fortran?

• Business Applications

– COBOL (appeared in 1960)

4



1.2 Programming Domains

• Artificial Intelligence

– Symbolic but not numeric

– Linked list but not array

– Functional language : LISP

– Logic programming language: Prolog

5



1.2 Programming Domains

• Systems Programming

– OS and tools

– Machine-dependent

– C language

6



1.2 Programming Domains

• Web Software

– Markup languages 

• HTML, XML…

– Scripting langages

• JavaScript or PHP

7



1.3 Language Evaluation Criteria

• Impact on the software development 

process

• Maintenance

8



Readability

Maintenance and readability

• Overall Simplicity

– Readability problems occur

• Authors had learned a different subsets

• Feature multiplicity

• Operator overloading

– Simplicity in languages can be carried too far

• Result in less readable

– Assembly language
9



Readability

• Orthogonality

– Orthogonal

• 直角的、正交的

• Easier use (in mathematics)

• Non-overlapping, uncorrelated, independent object

– Definition of orthogonality in PL

• First para. of Section 1.3.1.2

10



Readability

• Data Types

– The presence of adequate facilities for defining 

data types and data structures in a language is 

another significant aid to readability

11



Readability

• Syntax Design

– Special words

– Form and meaning

• Syntax and semantics

12



Writability

• Simplicity and Orthogonality

• Expressivity 

13



Reliability

• Type checking

• Exception handling

– Intercept run-time error

• Aliasing

– A dangerous feature

– E.g., Union & pointer in C

• See next slice.

• Readability and Writability
14



Union of C
typedef struct a {

int i;

union {

float x;

int y; }

} r1;

r1.x=5.1;

printf(“%d”,k.y);

15



Cost

• Cost of training programmers 

• Cost of writing programs

• Cost of compiling programs

• Cost of executing programs

• Cost of the language implementation system

• Cost of poor reliability

16



Cost

• Cost of maintaining programs

– Maintenance costs can be as high as two to four 

times as much as development costs 

(Sommerville, 2005)

• Portability

• Generality and Well-definedness

17



1.4 Influences on Language 

Design

• Computer architecture

– A profound effect on language design

– Von Meumann architecture

• Imperative languages

• Central features

– Variables 

– Assignment statements

– Iterative form

18



19



1.4 Influences on Language 

Design

• Computer architecture

– Languages that are not imperative

• Functional language

– Without assignment statements and without iteration

– Imperative languages dominate!

20



1.4 Influences on Language 

Design

• Programming design methodologies

– Trend

• HW cost 

• SW cost 

21



1.4 Influences on Language 

Design

• Programming design methodologies

– 1970s

• Top-down design and stepwise refinement

– Late 1970s

• A shift from procedure-oriented to data-oriented 

program design and methodologies

– Abstract data types

– 1980

• Object-oriented design

22



1.5 Language Categories

• Four bins:

– Imperative, functional, logic, and object-

oriented.

• Others:

– Scripting language

• By interpretation

• E.g., Perl, JavaScript, Ruby (still imperative)

23



1.5 Language Categories

• Recently days

– Markup language

• HTML, XML, XSLT, etc.

24



1.6 Language Design Trade-Offs

• What is the meaning of trade-off?

• Trade-offs

– Reliability and cost of execution

– Design trade-off

• How about APL? (See next slice)

– Writability and reliability

25



26



1.7 Implementation Methods

• Compilations

• Pure Interpretation

27


