|GLOBAL
EDITION

Conceps of
Programming Languages

ELEVENTH EDITION

ALWAYS LEARNING

Chapter 1 Preliminary

1.1 Reasons for Studying Concepts of
Programming Languages

Increased capacity to express ideas

Improved background for choosing appropriate
languages

Increased ability to learn new languages

Better understanding of the significance of
Implementation

Better use of languages that are already known
Overall advancement of computing

1.2 Programming Domains

» Scientific Applications
— Fortran?

» Business Applications
— COBOL (appeared in 1960)

1.2 Programming Domains

o Artificial Intelligence
— Symbolic but not numeric
— Linked list but not array
— Functional language : LISP
— Logic programming language: Prolog

1.2 Programming Domains

« Systems Programming
— OS and tools
— Machine-dependent
— C language

1.2 Programming Domains

 Web Software

— Markup languages
« HTML, XML...

— Scripting langages
» JavaScript or PHP

1.3 Language Evaluation Criteria

 Impact on the software development
process

e Maintenance

Readability

Maintenance and readability

« Overall Simplicity

— Readability problems occur
 Authors had learned a different subsets
 Feature multiplicity
 Operator overloading

— Simplicity in languages can be carried too far

e Result in less readable
— Assembly language

Readability

 Orthogonality

— Orthogonal
« EAHY ~ IEACHY
» Easier use (in mathematics)
« Non-overlapping, uncorrelated, independent object

— Definition of orthogonality in PL
* First para. of Section 1.3.1.2

10

Readability

« Data Types

— The presence of adequate facilities for defining
data types and data structures in a language Is
another significant aid to readability

11

Readability

 Syntax Design
— Special words

— Form and meaning
 Syntax and semantics

12

Writability

« Simplicity and Orthogonality
« EXpressivity

13

Reliability

Type checking

Exception handling

— Intercept run-time error
Aliasing

— A dangerous feature

— E.g., Union & pointer in C
 See next slice.

Readability and Writability

14

Union of C

typedef struct a {
Int I;
union {
float x;
inty; }
yr;
r1.x=5.1;
printf(“%d",k.y);

15

Cost

Cost of training programmers

Cost of writing programs

Cost of compiling programs

Cost of executing programs

Cost of the language implementation system
Cost of poor reliability

16

Cost

» Cost of maintaining programs

— Maintenance costs can be as high as two to four
times as much as development costs
(Sommerville, 2005)

 Portability
« Generality and Well-definedness

17

1.4 Influences on Language
Design

« Computer architecture
— A profound effect on language design

— Von Meumann architecture
 Imperative languages

« Central features
— Variables
— Assignment statements
— Iterative form

18

Figure 1.1

The von Neumann
computer architecture

Results of
operations

Memory (stores both instructions and data)

Instructions and data

Arithmetic and
logic unit

Control
Lnit

-

Central processing unit

= Input and output devices

19

1.4 Influences on Language
Design

« Computer architecture

— Languages that are not imperative

 Functional language
— Without assignment statements and without iteration

— Imperative languages dominate!

20

1.4 Influences on Language
Design

* Programming design methodologies

— Trend
« HW cost 4
e SWcost T

21

1.4 Influences on Language
Design

* Programming design methodologies

— 1970s
» Top-down design and stepwise refinement

— Late 1970s

* A shift from procedure-oriented to data-oriented
program design and methodologies
— Abstract data types

— 1980
 Object-oriented design

22

1.5 Language Categories

e Four bins:

— Imperative, functional, logic, and object-
oriented.

 Others:
— Scripting language
By interpretation
 E.g., Perl, JavaScript, Ruby (still imperative)

23

1.5 Language Categories

» Recently days

— Markup language
« HTML, XML, XSLT, etc.

24

1.6 Language Design Trade-Offs

« What is the meaning of trade-off?

e Trade-offs

— Reliability and cost of execution

— Design trade-off
» How about APL? (See next slice)

— Writability and reliability

25

How does a really complicated APL routine look like?

Performing a fast Fourier transformation (FFT)

v Z<FFT X;C;D;E;J;K;LL;M;N;O

[1] LL<«|2%x-0-1M< [2&N,0pE<« 1-2x~0<«11.J«1L
«0,00K< 1N« 14pX

[2] —>(M>L<—L+1)/l+pp]<-—J,Np 01 o=
2xL)p1

(31 ZX[(L<0HGLLM.xJ«(M,N)pJ]

[4] X<« 21 0.00(-0-K): 14LL

(51 Z<Z[;K-,LL[L]xJ[L;]11+(pZ)p(-+X[;D] x
Z[;C])),++X[;D<«O+Np LL[E+M-L]x-0-1
2xLL[L] JxeZ[;C«K+,LL[L] x0=J[L;]]

[6] ~((M+O)>L<«L+1)/5

26

1.7 Implementation Methods

« Compilations
 Pure Interpretation

Figure 1.4
- SoUrce _\".
Pure interpretation program _/a'

27

