

Concepts of Programming Languages

ELEVENTH EDITION

Robert W. Sebesta

ALWAYS LEARNING

1

Chapter 1 Preliminary

1.1 Reasons for Studying Concepts of Programming Languages

- Increased capacity to express ideas
- Improved background for choosing appropriate languages
- Increased ability to learn new languages
- Better understanding of the significance of implementation
- Better use of languages that are already known
- Overall advancement of computing

• Scientific Applications

– Fortran?

Business Applications
COBOL (appeared in 1960)

- Artificial Intelligence
 - Symbolic but not numeric
 - Linked list but not array
 - Functional language : LISP
 - Logic programming language: Prolog

- Systems Programming
 - OS and tools
 - Machine-dependent
 - C language

- Web Software
 - Markup languages
 - HTML, XML...
 - Scripting langages
 - JavaScript or PHP

1.3 Language Evaluation Criteria

- Impact on the software development process
- Maintenance

Maintenance and readability

- Overall Simplicity
 - Readability problems occur
 - Authors had learned a different subsets
 - Feature multiplicity
 - Operator overloading
 - Simplicity in languages can be carried too far
 - Result in less readable
 - Assembly language

- Orthogonality
 - Orthogonal
 - 直角的、正交的
 - Easier use (in mathematics)
 - Non-overlapping, uncorrelated, independent object
 - Definition of orthogonality in PL
 - First para. of Section 1.3.1.2

- Data Types
 - The presence of adequate facilities for defining data types and data structures in a language is another significant aid to readability

- Syntax Design
 - Special words
 - Form and meaning
 - Syntax and semantics

Writability

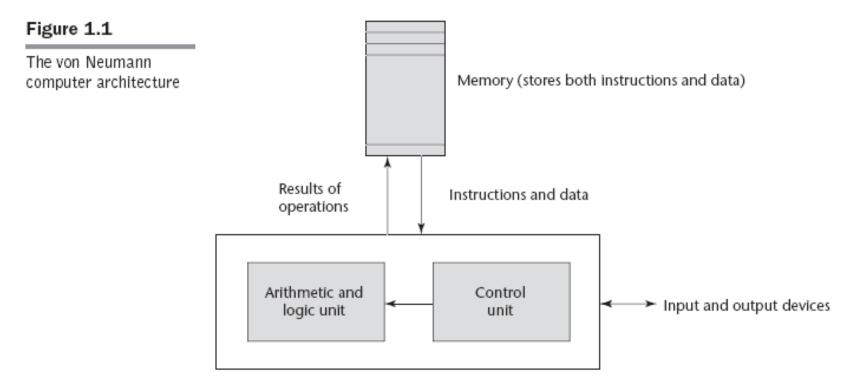
- Simplicity and Orthogonality
- Expressivity

Reliability

- Type checking
- Exception handling
 - Intercept run-time error
- Aliasing
 - A dangerous feature
 - E.g., Union & pointer in C
 - See next slice.
- Readability and Writability

Union of C

typedef struct a { int i; union { float x; int y; } } **r1**; **r1.x**=5.1; printf("%d",k.y);


Cost

- Cost of training programmers
- Cost of writing programs
- Cost of compiling programs
- Cost of executing programs
- Cost of the language implementation system
- Cost of poor reliability

Cost

- Cost of maintaining programs
 - Maintenance costs can be as high as two to four times as much as development costs (Sommerville, 2005)
- Portability
- Generality and Well-definedness

- Computer architecture
 - A profound effect on language design
 - Von Meumann architecture
 - Imperative languages
 - Central features
 - Variables
 - Assignment statements
 - Iterative form

Central processing unit

- Computer architecture
 - Languages that are not imperative
 - Functional language
 - Without assignment statements and without iteration
 - Imperative languages dominate!

- Programming design methodologies
 - Trend
 - HW cost \downarrow
 - SW cost \uparrow

- Programming design methodologies
 - 1970s
 - Top-down design and stepwise refinement
 - Late 1970s
 - A shift from procedure-oriented to data-oriented program design and methodologies
 - Abstract data types
 - 1980
 - Object-oriented design

1.5 Language Categories

- Four bins:
 - Imperative, functional, logic, and objectoriented.
- Others:
 - Scripting language
 - By interpretation
 - E.g., Perl, JavaScript, Ruby (still imperative)

1.5 Language Categories

- Recently days
 - Markup language
 - HTML, XML, XSLT, etc.

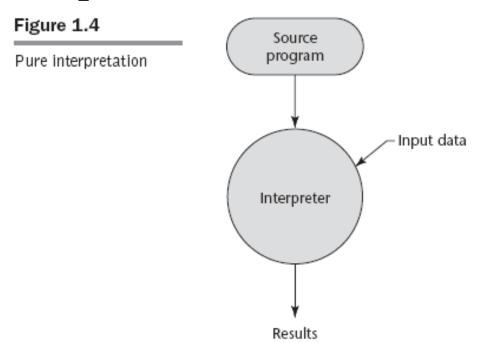
1.6 Language Design Trade-Offs

- What is the meaning of trade-off?
- Trade-offs
 - Reliability and cost of execution
 - Design trade-off
 - How about APL? (See next slice)
 - Writability and reliability

How does a really complicated APL routine look like?

Performing a fast Fourier transformation (FFT)

 ∇ Z + FFT X;C;D;E;J;K;LL;M;N;O


- [1] $LL \leftarrow \lfloor 2 \times -0 \iota M \leftarrow \lfloor 2 \otimes N, 0_{\rho} E \leftarrow 1 2 \times \sim O \leftarrow \iota 1. J \leftarrow \iota L \leftarrow 0, 0_{\rho} K \leftarrow \iota N \leftarrow 1 \land \rho X$
- $[2] \rightarrow (M>L \leftarrow L+1)/1 + \rho \rho J \leftarrow J, N \rho 0 1 \circ = ($

2*L)p1

- $[3] \quad Z \leftarrow X[;(L \leftarrow 0) + (\varphi LL) + . \times J \leftarrow (M,N)_{\rho} J]$
- $[4] \quad X \leftarrow 2 \ 1 \ \circ. \circ \circ (-O-K) \div 1 \land LL$
- $[5] Z \leftarrow Z[;K-,LL[L] \times J[L;]] + (\rho Z)\rho(-+X[;D] \times Z[;C]), ++X[;D \leftarrow O+N\rho LL[E+M-L] \times -O-1 \\ 2 \times LL[L]] \times \Theta Z[;C \leftarrow K+,LL[L] \times 0=J[L;]] \rightarrow ((M+O) > L \leftarrow L+1)/5$

1.7 Implementation Methods

- Compilations
- Pure Interpretation

