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I. INTRODUCTION

A. Definition and Notations

In 3-dimension Euclidean space, a quantity which requires both direction and magnitude

to specify is called a vector. On the other hand, a quantity with which one can describe

completely using magnitude is called a scalar.

Example : While the position of an object in 3-dim Euclidean space is a vector, its weight

is a scalar.

• Notation : we will ues letters with a arrow on top of them to denote vectors and letters

without any decoration to represent scalars.

– A vector : ~A.

– A scalar : a.

B. Operations on Vectors

As everyone is familiar with, once a origin and a basis (say e1 = (1, 0, 0), e2 = (0, 1, 0), e3 =

(0, 0, 1)) is chosen in 3-dim Euclidean space, a vector (in this 3-dim Euclidean space) is

completely determined by 3 scalars. Specfically, any vector in 3-dim Euclidean space can be

written as

~A = (A1, A2, A3), (1)

here Ai with i ∈ {1, 2, 3} are scalars. The magnitude of a vector ~A which is denoted by | ~A|

is defined by | ~A| =
√∑3

i=1A
2
i .

Example : Let ~A = (2, 1,−1). then | ~A| =
√

22 + 12 + (−1)2 =
√

6.
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A vector ~A is called an unit vector if | ~A| = 1. For example, e1 = (1, 0, 0), e2 = (0, 1, 0)

and e3 = (0, 0, 1) are all unit vectors.

Addition and Substraction of Vectors

Given 2 vectors ~A = (A1, A2, A3) and ~B = (B1, B2, B3), one can define addtion and

substraction of ~A and ~B through

Addition : ~C = ~A+ ~B = (A1 +B1, A2 +B2, A3 +B3), (2)

Substraction : ~C ′ = ~A− ~B = (A1 −B1, A2 −B2, A3 −B3).

These rules we mentioned about ”+” and ”−” apply to more than 2 vectors as well : Let

~A = (A1, A2, A3), ~B = (B1, B2, B3) and ~C = (C1, C2, C3). Then one has

~A+ ~B + ~C = (A1 +B1 + C1, A2 +B2 + C2, A3 +B3 + C3), (3)

~A− ~B + ~C = ~A+ ~C − ~B = (A1 −B1 + C1, A2 −B2 + C2, A3 −B3 + C3).

Notice the addition operator ”+” on vectors is associated, namely one has

~A+ ( ~B + ~C) = ( ~A+ ~B) + ~C. (4)

How about the substraction operator ”−” on vectors? Is it true that

~A− ( ~B − ~C) = ( ~A− ~B)− ~C? (5)

Multiplying a vector by a scalar

Given a scalar a and a vector ~A = (A1, A2, A3), one can define the multiplication of a

vector by a scalar (which is again a vector) by

~C = a ~A = (aA1, aA2, aA3). (6)

Notice by eqs. (6), the following distributive law holds

a( ~A± ~B ± ....± ~C) = a ~A± a ~B ± ....± a~C. (7)
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Example : Let ~A = (2, 1, 0), ~B = (1,−1, 2) and a = 2.0, then we have

~A+ ~B = (3, 0, 2)

~A− ~B = (1, 2,−2)

a ~B = (2,−2, 4)

a( ~A+ ~B) = (6, 0, 4)

a ~A + a ~B = (4, 2, 0) + (2,−2, 4) = (6, 0, 4) (8)

Notice every vector ~A = (a1, a2, a3) can be written as ~A = a1e1 + a2e2 + a3e3. Hence the

set of unit vectors ei is called a basis of the 3-dim Euclidean (vector) space.

Scalar product of 2 vectors : geometrical definition

Given 2 vectors ~A and ~B, one can define the scalar product between these 2 vectors which

will produce a scalar as follows

~A · ~B = | ~A|| ~B| cos θ, (9)

here θ stands for the angle between vectors ~A and ~B. Notice | ~A| cos θ is the projection of ~A

onto ~B.

Example : If ~A · ~B = 0 and | ~A| 6= 0, | ~B| 6= 0, then ~A is perpendicular to ~B.

Next, for ei, one has

ei · ej =

1 i = j

0 i 6= j
. (10)

Further one can show that the scalar product between 2 vectors is commutative : ~A · ~B =

~B · ~A.

Now using the observation that | ~A| cos θ in ~A · ~B = | ~A|| ~B| cos θ can be interpretated as

the projection of ~A onto ~B, one has

~A · ( ~B + ~C) = ~A · ~B + ~A · ~C. (11)
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By induction the distributive law holds as well for the operation of scalar product on

vectors :

~A · ( ~B ± ~C ± ....) = ~A · ~B ± ~A · ~C ± .... (12)

Finally with all above results, using ~A = a1e1 + a2e2 + a3e3 and ~B = b1e1 + b2e2 + b3e3,

one would reach another expression for ~A · ~B

~A · ~B =
3∑
i=1

AiBi. (13)

Cross product of 2 vectors

Given 2 vectors ~A and ~B, the vector product of ~A and ~B is again a vector ~C which

is perpendicular to both ~A and ~B. Further, ~A, ~B and ~C form a right-handed system.

Specifically one has

~C = ~A× ~B with |~C| = | ~A|| ~B| sin θ, (14)

here θ is the angle between ~A and ~B. Geometircally, the vector product of 2 vectors ~A

and ~B produces another vector ~C (with magnitude given by |~C| = | ~A|| ~B| sin θ) which is

perpendicular to the plan spanned by ~A and ~B. Further the 3 vectors ~A, ~B and ~C forms a

right-handed system.

FIG. 1: Cross product of vectors ~a and ~b. Source : Wiki, User:Acdx

Example : If ~A × ~B = 0 and | ~A| 6= 0, | ~B| 6= 0, then ~A is parallel to ~B, namely there

exists a nonzero scalar c so that ~A = a ~B.

For ei, one can easily show

ei × ej = εijkek, (15)
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FIG. 2: ~a×~b = −~b× ~a. Source : Wiki, User:Acdx

here εijk is called Levi-Civita symbol and is given by

εijk =


1 ijk is an even permutation of 123

−1 ijk is an odd permutation of 123

0 otherwise

. (16)

As a result, one sees that ~C = ~A× ~B can be written as

~C =
∑
i

Ciei =
∑
i

(
∑
j,k

εijkAjBk)ei, (17)

or specifically, one has

C1 = A2B3 − A3B2, C2 = A3B1 − A1B3, C3 = A1B2 − A2B1. (18)

It is easy to see from eq. 17 and eq. 18 that ~A× ~B = − ~B × ~A.

Conventionally, the vector ~C (= ~A× ~B) can be represented by a determinant

~C =

∣∣∣∣∣∣∣∣∣
e1 e2 e3

A1 A2 A3

B1 B2 B3

∣∣∣∣∣∣∣∣∣ . (19)

One can define triple scalar and triple vector products of 3 vectors ~A, ~B and ~C similarly.
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For example, the scalar triple product ~A · ( ~B × ~C) is given by

~A · ( ~B × ~C) =

∣∣∣∣∣∣∣∣∣
A1 A2 A3

B1 B2 B3

C1 C2 C3

∣∣∣∣∣∣∣∣∣ (20)

Geometrically, the scalar triple product ~a ·(~b×~c) is the (signed) volume of the parallelepiped

defined by the three vectors given.

FIG. 3: Geometric interpretation of the scalar triple product. Source : Wiki, by Baard Johan

Svensson

Example : Let ~A = (1, 2,−1), ~B = (0, 1, 1) and ~C = (1,−1, 0). Let ~D = ~B × ~C and

~F = ~A× ( ~B × ~C), then one has

~D =
3∑
i=1

∑
j,k

εijkBjCkei = (B2C3 −B3C2)e1 + (B3C1 −B1C3)e2 + (B1C2 −B2C1)e3

= e1 + e2 − e3 = (1, 1,−1) (21)

and

~F =

∣∣∣∣∣∣∣∣∣
e1 e2 e3

1 2 −1

1 1 −1

∣∣∣∣∣∣∣∣∣ = −e1 − e3 = (−1, 0,−1). (22)

What we have learned so far regarding vectors in 3-dimension Euclidean space can be

generalized to vectors in n-dimension Euclidean space. Specifically each vector ~A in n-

dimension Euclidean space is determined by n scalars : ~A = (a1, a2, a3, ..., an). Operations

on vectors in n-dimension Euclidean space are the same as those for vectors in 3-dimension
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Euclidean space. For example, let ~A = (a1, a2, a3, ..., an) and ~B = (b1, b2, b3, ..., bn) be 2

vectors in n-dimension Euclidean space, then the inner product of ~A and ~B is given by

~A · ~B = a1b1 + a2b2 + a3b3 + ...+ anbn. Using Levi-Civita symbol, can you come up with an

expression for cross product of 2 vectors in n-dimension Euclidean space?

II. GRADIENT O

Before we proceed, at the moment what we have learned is vectors and scalars in 3-dim

Euclidean space. Actually one can also assign each point in the 3-dim Euclidean space a

vector (or a scalar). With such assignment one constructs a vector field (scalar field) in

3-dime Euclidean space. Unless made explicitly, we will assume that vector and scalar fields

considered in this lecture have continuous derivatives.

Example : ~A(x, y, z) = (x, xy, xz) (ϕ(x, y, z) = x2yz) is a vector field (scalar field) in

3-dim Euclidean space .

With vector and scalar fields in 3-dim Euclidean space, one can differentiate and integrate

vector and scalar fields componetwise.

Example : Let ~A(x, y, z) = (x, xy, xz), then we have ∂ ~A
∂x

= (1, y, z).

FIG. 4: A 2-dim vector field : f(x,y) = (y,-x). Source :

http://www.math.umn.edu/ nykamp/m2374/readings/vecfield/
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A. Definition

Definition of the operator O

Let φ(xi) be a scalar function in 3-dim Euclidean space, namely φ′(x′i) = φ(xi) for any

rotational coordinate system ~x′ from the original coordinate system ~x. Then the operator

O takes a scalar field to a vector field. Specifically we have

Oφ(x1, x2, x3) =
3∑
i=1

∂φ

∂xi
ei. (23)

From above definition one see that O is a vector field and one has

O =
3∑
i=1

∂

∂xi
ei. (24)

Gradient of a scalar is important in physics in expressing the relation between a conser-

vative force ~F (gravitational and electrostatic) and its potential V

~F = −OV. (25)

Notice we have

dV (x1, x2, x3) =
∂V

∂x1
dx1 +

∂V

∂x2
dx2 +

∂V

∂x3
dx3 = OV · d~r = −~F · d~r. (26)

In other word, we see the physical meaning of difference of potentials is energy or work.

Eaxmple : Let V (r) = V (
√
x2 + y2 + z2), then we have

OV (r) =
∂V (r)

∂x
e1 +

∂V (r)

∂y
e2 +

∂V (r)

∂z
e3

(27)
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Now using ∂r
∂xi

= xi√∑
x2j

= xi
r

, one arrives at

OV (r) =
∑
i

∂V (r)

∂xi
ei =

∑
i

dV (r)

dr

∂r

∂xi
ei

=
dV (r)

dr

~r

r
. (28)

Geometrical interpretation of O

Let C be a constant and SC be a surface defined by SC(xi) = C. Further let d~r be a very

tiny vector moving along the surface SC . Then one finds OSC · d~r = dSC = 0, namely OSC

is perpendicular to the constant surface SC .

FIG. 5: Geometric interpretation of gradient.
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Let C1 and C2 be 2 adjacent constant surface and let d~r be a vector moving from C1 to

C2. Then one has

C1 − C2 = dSC = (OSC) · d~r. (29)

One further sees that for a given d~r, dSC is maximum when d~r is parallel to OSC . Hence

OSC is a vector having the direction of the maximum space rate of change of SC .

FIG. 6: Gradient.

Example : Let ϕ(x, y, z) = (x2 + y2 + z2)1/2 = r = C, namely ϕ is a sphere with radiu

r. Then one finds Oϕ(r) = ~r/r. In other word, the gradient is in the radial direction and is

normal to the surface of sphere C.

III. DIVERGENCE O·

A. Definition

Definition of the operator O·

Let ~V be a vector field in 3-dim Euclidean space. Then the operator O· takes a vector

field to a scalar field. Specifically we have

O · ~V =
3∑
i=1

∂Vi
∂xi

. (30)
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Example : let ~A = ~r V (r), then one has

O · ~A =
∑
i

xiV (r)

∂xi

= 3V (r) +
∑
i

xi
V (r)

∂xi

= 3V (r) + r
dV (r)

dr
(31)

Notice if we let V (r) = rn−1, then

O · (~rrn−1) = (n+ 2)rn−1 (32)

This divergence is zero for n = −2 except at the origin (r = 0).

Geometrical interpretation of O·

FIG. 7: Differential rectangular parallelepiped.

Let ~vi be the velocity of a compressible fluid and ρ(xi) be its density at point ~x. If

we consider a small volume dx1dx2dx3, then the fluid flowing into and flowing out this

volume per unit time (perpendicular to the surface dx2dx3) are given by ρvx1|x=0dx2dx3 and

ρvx1|x=dx1dx2dx3, respectively. Notice using
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ρvx1|x=dx1 =
[
ρvx1 +

∂(ρvx1)

∂x1
dx1

]
x1=0

dx2dx3, (33)

One sees that the net out flow perpendicular to the surface dx2dx3 is given by

Net out flow ⊥ dx2dx3 at x1 =
[∂(ρvx1)

∂x1

]
x1=0

dx1dx2dx3 (34)

Applying above arguments to other 2 surfaces, one see that the net flow out of the volume

dx1dx2dx3 per unit time is given

Net flow out (per unit time) = O · (ρ~v)dx1dx2dx3. (35)

A vector field ~B satisfies O · ~B = 0 is called solenoidal field. We will come back to this

when discussing Maxwell’s equations.

IV. CURL O×

A. Definition

Definition of the operator O×

Let ~V be a vector field in 3-dim Euclidean space. Then the operator O× takes a vector

field to another vector field. Specifically we have

O× ~V = (
∂V2
∂x3
− ∂V3
∂x2

)e1 + (
∂V3
∂x1
− ∂V1
∂x3

)e2

+ (
∂V1
∂x2
− ∂V2
∂x1

)e3. (36)

From the definition of curl, for a scalar f and a vector ~K, one can easily prove

O× (f ~K) = fO× ~K + (Of)× ~K. (37)

Example : Let ~C = O × ~D, then one can easily show O · ~C = 0. On the other hand,

if one has O · ~C = 0, then one can always comes up with a solution for ~C by demanding
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~C = O × ~D (notice the solution is not unique). In electrodynamics, the magnetic field ~B

satisfies O · ~B = 0 and receives a solution ~B = O × ~A, here ~A is called vector potential for

~B.

Example : Let ~C = ~r V (r), then one finds

O× ~C = O× (~r V (r)) = V (r)O× ~r + (OV (r))× ~r. (38)

Now using O× ~r = 0 and OV (r) = dV (r)
dr

~r, one arrives at

O× (~r V (r)) = 0. (39)

Geometrical interpretation of O×

FIG. 8: Circulation around a loop.

Consider following circular line integrals

circulation1234 =

∫
1

Vx(x, y)dλx +

∫
2

Vy(x, y)dλy +

∫
3

Vx(x, y)dλx +

∫
4

Vy(x, y)dλy, (40)

where segment 1 is from (x0, y0) to (x0 + dx, y0); segment 2 is from (x0 + dx, y0) to (x0 +

dx, y0+dy); segment 3 is from (x0+dx, y0+dy) to (x0, y0+dy); segment 4 is from (x0, y0+dy)

to (x0, y0). Then using Taylor expansion, one can show
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circulation1234 = Vx(x0, y0)dx+
[
Vy(x0, y0) +

∂Vy
∂x
|x0,y0dx

]
dy

+
[
Vx(x0, y0) +

∂Vx
∂y
|x0,y0dy

]
(−dx) + Vy(x0, y0)(−dy)

=

(
∂Vy
∂x
− ∂Vx

∂y

)
dxdy (41)

Dividing by dxdy, one arrives at

Circulation per unit area = O× ~V |z, (42)

namely the circulation about differential area in the xy-plane is given by the z-component

of O× ~V .

A vector field ~B satisfies O× ~B = 0 is called irrotational field. We will come back to this

when discussing Maxwell’s equations.

Successive applications of O With these introduced gradient, divengence and curl,

one can successively apply these oeprators

• O · Oφ

• O× Oφ

• OO · ~V

• O · O× ~V

• O× (O× ~V )

Example :

• O · O× ~A =

∣∣∣∣∣∣∣∣∣
∂
∂x

∂
∂y

∂
∂z

∂
∂x

∂
∂y

∂
∂z

Ax A2 A3

∣∣∣∣∣∣∣∣∣ = 0

• O× Of =

∣∣∣∣∣∣∣∣∣
e1 e2 e3
∂
∂x1

∂
∂x2

∂
∂x3

∂f
∂x1

∂f
∂x2

∂f
∂x3

∣∣∣∣∣∣∣∣∣ = 0
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• O× (O× ~A) = OO · ~A− (O · O) ~A

Example : Electromagnetic wave equation.

In vacuum, Maxwel’sl equations are given by

O · ~B = 0, (43)

O · ~E = 0, (44)

O× ~B = ε0µ0
∂ ~E

∂t
, (45)

O× ~E = −∂
~B

∂t
. (46)

Above ~E and ~B are the electric and magnetic fields respectively. Furhter ε0 and µ0 are the

electric permittivety and magnetic permeability, respectively.

Now by taking time derivative of eq. 45, one has

∂

∂t
O× ~B = O× ∂ ~B

∂t
,

hence

O× (O× ~E) = −ε0µ0
∂2 ~E

∂t2
. (47)

An application of O× (O× ~A) = OO · ~A− O · O ~A to eq. 47 would lead to

O · O ~E = ε0µ0
∂2 ~E

∂t2
(48)

which is the wave equation for electric field in vacuum.

Next, notice from the identity O · O× ~A = 0, one sees that one can solve eq. 43 by

~B = O× ~A, (49)

here ~A is called the vector potential of the magnetic field ~B. Now putiing ~B = O× ~A into

eq. 46, one arrives at O× ( ~E + ∂ ~A
∂t

). Further use of the identity O×Of = 0, one finds that

~E + ∂ ~A
∂t

can be written as

~E +
∂ ~A

∂t
= −Oϕ,
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or

~E = −∂
~A

∂t
− Oϕ. (50)

ϕ is called nonstatic electric potential. You will learn more about Maxwell’s equations in

your electrodynamics course.

V. VECTOR INTEGRATIONS

Remember that we mentioned earlier vector integrations are done componentwise. In

principles, one can define line integrals, surface integrals and volume integrals of vector and

scalar (fields). For example, followings defines line integrals of vector fields

∫
c

φd~r∫
c

~V · d~r∫
c

~V × d~r, (51)

here c is a contour which can be open (starting point and ending point are different) or closed

(starting point and ending point are the same). One has similar definitions for surface and

volume integrals of vector and scalar fields as well. We use
∫
d~σ and

∫
dτ for surface and

volume integration of vector fields. Specifically, the integration over the differetial elements

d~r, d~σ and dτ are given by

∫
d~r = e1

∫
dx1 + e2

∫
dx2 + e3

∫
dx3,∫

d~σ = e1

∫
dx2dx3 + e2

∫
dx3dx1 + e3

∫
dx1dx2,∫

dτ =

∫
dx1dx2dx3 (52)

.
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A. Line integral over vector fields

Example : Let ~A = (3x2+6y,−14yz, 20xz2) and c be a contour defined by c(t) = (t, t2, t3),

then

∫
c(0) to c(1)

~A · d~r =

∫
c(0) to c(1)

[
(3x2 + 6y)dx− 14yzdy + 20xz2dz

]
=

∫ 1

0

[
(3t2 + 6t2)dt− 14t2(2tdt) + (20t)(t3)(3t2dt)

]
= 5. (53)

Question : Let ~F = (3xy,−y2, 0) and let c be the curve defined by y = 2x2, what is∫
c
~F · d~r from (0, 0) to (1, 2)?

Solution :

∫
c

~F · d~r =

∫ 1

0

[
(3x(2x2)dx− (2x2)24xdx

]
= −7

6
. (54)

B. Surface integral over vecor fields

Question : Let ~A = (18z,−12, 3y) and S be a surface defined by 2x + 3y + 6z = 12.

What’s
∫
S
~A · ~ndS over the area with x ≥ 0, y ≥ 0, z ≥ 0 ?

Hits : Remember OS is perpeticular to S. Hence the normal vector ~n is given by

OS/|OS| = (2/7, 3/7, 6/7). Also dS = dxdy/|~n · ~k|. Finally using z = 12−2x−3y
6

, one has

∫
S

~A · ~ndS =

∫
R

(6− 2x)dxdy, (55)

here R is the projection area of S onto the x− y plane.

17



C. Integral definitions of Gradient, Divergence and Curl

The operations Gradient, Divergence and Curl defined earlier can be defined through

vector integration :

Oφ = lim∫
dτ→0

∫
φd~σ∫
dτ

O · ~V = lim∫
dτ→0

∫
~V · d~σ∫
dτ

O× ~V = lim∫
dτ→0

∫
d~σ × O~V∫

dτ
(56)

Let’s quickly give a proof for the first equation in eq. 56. Consider a 3-dim rectangular box,

one has

∫
φd~σ = −ex

∫ [
φ− ∂φ

∂x

dx

2

]
dydz + ex

∫ [
φ+

∂φ

∂x

dx

2

]
dydz

−ey
∫ [

φ− ∂φ

∂y

dy

2

]
dxdz + ey

∫ [
φ+

∂φ

∂y

dy

2

]
dxdz

−ez
∫ [

φ− ∂φ

∂z

dz

2

]
dxdy + ez

∫ [
φ+

∂φ

∂z

dz

2

]
dxdy

=

∫ [
ex
∂φ

∂x
+ ey

∂φ

∂y
+ ez

∂φ

∂z

]
dxdydz. (57)

Dividing above equation by
∫
dτ =

∫
dxdydz, we prove the frist equation of eq. 56.

FIG. 9: rectangular parallelepiped.
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D. Stoke’s Theorem

Let S be a closed surface and l be its boundary, then Stoke’s theorem says

∮
l

~V · d~r =

∫
S

O× ~V · d~σ (58)

provided that ~V has continuous derivatives inside S. To prove Stoke’s theorem, let’s sub-

divide the surface into very small rectangles. Then by applying the same arguments in

deriving eq. 60, one has ∑
four sides

~V · d~r = O× ~V · d~σ. (59)

FIG. 10: Proof of Stoke’s Theorem.

FIG. 11: Circulation around a loop.

circulation1234 =

∫
1

Vx(x, y)dλx +

∫
2

Vy(x, y)dλy +

∫
3

Vx(x, y)dλx +

∫
4

Vy(x, y)dλy, (60)
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circulation1234 = Vx(x0, y0)dx+
[
Vy(x0, y0) +

∂Vy
∂x
|x0,y0dx

]
dy

+
[
Vx(x0, y0) +

∂Vx
∂y
|x0,y0dy

]
(−dx) + Vy(x0, y0)(−dy)

=

(
∂Vy
∂x
− ∂Vx

∂y

)
dxdy (61)

Further we notice that all the interior line segments inside S cancel identically. Hence

when we sum over all rectangles, we reach

∑
exterior line segments

~V · d~r =
∑

rectangles

O× ~V · d~σ. (62)

By taking the limit of making the number of rectangles to infinity , we arrive at

∮
l

~V · d~r =

∫
S

O× ~V · d~σ. (63)

FIG. 12: Cancelation on interior paths.

E. Gauss’s Theorem and Green’s Theorem

Similarly, using the same cosideration as we did in proving Stoke’s theorem, one can

prove Gauss’s theorem ∫
S

~V · d~σ =

∫
V

O · ~V dτ, (64)
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here V is a volume and S is the corresponding surface of V .

FIG. 13: Cancelation on interior surfaces.

By applying Gauss’s theorem to the following identity

O · (uOv) = uOu · Ov + (Ou) · (Ov), (65)

we obtain Green’s thoerem

∫
S

uOv · d~σ =

∫
V

uO · Ovdτ +

∫
V

Ou · Ovdτ. (66)

Example : Oersted’s and Faraday’s Laws.

Consider the magnetic field generated by a long wire that carries a stationary current

I (remember ~B is along the wire and ~E is perpeticular to ~B). From Maxwell’s equation

O× ~H = ~J , by applying Stoke’s theorem to (integrating) a area S perpenticular to the wire,

one reaches the following Oersteds’ law

I =

∫
S

~J · d~σ =

∫
S

(O× ~H) · d~σ =

∮
∂S

~H · d~r. (67)

Applying similar consideration to the Maxwell’s equation O × ~E = −∂ ~B
∂t

and employing

the Stoke’s theorem, we arrive at the Faraday’s law

∫
∂S

~E · d~r =

∫
S

(O× ~E) · d~σ = − d

dt

∫
S

~B · d~σ = −dΦ

dt
, (68)
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VI. POTENTIAL THEORY

A. Scalar Potential

If a force ~F can be written as ~F = −Oϕ for some scalar function ϕ in a simple connected

area (no holes inside the area), then one has

O× ~F = O× (Oϕ) = 0 (69)

Now using Stoke’s theorem, one further finds

∫
S

O× ~F · dσ =

∮
C

~F · d~r = 0, (70)

here S is any simple connected area within the large area and C is the oriented boundary

of S. Above result implies that for any 2 points A and B inside the area, the line integral

over ~F along any simple connected curve connecting A and B are the same, namely the

integral is independent of path connecting A and B. Such force ~F which can be written

as the gradient of a single-value scalar function (potential) ϕ is called a conservative force.

Actually one can show that a single-value scalar potential ϕ for a force ~F exists if and only

if O× ~F = 0 or the work done around every closed loop is zero.

FIG. 14: Possible paths for doing work.

Exampe : for the force of simple harmonic oscillation ~F = −k~r, the corresponding scalar
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potential ϕ is given by

ϕ(r) =

∫ r

0

dϕ =

∫ r

0

Oϕ · d~r = −
∫ r

0

~F · d~r = −1

2
kr2. (71)

B. Vector Potential

Earlier we introduced a vector potential ~A such that ~B is given by ~B = O × ~A. Hence

one immediately has O · ~B = 0. Actually for a given ~B such that O · ~B = 0, then one can

show a vector potential ~A exits (not unique!).

Example : Let ~B = (0, 0, Bz), then one finds that a vector potential ~A for ~B can be given

by ~A = (0, xBz, 0). Notice one can show that ~A = 1
2
~B × ~r is another vector potential for ~B

(hence indeed ~A is not unique). You will learn more about these in your electrodynamics

class.
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