
Real-Time Middleware for
Cyber-Physical Event Processing

Chao Wang, Christopher Gill, Chenyang Lu

Department of Computer Science and Engineering
Washington University in St. Louis

Email: {chaowang, cdgill, lu}@wustl.edu

Abstract—Cyber-physical applications are subject to temporal

validity constraints, which must be enforced in addition to

traditional QoS requirements such as bounded latency. For

many such systems (e.g., automotive and edge computing in the

Industrial Internet of Things) it is desirable to enforce such

constraints within a common middleware service (e.g., during

event processing). In this paper, we introduce CPEP, a new

real-time middleware for cyber-physical event processing, with

(1) extensible support for complex data processing operations,

(2) execution prioritization and sharing, (3) enforcement of abso-

lute time consistency with load shedding, and (4) efficient memory

management and concurrent data processing. We present the

design, implementation, and empirical evaluation of CPEP and

show that it can (1) support complex operations needed by

many applications, (2) schedule data processing according to

consumers’ QoS requirements, (3) enforce temporal validity,

and (4) reduce processing delay and improve throughput of

temporally valid events.

I. INTRODUCTION

Real-time event processing is essential for cyber-physical
systems, which must perform operations on sensor data carried
by events and must respond to stimuli with quick and correct
actions (e.g., in milliseconds or even microseconds [1]), in
many applications such as those for automotive and Industrial
Internet of Things [2]–[4] systems.

Multi-sensor fusion is used by many cyber-physical appli-
cations [5]–[7]. By synthesizing data supplied by different
sensors, multi-sensor fusion offers subscribers a more cohesive
and reliable assessment of the environment. Such processing
is typically multi-stage. For example, a set of data from
sensors (event suppliers) is first passed through one or more
filters for noise reduction, and then a Fast Fourier Transform
(FFT) is applied to the result to obtain frequency domain
representations. Results from different processing streams are
then combined, producing an event that represents a broader-
spectrum assessment for applications (event consumers).

Real-time cyber-physical event processing must support
configurable complex operations, meet applications’ latency
requirements, enforce temporal validity of events, and leverage
multi-core platforms. First, applications often perform simple
common operations (e.g., FFT) as well as complex operations
that may be realized by assembling common operations (e.g,

978-1-5386-2704-4/17/$31.00 c�2017 IEEE

a multi-sensor fusion realized by filters, FFTs, etc.). Second,
a cyber-physical system must accommodate applications’ dif-
ferent latency requirements, and should allow applications to
share processing and data. Duplicating complex operations (or
even portions of them) across multiple application features
wastes both communication bandwidth and computation re-
sources, and re-implementing such operations for each appli-
cation may unnecessarily increase software complexity and de-
crease software reliability. Third, cyber-physical applications
are often subject to temporal validity constraints. For example,
for automotive driving features such as adaptive cruise control,
where data from sensors are fused to provide range estimates,
the relevance of each sensor reading may decrease over time
and out-dated data should be discarded. Finally, to better serve
the needs of real-time on-site computation in the Industrial In-
ternet of Things, i.e., edge computing [3], an event processing
service must efficiently work with streams of events in terms
of memory allocation and throughput.

To address these needs, in this paper we introduce CPEP,
a real-time middleware for cyber-physical event processing,
with the following four features: Configurable processing
operations integrate both common and complex data process-
ing; Processing prioritization and sharing ensure that higher-
priority ones get processed first and reduce the likelihood
of starvation of lower-priority ones; Enforcement of temporal
validity and shedding maintains temporal validity constraints,
identifying and removing out-dated data; and Efficient and
concurrent processing minimizes memory allocation for events
and can scale up throughput with the number of CPUs.

We implemented CPEP within TAO, a mature and widely
used open-source middleware [8], [9] by adding the capabil-
ities mentioned above. Our empirical evaluations show that
prioritized execution can save higher-priority processing from
unnecessary delay, sharing of operations can help reduce
latency of lower-priority processing, and shedding can improve
throughput of temporally valid events.

II. CYBER-PHYSICAL EVENT-PROCESSING MODEL

Our event processing model consists of three kinds of
components: suppliers, an event service, and consumers. Each
supplier pushes typed data items, which we call events, to
the event service; the event service processes the events

o7

o6

o5

o4

o3

o2

o1s1
s2
s3

s5

s4

High priority

Middle priority

Low priority

c1

c2

c3

c4 Low priority

Fig. 1. An example graph of event processing streams. si denotes a supplier;
ci, a consumer; oi, an operator.

according to a graph that defines the needed operations and
their input/output events, as illustrated in Fig. 1; a consumer
subscribes to the output events of operations. Each supplier
pushes events either periodically or sporadically. Each con-
sumer is associated with a priority level. In practice, a supplier
(consumer) may be mapped to a distinct sensor or other device,
and multiple suppliers (consumers) may be mapped to a single
device. The event service is executed within a single host.

A. Event Processing Streams

Event processing in our model is configured as a directed
acyclic graph, as illustrated in Fig. 1, and paths along the
edges in the graph define the data processing streams for each
consumer. The nodes are event processing operators, such as
FFT, and the edges denote the precedence relations between
operators. For example, Fig. 1 shows processing streams for
four consumers, and the streams for consumer c2 involve
operators o1, o2, and o6. Operator o1 has three downstream
operators (o5, o6, and o7) and operator o6 has two upstream
operators (o1 and o2). A complex operation, such as multi-
sensor fusion may be built from a set of common operators.
Execution of an operator produces an event. We call events
that are pushed from one operator to another internal events,
and the events pushed from suppliers and to consumers we
call external events.

The event service schedules operators to process events. An
operator is ready for execution if its specified dependencies are
satisfied, e.g., its upstream operators have completed process-
ing and all of its input events have arrived. The event service
adds ready operators to the execution schedule. In Section III,
we describe how CPEP first prioritizes operators based on the
consumers’ QoS parameters and then schedules the operators
using a fixed-priority preemptive scheduling policy.

B. Time Consistency

Our model supports absolute time consistency [10]1, which
identifies whether or not an event is temporally valid. Event ei
is temporally valid at time t if t falls within the absolute va-
lidity interval of ei, defined by abs(ei)=[tb(ei), te(ei)). tb(ei)
and te(ei) respectively defines the beginning and the end of
the interval. Because only external events are associated with
physical phenomena, we define an internal event’s absolute va-
lidity interval to be the maximum overlap of all ei’s upstream
external events’ absolute validity intervals: Let o(ei) be the
operator that produces ei. tb(ei) = max{tb(u) | u 2 input set

1Here we extend the definition to make it suitable for event processing.

S2 S1 S3 C2

t1 t2 t3 t4 t5 t7t6

Fig. 2. An example timeline of event processing for c2 in Fig. 1. Each vertical
arrow marks either the event creation time at suppliers or the event arrival
time at the consumer.

of o(ei)}; te(ei) = min{te(u) | u 2 input set of o(ei)}. If
ei is external, tb(ei) is defined to be the creation time of the
event. For example, as shown in Fig. 2, [t1, t5), [t2, t7), and
[t3, t6) respectively represents the absolute validity interval of
events from s2, s1, and s3, and an event for consumer c2 is
temporally valid as long as it would arrive at c2 before t5.

We assume that each supplier event’s absolute validity
interval, along with the configuration of processing streams,
is specified by domain experts.

III. CPEP DESIGN

CPEP conducts cyber-physical event processing as follows.
First, the graph of event processing streams is constructed
from a configuration file, which specifies a list of the needed
operators, each row containing the operator type, number of
operators that immediately follow, and the indices to those
operators. For each operator whose output event would be
subscribed by a consumer, in the file the operator is asso-
ciated with a priority level mapped from the consumer’s QoS
specification. Then the event service assigns priority levels to
the other operators by propagating the priority levels of the
consumer-facing operators upstream, where each operator is
assigned the highest priority level among its downstream oper-
ators. For example, the operators in Fig. 1 would be partitioned
into three priority groups (high: o1, o5; middle: o2, o6; and
low: o3, o4, o7). A supplier event’s priority level is set to the
highest priority level among the supplier-facing operators that
would use it. With the priority assignment, the event service
then reacts to the events pushed from suppliers, processes them
according to the graph of event processing streams, and pushes
the resulting events to consumers.

A. Processing Prioritization and Sharing

The top-level component for processing is named an Event-
Processor, and there is one EventProcessor per priority level,
as illustrated in Fig. 3. An EventProcessor includes two sets
of active objects [11]: a set of Workers in charge of executing
operators, and a set of Movers in charge of sharing (across
priority levels) the events that carry results of processing (e.g.,
o1 ! o6, o2 ! o3, and o5 ! o7 in Fig. 1).

A Worker works by executing each operator enabled either
by the event or by completion of its operator(s), and will
proceed to process a supplier event only when there remains no
such pending operator. A Mover shares the processing result
by passing (to the Worker of the destination priority level) a
bundle that contains both a reference to the pending operator
and a reference to the resulting event.

to
 c

o
n
su

m
e
rs

fr
o
m

 s
u
p
p
lie

rs

InputQ

EventProcessor (L)

PendingQ MovingQ

prio. = 95

Workers...
Movers

prio. = 94
...

InputQ

EventProcessor (M)

PendingQ MovingQ

prio. = 97

Workers...
Movers

prio. = 96
...

InputQ

EventProcessor (H)

PendingQ MovingQ

prio. = 99

Workers...
Movers

prio. = 98
...

Fig. 3. The CPEP EventProcessors for Fig. 1 (H: high priority, M: middle
priority, L: low priority). Abbreviation: prio. = thread-level priority.

The CPEP design prioritizes processing of streams and
enforces the following two properties: (1) Any processing of
a certain priority level will preempt any cross-priority sharing
from the same (or a lower) priority level; (2) Any cross-priority
sharing from a certain priority level will preempt any process-
ing of a lower priority level. This is achieved by assigning
adjacent thread-level priorities to the Workers and Movers and
scheduling them using a fixed priority preemptive scheduling
policy: starting from the EventProcessor of the highest priority
level, we first assign all its Workers the highest thread-level
priority, and then assign all its Movers the next thread-level
priority. We then repeat the process for the EventProcessor
at the next priority level, using the remaining thread-level
priorities. An example priority assignment is shown in Fig. 3.

Each EventProcessor has three queues. The InputQ buffers
all supplier events of the same priority level as that of the
EventProcessor. The PendingQ holds the bundles for the next
same-priority operators along the graph of processing streams,
and the MovingQ holds the bundles for cross-priority sharing.
If cross-priority sharing is needed, the current Worker puts the
corresponding bundle into the MovingQ. An idle Mover then
moves the bundle from the MovingQ to the PendingQ(s) of
the destination EventProcessor(s), which is then processed by
the Workers of each destination EventProcessor.

B. Efficient and Concurrent Processing

By design, multiple Workers may work concurrently on
independent portions of a complex operation to improve
throughput and reduce latency. For each EventProcessor, we
set the number of Workers equal to the number of CPU
cores dedicated for processing, and concurrent processing is
manifested in the following two ways: (1) Collaborative: when
multiple operators are pending to be processed, each idle
Worker selects one such operator and executes it. For example,
in the graph shown in Fig. 1, o3 and o4 may be processed

concurrently. (2) Pipeline-like: if the event’s absolute validity
interval is larger than the event’s inter-arrival time, CPEP
allows a new series of processing along the graph of streams to
start before the completion of the current series. For example,
in Fig. 1 processing for o1 and o2 may start even before the
completion of processing for o6.

For both time and space efficiency, CPEP maintains zero-
copy semantics for each event creation. Each event is typed
according to the supplier/operator that produces it, and once
created, the event is stored in a centralized structure, named
the EventStore, and Workers may access it concurrently
when needed. To accommodate pipeline-like concurrency, the
EventStore includes one ring buffer per event type, and the
ring size is bounded by the maximum number of temporally
valid instances of that event type at any given time point; the
ring size is equal to one, for example, if the event’s absolute
validity interval is smaller than the event’s inter-arrival time.
Whenever a Worker takes a new supplier event or produces a
new event, it puts the event into the ring’s next slot.

By definition, an operator cannot be processed until all
the required upstream events are available to it. Whenever a
required event is available, CPEP binds the operator’s local
event reference to the corresponding slot in the EventStore.
For pipeline-like concurrent processing, the same slot will be
used for all downstream operators’ local binding if they need
that type of event, and a new event of that type will only be
used in the new series of processing. An operator releases its
local binding if the operator’s processing has completed or if
the event has violated its absolute time consistency.

C. Enforcement of Time Consistency and Shedding

Absolute time consistency is enforced when a Worker
selects an operator or when it is ready to push the processing
result to a consumer. The Worker compares the value of expi-
ration time te(ei) of event ei against the current time, t, and
reports a violation if t > te(ei). CPEP can be configured to
have Workers either mark or discard time-inconsistent events.
With marking, the handling of such events is deferred to event
consumers. With discarding, the corresponding downstream
processing is aborted, resulting in load shedding.

Using shedding, in the presence of a violation of absolute
time consistency, the Worker will release the related event-
bindings. Let ei be the event that accounts for the violation.
The released event-bindings are those belonging to the same
upstream branch of ei. Then the Worker will set the value of
te(ei) to the earliest end time among the absolute validity in-
tervals of those events of temporally valid upstream branches.

IV. CPEP FRAMEWORK IMPLEMENTATION

We implemented the MovingQ using C++11’s standard
priority queue; to keep the ordering of same-priority items,
we customized the priority queue’s Compare type to use the
timestamp taken at insertion as a tie-breaker. We implemented
the PendingQ using C++11’s standard FIFO queue. We im-
plemented each InputQ using C++11’s standard array and
we protected it by a readers-writer lock to enable concurrent

Subscription & Filtering

Supplier Proxies

Event Correlation

Dispatching

Consumer Proxies

EventProcessors

d
ir

e
ct

io
n

o
f

e
v
e
n
t

p
ro

ce
ss

in
g Supplier Proxies

Dispatching

Consumer Proxies

original with CPEP

Fig. 4. Implementation within the TAO event channel.

reads. For the same reason each slot in the EventStore is
also protected by a readers-writer lock. To reduce priority
inversion, we applied the pthread priority inheritance protocol
to all Worker threads and Mover threads. At run-time, it takes
O(1) time to validate absolute time consistency, by comparing
te(ei) against the current time. We maintain te(ei) by keeping
track of the earliest due time for each upstream branch of o(ei).

We implemented CPEP within the TAO real-time event ser-
vice [9]. Event suppliers and consumers in TAO are connected
via one or more event channels, each containing five modules,
as shown in Fig. 4. Event filtering is conducted at both the
Subscription & Filtering module and the Event Correlation
module, where the former filters events according to event’s
type and source ID, and the latter filters events according to
correlation rules defined over event types. The Dispatching
module dispatches events to the subscribed consumers. Prior
to our work, the TAO real-time event service only supports
simple correlations (logical conjunction and disjunction) over
events’ headers, with non-sharing filters built per consumer. In
contrast, CPEP provides prioritized processing of data carried
by events, enforces time consistency, and enables sharing of
operations for better performance.

In our implementation, we kept the original interfaces
of the Supplier Proxies and the Consumer Proxies, so that
suppliers and consumers can connect to the event channel as
before. We replaced the Subscription & Filtering and Event
Correlation modules with EventProcessors. We connected the
Supplier Proxies to EventProcessors by a hook within the push
method of the Supplier Proxies module to put each event into
the corresponding EventProcessor’s inputQ. Worker threads
dispatch their output events reactively.

V. EMPIRICAL EVALUATION

We evaluated the effectiveness of CPEP in terms of priori-
tization, sharing, and shedding, with the following setup:

Platform: Our test-bed consists of three machines: one
running all event suppliers (Pentium Dual-Core 3.2 GHz,
Ubuntu Linux with kernel v.3.19.0), one running the CPEP
event service (Intel i5-4590 3.3 GHz four-core machine,
Ubuntu Linux with kernel v.4.2.0), and one running all event
consumers (Pentium Dual-Core 3.2 GHz, Ubuntu Linux with
kernel v.3.13.0). We connected the three machines via a
Gigabit switch running in a closed LAN. The machine running
CPEP had two NICs, and we used one for inbound traffic and
another for outbound traffic. Out of its four cores, three cores

 High priority
 Middle priority

 Low priority

EKF2 FFT1

CAT1 AES2FFT2

EKF4 FFT3 AES3

EKF1 AES1

c2

c1

c3

s1

s2

s3
s4

s7

s850
 H

z
20

0
Hz

10
0

Hz

EKF3
s5
s6

Fig. 5. Experiment 1: The graph of event processing streams.

were dedicated to event processing and one core was dedicated
to proxy inbound traffic. We assigned real-time priority levels
to both Worker threads and Mover threads, with the highest
priority level set to 99. We also assigned 99 as the priority
level of the thread that proxies the inbound traffic. We did not
use the CONFIG PREEMPT RT patch [12].

Workload and Consumer Configuration: We explored
the effectiveness of CPEP by feeding events at different rates
and processing streams of different priorities. We used two
graphs of processing streams, and in each setting we conducted
sub-cases to show the performance under different degrees
of system workload. We simulated the operation of Multi-
sensor fusion, using the following four operators: Extended
Kalman Filter (EKF) [13], Fast Fourier Transform (FFT) [14],
Concatenation (CAT) (implemented using C++’s memcpy
function), and the Advanced Encryption Standard (AES) [15].
We coordinated the event suppliers in the same stream to
reduce unnecessary latency due to time differences among the
pushes from distinct suppliers.

Method of Measurement: We ran each sub-case ten times
and calculated the 95% confidence interval for each mea-
surement. In each sub-case we sequentially ran three phases:
warm-up, measuring, and dumping. The warm-up phase took
ten seconds, during which we connected all event suppliers and
consumers to CPEP and had them start pushing and receiving
events; the measuring phase took 100 seconds, during which
we measured both the latency and the throughput of output
events, and we kept all the measurements in memory, which
were then saved to disk in the dumping phase. We measured
the end-to-end latency, i.e., the time interval between the latest
time a supplier pushed a required event and the time the
consumer received the resulting event (e.g., [t3, t4] in Fig. 2).

A. Experiment 1: Prioritization

In this experiment we compared the event latency of pri-
oritized processing versus that of non-prioritized processing.
Fig. 5 shows the graph of event processing streams. To cover
different degrees of workload, we first deployed three copies
of the whole graph and then increased the workload by
deploying more copies of the middle-priority streams. Each
supplier event carried a batch of one-byte datapoints: each
event supplied by s1 and s2 carried 512 datapoints (200 Hz
event rate); s3 to s6, 1024 datapoints (100 Hz); and s7 and
s8, 2048 datapoints (50 Hz). Each output event for a high-

(a) High priority.

(b) Middle priority.

(c) Low priority.

Fig. 6. Experiment 1: Latency under different loads; y-axis limit is set in
accord to the event rate; data exceeding the limit was not shown.

priority consumer carried 512 one-byte datapoints; each output
event for a middle-priority consumer carried 1024 16-byte
datapoints2; each output event for a low-priority consumer
carried 2048 eight-byte datapoints.

Fig. 6 shows latency comparisons under different system
workloads, with CPU utilization from around 45% to 95%,
normalized to the number of cores used in processing event
operations. As shown in Fig. 6(a), prioritization maintained the
latency of high-priority streams across different workloads. In
contrast, without prioritization, the latency increased as the
workload increased. Middle-priority streams exhibited similar
behavior, shown in Fig. 6(b). Low-priority streams exhibited
the opposite behavior, shown in Fig. 6(c), where prioritization
led to higher latency than no prioritization did. This was
because prioritization caused preemption of lower-priority
processing. Nevertheless, the resulting latency was still less
than half of the period and, as the next experiment will show,
sharing operations can further reduce the latency.

Fig. 6 also shows that streams may have high tail latency
even though the system was not heavily loaded (for example,
the sub-case of six middle-priority streams, with the nor-
malized CPU utilization 63%). This happened because event
arrivals of different streams were independent of each other
and sometimes arrived close in time and contended with each
other. A stream may experience a higher tail latency under a
higher workload, because in this case the processing of the
stream is more likely to be delayed due to such contentions.

2The FFT operator caused the increase in datapoint size, as it transformed
each byte of datapoints into an eight-byte real number (we used the single
precision version of FFTW).

High priority

Middle priority
Low priority

EKF3 FFT3 CAT2 AES2

FFT4

c2

s5

s6
EKF4

s7s8

EKF1 FFT1 CAT1 AES1

FFT2

c1

s1

s2

EKF2
s3s4

CAT3 AES4 c3

AES3

10
0

Hz
10

0
Hz

Fig. 7. Experiment 2: The graph of event processing streams.

(a) High priority.

(b) Middle priority.

(c) Low priority.

Fig. 8. Experiment 2: Latency under different loads; y-axis limit is set in
accord to the event rate; data exceeding the limit was not shown.

The sub-case of 15 middle-priority streams shows that with
prioritization, higher-priority streams may keep producing
events with low latency; without prioritization, however, no
stream could produce events with the latency lower than the
sending period of suppliers.

B. Experiment 2: Sharing and Shedding

In this experiment we first evaluated the latency perfor-
mance of sharing operations, then we stress-tested the system
and evaluated the shedding strategy and sharing operations in
terms of timely-throughput, i.e., delivery of events within their
timing constraints. In both cases we also enabled prioritization.
We configured the graph as shown in Fig. 7. The non-sharing
version (for comparison) was constructed by duplicating the
shared operators (FFT2 and FFT4) and all their upstream
operators (EKF2 and EKF4). All suppliers generated events
at a rate of 100 Hz, with the absolute validity interval set to
10 ms. Because the streams share operations, here we varied
workload by deploying copies of the whole graph.

Fig. 9. Experiment 2: Total timely-throughput (Mbps).

The latency results shown in Fig. 8 confirm that sharing op-
erations can help reduce event latency. Lower-priority streams
received higher reductions, because the shared operations
were done by the higher-priority counterpart. The result also
suggests that the savings in processing time may outweigh
the time spent waiting for higher-priority streams, and sharing
only introduced negligible overhead to higher-priority streams.

Fig. 9 shows the timely-throughput in terms of Megabits per
second (Mbps) and includes all three priority levels. It shows
that without sharing, even though the CPUs had been saturated
in the presence of nine copies of the graph, with the help of
shedding the system can keep producing 200 Mbps with up to
19 copies of the graph of streams; with sharing, the normalized
utilization approached 80% in the presence of 11 copies of the
graph, and then as we increased the workload, the benefit of
shedding prevailed, giving 100 additional Mbps in the presence
of 15 copies of the graph of streams. The benefit of shedding
gradually diminished as we deployed more copies, because the
system was being dominated by only high priority streams.

VI. RELATED WORK

Cyber-physical event processing is an essential part of
modern Industrial Internet-of-things architectures [16], and
in many use cases [3], [4] it is critical to minimize the
time it takes to respond to stimuli. To this end, both mes-
saging middleware (for example, Kafka [17]) and the Data
Distribution Service (DDS [18]) have been deployed. Kafka
provides fault-tolerance and load-balancing for delivery of
time-stamped log messages, and provides an interface for
implementing message processing, but does not differentiate
messages according to consumers’ QoS. DDS provides QoS
options for data delivery, but does not process data. In contrast,
CPEP both differentiates messages according to consumers’
priority levels and processes data subject to absolute time
consistency.

The field of Complex Event Processing (CEP) [19] offers
a rich set of semantics for expressing stimuli using sets
of events [20], [21]. GraphCEP [22] is such a system and
processes events for social network analysis. The system
implements timetables for updating the ranking of posts and
comments according to the progress of time. GraphCEP main-
tains time consistency at the timescale of hours and seconds
and does not share computation. In contrast, CPEP maintains
time consistency at the timescale of microseconds and supports
sharing of computation between processing streams.

VII. CONCLUDING REMARKS

In this paper, we introduced the CPEP middleware for
real-time cyber-physical event processing. CPEP features con-
figurable operations, prioritization, time consistency enforce-
ment, efficient memory management, and concurrent process-
ing. We implemented CPEP within the TAO event service,
and empirically evaluated it on multi-core machines, showing
that CPEP can both reduce processing latency and improve
temporally valid throughput.

ACKNOWLEDGMENT

This research was supported in part by NSF grant 1329861
and ONR grant N000141612108.

REFERENCES

[1] “Connext DDS at a glance: understanding the software framework that
connects the Industrial IoT,” White Paper, Real-Time Innovations, 2017.

[2] P. C. Evans and M. Annunziata, “Industrial internet: pushing the
boundaries of minds and machines,” General Electric Reports, 2012.

[3] D. Kirsch, “The value of bringing analytics to the edge,” Hurwitz &
Associates, 2015.

[4] (2017) Industries served and use cases - Foghorn Systems. [Online].
Available: https://foghorn-systems.com/industries/

[5] N.-E. El Faouzi, H. Leung, and A. Kurian, “Data fusion in intelligent
transportation systems: progress and challenges–a survey,” Information
Fusion, vol. 12, no. 1, pp. 4–10, 2011.

[6] A. Sebastian and A. Pantazi, “Nanopositioning with multiple sensors:
a case study in data storage,” IEEE Transactions on Control Systems
Technology, vol. 20, no. 2, pp. 382–394, 2012.

[7] D. Piri, “Sensor fusion for nanopositioning,” Master’s thesis, Vienna
University of Technology, Austria, 2014.

[8] (2017) The ADAPTIVE communication environment. [Online].
Available: http://www.cs.wustl.edu/%7Eschmidt/ACE.html

[9] T. H. Harrison, D. L. Levine, and D. C. Schmidt, “The design and
performance of a real-time CORBA event service,” ACM SIGPLAN
Notices, vol. 32, no. 10, pp. 184–200, 1997.

[10] J. A. Stankovic, S. H. Son, and J. Hansson, “Misconceptions about real-
time databases,” Computer, vol. 32, no. 6, pp. 29–36, 1999.

[11] G. R. Lavender and D. C. Schmidt, “Active object: an object behavioral
pattern for concurrent programming,” in Proc. Pattern Languages of
Programs,, 1995.

[12] (2017) The CONFIG PREEMPT RT patch. [Online]. Available:
https://rt.wiki.kernel.org

[13] (2017) The KFilter Project. [Online]. Available:
http://kalman.sourceforge.net

[14] (2017) FFTW. [Online]. Available: http://www.fftw.org
[15] (2017) The Libgcrypt Library. [Online]. Available:

https://gnupg.org/software/libgcrypt
[16] Industrious Internet Reference Architecture, Industrial Internet Consor-

tium Std., Rev. 1.8, Jan 2017.
[17] J. Kreps, N. Narkhede, J. Rao et al., “Kafka: a distributed messaging

system for log processing,” in Proceedings of the NetDB, 2011, pp. 1–7.
[18] (2017) Data distribution service (DDS). [Online]. Available:

http://www.omg.org/spec/DDS/
[19] D. C. Luckham, The Power of Events: An Introduction to Complex Event

Processing in Distributed Enterprise Systems. Boston, MA, USA:
Addison-Wesley Longman Publishing Co., Inc., 2001.

[20] G. G. Koch, B. Koldehofe, and K. Rothermel, “Cordies: expressive event
correlation in distributed systems,” in Proceedings of the Fourth ACM
International Conference on Distributed Event-Based Systems. ACM,
2010, pp. 26–37.

[21] G. Cugola and A. Margara, “Processing flows of information: from data
stream to complex event processing,” ACM Comput. Surv., vol. 44, no. 3,
pp. 15:1–15:62, Jun. 2012.

[22] R. Mayer, C. Mayer, M. A. Tariq, and K. Rothermel, “GraphCEP: real-
time data analytics using parallel complex event and graph processing,”
in Proceedings of the 10th ACM International Conference on Distributed
and Event-Based Systems. ACM, 2016, pp. 309–316.

