Poster Abstract: Design of an Energy-Efficient End-to-End
Messaging Protocol for Smart Cities

Shang Chih Chung

Dept. of Computer Science and Information Engineering

National Taiwan Normal University
Taipei City, Taiwan R.O.C.
60847091S@ntnu.edu.tw

ABSTRACT

Internet-of-Things (IoT) applications at the city scale require a
reliable and energy-efficient messaging service. In order to save
energy consumption at each embedded IoT instrument, thus to
prolong the application lifetime, it is best that the service be free of
redundant messages. In this paper, we analyze the MQTT messaging
protocol and show that there are three problems that may either
cause message losses or produce redundant messages. For each
problem we propose a solution, and we show that our design as a
whole may be implemented efficiently. We have been implementing
the design, and it is our hope that the messaging protocol as a result
would be a good support to many smart-city applications.

CCS CONCEPTS

« Networks — Network protocol design.

KEYWORDS
Internet of Things, Messaging Middleware, Energy Efficiency

ACM Reference Format:

Shang Chih Chung and Chao Wang. 2021. Poster Abstract: Design of an
Energy-Efficient End-to-End Messaging Protocol for Smart Cities. In Inter-
national Conference on Internet-of-Things Design and Implementation (IoTDI
"21), May 18-21, 2021, Charlottesvle, VA, USA. ACM, New York, NY, USA,
2 pages. https://doi.org/10.1145/3450268.3453508

1 INTRODUCTION

Energy efficiency plays a key role in the Internet-of-Things (IoT)
applications, because many embedded IoT devices are only powered
by batteries or energy-harvesting modules. Typically, as wireless
transmissions dominate the overall energy consumption of an IoT
device, it is critical to improve the reliability of IoT message deliv-
ery and reduce unnecessary message retransmissions. Smart city
applications in particular, with its vast number of embedded IoT
devices deployed at urban and suburban areas, call for the need for
a reliable and energy-efficient messaging service. In this paper, we
report our on-going development of such a service.

An example smart city application is smart trash cans [3], where
IoT devices attached to the bins would report the current load of

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).

IoTDI °21, May 18-21, 2021, Charlottesvle, VA, USA

© 2021 Copyright held by the owner/author(s).

ACM ISBN 978-1-4503-8354-7/21/05...$15.00

https://doi.org/10.1145/3450268.3453508

Chao Wang
Dept. of Computer Science and Information Engineering
National Taiwan Normal University
Taipei City, Taiwan R.O.C.
cw@ntnu.edu.tw

Smart City

Edge Tier

Platform Tier

aBD\
QumOmO) Center

Edge
Gateway

Endpoints

Figure 1: Example smart city messaging scenario.

the bin via a messaging service. Accordingly, garbage trucks and/or
back-end servers that subscribe to the message topic may plan a bet-
ter route for garbage collection (Figure 1). In applications like this,
most IoT devices run a relatively low duty cycle, and the sending of
messages would account for the major energy consumption of the
device. For example, a wireless device at the sending of message
may take hundreds of milliwatts, while at the sleep mode it may
take fewer than ten milliwatts [1]. Based on this observation, it is
appealing if an IoT messaging service can provide a reliable message
delivery without incurring redundant message retransmissions.

MQTT is a widely used publish/subscribe messaging protocol
for IoT applications [2]. By communicating via a messaging server,
also known as a messaging broker, each MQTT client does not need
to know the existence of others and can still send messages through
the broker. But, as we will show in the following analysis, such a
broker-based messaging protocol may lead to message losses or
unnecessary retransmissions.

2 PROTOCOL ANALYSIS AND DESIGN

We organize our findings into three categories, and in each one
we first present our analysis of a potential problem, followed by
our solution proposal. Putting together, the main goal is to reduce
unnecessary message retransmissions to save energy. We call the
resulting protocol E4, which is energy-efficient and offers end-to-
end quality of service.

Problem 1: Pairwise QoS. In order to meet the quality of ser-
vice (QoS) needed by different applications, MQTT offers three
levels of QoS for message delivery: at most once (QoS 0), at least
once (QoS 1), and exactly once (QoS 2). Publishers and subscribers
of the same topic may request different QoS levels, and the MQTT
service will consolidate the requests. But because the MQTT specifi-
cation only requires a pairwise enforcement of QoS levels (i.e., from

https://doi.org/10.1145/3450268.3453508
https://doi.org/10.1145/3450268.3453508

10TDI ’21, May 18-21, 2021, Charlottesvle, VA, USA

Pairwise QoS

Publisher |Broker| |Subscriber|

End-to-End QoS

‘ Publisher ‘ Broker Subscriber|

T — .
° —>7>>><_

; 3

Figure 2: Pairwise QoS vs. end-to-end QoS.

|Publisher| ‘ Broker ‘ |Subscriber|
e

)

3 5 |—7?

o o H

(0] Q l

£ Ell— 5

prs)]

1 >

A -—

Figure 3: An example of premature timeouts.

publisher to broker and/or from broker to subscriber), depending
on the implementation, a MQTT service may not provide a reliable
message delivery end-to-end (i.e., from publisher to subscriber).
For example, for QoS 1 enforced at both the publisher-broker pair
and the broker-subscriber pair, the broker receiving a message may
immediately return an acknowledgment to the publisher before
sending out the message to the subscriber (Figure 2). In this case, the
publisher may delete its local copy of the message and eventually
the message may not be delivered to the subscriber, for example,
due to networking problem between the broker and the subscriber.

Solution 1: End-to-end QoS. In the E4 protocol, we specify
that the broker should send an acknowledgment only after it has
received the acknowledgment from the subscriber. Figure 2 shows
the sequence of this four-stage message exchange. We use timers to
control the retransmission of messages. The timers’ interval must
satisfy the following condition:

Tp > Z?zl ti
Tp > Z?:z ti

where #; denotes the one-way network latency for stage i; Tp, the
interval of the publisher’s timer; T}, the interval of the broker’s
timer. In general, one should use a longer interval to prevent acci-
dental timeouts, as it would take some time for a message receiver
to respond and process the message.

Problem 2: Premature timeouts. Should the broker choose to
enforce an end-to-end QoS, a delay at the broker/subscriber may
cause a premature timeout at the publisher (Figure 3), which in
turn may unnecessarily consume energy to perform a redundant
message retransmission (marked by A in the figure). The delay may
be due to a message loss or network traffic congestion at the channel
between the broker and the subscriber.

Solution 2: Deadline extension. In the E4 protocol, in order
to prevent the premature timeout at the publisher, the broker may
either use a shorter interval for its own timer or request the pub-
lisher to temporally extend its timer interval. The latter approach
may be more effective, because using a shorter timer interval at the
broker might not resolve the cause of the delay developed at the

for a publisher;
P)

for a broker.

Shang Chih Chung and Chao Wang

|Publisher‘ ‘ Broker ‘ ‘Subscriber|
) _—
5 _—
o -—
gl I
+J — > —B>
-
C

Figure 4: An example of unnecessary message exchange.

channel between the broker and the subscriber. The solution may
save publisher’s energy consumption since, by reducing unneces-
sary retransmissions, the end device may stay in the sleep mode
longer.

Problem 3: Unnecessary message exchange. Sometimes, an
acknowledgment from the broker may be lost and/or there may
be some transient delay. As a result, upon timeout the publisher
may retransmit the same message even if the broker had already
delivered it (Figure 4). This would cause the subsequent message
exchange unnecessary (transmissions B and C).

Solution 3: Bookkeeping. In the E4 protocol, upon receiving
the same message, the broker will directly resend the acknowledg-
ment and will not forward the duplicated message to the subscriber:
from the subscriber’s aspect, this message is unnecessary; from
the publisher’s aspect, receiving the acknowledgment early would
prevent another retransmission. To identify a message duplication
there are two approaches. The DUP flag in the MQTT packet header
may be used for this purpose but, as noted in the MQTT specifi-
cation, a packet with DUP flag set to 0 may contain a repetition
of application message [2]. Instead, we propose to have the broker
record the received messages and use that information to identify
duplicated messages.

3 FUTURE WORK

In this paper, we described potential problems in IoT messaging
as well as their solutions, which together form what we called the
E4 messaging protocol, to offer energy-efficient end-to-end reliable
message delivery. In order to empirically validate the E4 protocol,
we will implement a smart city scenario prototype and will verify
the performance of E4 through experiments and power monitoring.

ACKNOWLEDGMENTS

This work is supported by MOST grant 109-2222-E-003-001-MY3.
We would like to thank reviewers for helping improve this work.

REFERENCES

[1] M. Magno, F. A. Aoudia, M. Gautier, O. Berder, and L. Benini. 2017. WULoRa: An
energy efficient IoT end-node for energy harvesting and heterogeneous communi-
cation. In Design, Automation Test in Europe Conference Exhibition (DATE), 2017.
1528-1533. https://doi.org/10.23919/DATE.2017.7927233

OMG. Standard. 2019. Message queuing telemetry transport, version 5. (2019).
https://mqtt.org/

Y. Zhu, G. Jia, G. Han, Z. Zhou, and M. Guizani. 2019. An NB-IoT-based smart
trash can system for improved health in smart cities. In 2019 15th International
Wireless Communications Mobile Computing Conference IWCMC). 763-768. https:
//doi.org/10.1109/IWCMC.2019.8766748

G

https://doi.org/10.23919/DATE.2017.7927233
https://mqtt.org/
https://doi.org/10.1109/IWCMC.2019.8766748
https://doi.org/10.1109/IWCMC.2019.8766748

	Abstract
	1 Introduction
	2 Protocol Analysis and Design
	3 Future Work
	Acknowledgments
	References

