Adaptive Data Replication in Real-Time Reliable Edge Computing for Internet of Things

⁺Chao Wang, ^{*}Christopher Gill, ^{*}Chenyang Lu

⁺ Department of Computer Science and Information Engineering, National Taiwan Normal University
^{*} Department of Computer Science and Engineering, Washington University in St. Louis, USA

Challenges in performant IoT edge computing

Specific IoT gateway requirements

- Quantitative requirements
 - Data subscriber cannot accept more than L_i consecutive losses for data topic *i*
 - Data subscriber imposes an end-to-end soft deadline for data
- Qualitative requirements
 - The gateway should not consume too much local network bandwidth

System model

- Publish-subscribe data model
 - with a minimum inter-publishing time for each topic
- Each embedded sensing device can only keep N_i latest data elements
- Primary-backup fault tolerance
 - consider the crash failure (fail-stop)
 - data replication to backup

Key idea for adaptive data replication

- In the IoT gateway, once data is processed/delivered, it is irrelevant
- Therefore, for each data, we may postpone replication activities to reduce the need of actually performing the replication!

- Only start to replicate an arrival of data at the last starting time
- Once start, perform a batch of pending replications

Adaptive data replication architecture

 Edge computing engine schedules both computing tasks and replication tasks using the EDF policy

• Replication handler decides the intended rate of replication:

Lower intended rate -> tighter replication deadline (see the paper for the analysis)

Empirical performance: efficiency in network bandwidth usage

A higher intended replication rate is preferred, because it permits a longer replication deadline, which in turn would allow the system to skip many more replication activities.

Concluding remarks

- Performant IoT edge computing is challenging
 - Reliability, timeliness, and resource constraints
- In this work we addressed the challenges for the case of IoT gateways
 - Key idea: adaptive data replication
- Our empirical validation shows that the proposed architecture can
 - meet the required levels of data-loss tolerance
 - save network bandwidth consumption
 - meet application-specific end-to-end deadlines
- Email us for further discussion: cw@ntnu.edu.tw

