Int. J. Ad Hoc and Ubiquitous Computing, Vol. 27, No. 3, 2018 195

Effects of vertex insertion on local rescheduling
in wireless sensor networks

Chun-Hao Yang*

Department of Electrical Engineering,
National Cheng Kung University
Tainan 970, Taiwan

Email: jeffy@dcl.ee.ncku.edu.tw
*Corresponding author

Kuo-Feng Ssu

Department of Electrical Engineering,
National Cheng Kung University,
Tainan 701, Taiwan

Email: ssu@ee.ncku.edu.tw

Chao Wang

Department of Computer Science and Engineering,
Washington University in St. Louis,

One Brookings Drive, St. Louis, MO 63130, USA
Email: chaowang @wustl.edu

Abstract: Rescheduling has abundant issues yet to be explored. The local rescheduling problem
in wireless sensor networks (WSNs) have been firstly addressed and investigated in this paper. The
algorithms of local rescheduling have been proposed and evaluates the performance of reschedule
solutions with different metrics. The solutions have to be under the limitation that the network
should stay connected after the process of rescheduling. This paper introduces a theoretical bound of
maximum degree after node insertion. Along with empirical results in real world settings, the results
motivate the design of algorithms and give possible reasons why existing rescheduling algorithms
do not work efficiently. Two local link rescheduling algorithms and one local broadcast rescheduling
algorithm are developed as improvements. With different node densities and other critical parameters,
simulations show that the developed algorithms greatly improve the ratio of finding proper solutions
successfully in both types of scheduling compared with other existing simple algorithms.

Keywords: local rescheduling; WSN; wireless sensor network; local link scheduling; local broadcast
scheduling; maximum degree variation.

Reference to this paper should be made as follows: Yang, C-H., Ssu, K-F. and Wang, C. (2018)
‘Effects of vertex insertion on local rescheduling in wireless sensor networks’, Int. J. Ad Hoc and
Ubiquitous Computing, Vol. 27, No. 3, pp.195-2009.

Biographical notes: Chun-Hao Yang received his BS in Electrical Engineering and the MS degree in
Computer and Communication Engineering, both from the National Cheng Kung University, Tainan,
Taiwan. He received his PhD in Computer Science in the Institute of Computer and Communication
Engineering at the National Cheng Kung University. His research interests include underwater sensor
networks, time synchronisation, and routing protocols analysis in sensor networks.

Kuo-Feng Ssu received his BS in Computer Science and Information Engineering from the National
Chiao Tung University and the PhD in Computer Science from the University of Illinois, Urbana-
Champaign. He is a Professor in the Department of Electrical Engineering, National Cheng Kung
University, Tainan, Taiwan. He was a Visiting Associate Professor in the School of Electrical and
Computer Engineering, Cornell University, Ithaca, New York. He was a Visiting Scholar in the
Department of Computer and Information Sciences, University of Delaware, Newark. His research
interests include mobile computing, dependable systems, and distributed systems. His research
awards include the Ta-You Wu Memorial Award, the K.T. Li Research Award, and the Lam Research
Thesis Award. He is a Member of the IEEE, the ACM, and the Phi Tau Phi Honor Scholastic Society.

Copyright © 2018 Inderscience Enterprises Ltd.

196 C-H. Yang et al.

Chao Wang received his BS in Electrical Engineering and the MS from the Institute of Computer
and Communication Engineering, both from the National Cheng Kung University, Taiwan. He is a
PhD student in the Department of Computer Science and Engineering, Washington University in
St. Louis. He works in cyber-physical systems.

1 Introduction

Rapid developments in wireless technologies have enabled
many applications in wireless sensor networks (WSNs).
Sensor nodes may be placed in a wild area to collect
geological information or be positioned around a facility to
detect invasion. Recent research work extends the applications
to three-dimensional space; for example, underwater sensor
networks are deployed to monitor aquatic activities. Topics on
aerial sensor networks also populate the literature (Ravindran
and Narayanasamy, 2011; Dhurandher et al., 2010; Chenetal.,
2007; Yang and Ssu, 2008; Chen et al., 2011; Ou and Ssu,
2008).

Wireless nodes operating at the same frequency may
interfere with each other. The situations are classified
into either primary interference or secondary interference
(Ramanathan and Lloyd, 1993). Interference occurs if the
receiver is within the transmission ranges of multiple
transmitters. Interference may lead to longer delay and
less successful delivery ratio in communication. A well-
established strategy to resolve the interferences is to construct
a schedule of transmission. The schedule is composed of time
slots, and each pair of nodes is allowed to communicate at
the time slots which were assigned to it. A carefully-chosen
slot assignment has higher possibility for interference-free
communications.

The scheduling protocols can be divided into two
categories: link scheduling and broadcast scheduling. In link
scheduling, time slots are assigned to both nodes involved
in a transmission. In broadcast scheduling, slots are assigned
to the node that sends messages to all other nodes within its
radio coverage. The call for rescheduling arises in, but it is
not limited to the following situations. First, a mobile node
cruising around the network collecting information. Next, a
new node being introduced to replace the faulty node. Third,
a pile of new nodes being deployed to extend a network or to
concatenate multiple networks. Most situations do not favour a
global rescheduling operation since the nodes involved cannot
continue their regular tasks during the operation. In addition,
it takes huge efforts to reschedule the existing schedule of the
whole network.

Local rescheduling algorithms have been arisen by
exploiting the hidden square phenomenon (Wang and Ssu,
2010). The phenomenon states that each link/node can be
assigned multiple time slots in a single schedule. This is
the first paper which formulates and studies the problems
of local rescheduling. In this paper, two delicate algorithms
are developed considering the phenomenon by using extra
available time slots. The algorithm is novel because it accounts
for both link scheduling and broadcast scheduling and
offers local reschedule solution for packet transmission that
improves successful scheduling rate. Besides, a new analysis

technique has been presented subject to link connectivity’s
guarantee. [t is expected that the theoretical analysis result will
help enable the use of WSNs in real-time applications.

Figure 1 gives an example of link rescheduling. There
are five nodes positioned along a line. A schedule with four
time slots is shown above the links. Suppose a new node is
introduced to the left of the network. Then either Slot #1 or
Slot #4 can be transferred to the new node.

Figure 1 An example of transmission schedule (see online version
for colours)

B))
O O—00—00706

To study the influences where a node enters a scheduled
network, a theoretical upper bound of maximum degree after
node insertion has been proved in this paper. As inducted
in Appendix, 5(A + 1) is the maximum degree for any
topologies of the networks with any positions that new node
enters, where A is the maximum degree of the original network
without the new vertex. Empirical results of the maximum
degree increases had also been performed. In simulations,
all nodes are randomly deployed with uniform distribution
throughout the network. Note that the event of theoretical
bound barely happens, unless the locations of nodes including
new coming node are perfectly arranged. To further understand
the maximum degree variance that corresponds to reality,
the statistical results from empirical simulations are then
collected. Nevertheless, even with smaller maximum degree
variance in real world compared with that in theory, proper
solutions cannot be found with ease. A rescheduling algorithm
is said to produce a proper solution if no interference happens
where, in link rescheduling, the nodes that share a common
link preserves at least one identical time slot; in broadcast
rescheduling, each node preserves at least one time slot. The
local rescheduling algorithm is said to be failed in situations
where no proper solution can be found.

The performance in local rescheduling relates to some
other factors. For example, cycle length of the schedule,
slot request from the new vertex, currently occupied or
used slots of each node, and node density of the network.
These factors are all playing important roles in finding a
proper solution. This paper introduces algorithms to local link
rescheduling and local broadcast rescheduling respectively,
followed by a simple and unified strategy that will always
produce proper solutions in both types of rescheduling.
With the idea of slot transferring from a slot-spare node
to the new coming node, simulation results represent that
the proposed algorithms greatly improve the ratio of finding
proper solutions successfully in both types of scheduling.

This paper is organised as follows. In Section 2 the related
work is presented. Some preliminaries, common assumptions,

Effects of vertex insertion on local rescheduling in wireless sensor networks 197

definitions, and notations that are used throughout the paper
are presented in Section 3. Moreover, since this is the first
paper which addresses the local rescheduling (LR) problem,
the intuitive and simple solutions to the LR problem are
developed for further comparison. In Section 4, refined local
link rescheduling and broadcast rescheduling algorithms are
presented. Section 5 established theoretical lower bound on
the need of the number of the redundant time slots for
100-percent acquiring proper solutions. In addition, the
overhead of the theoretical solutions are discussed. Section 6
presents our simulation results with distinct metrics. Section 7
draws our conclusions and the Appendix gives the detail of
the proofs to the proposed theorems.

2 Related work

In wireless networks, wireless nodes may cooperate in routing
packets of interest. To increase the network throughput, the
reduction of collisions is one of the main issues. Therefore,
some related papers were proposed which take advantage of
the asynchronised medium access control (MAC) protocols,
or synchronised TDMA, CDMA, FDMA, and the dynamic
assignment of frequency bands to avoid possible packets
collisions (Pantelidou and Ephremides, 2011; Doudou et al.,
2013b; Ahn et al., 2006; Wang et al., 2006)

LLMAC uses simple asynchrony message package for
frame schedule between neighbour nodes instead of SYNC
package in S-MAC, and brings in the stagger active schedule
mechanism to maintain the data forwarding transmission
(Yu et al., 2007). Duo-MAC is an asynchronous cascading
wake-up MAC protocol for WSNs (Doudou et al., 2013a). It
achieves energy-time constrained data delivery, and balances
energy-efficiency with delay-minimisation by adaptively
switching between two states according to the dominating
traffic in the network. Park et al. (2011) uses a randomised
routing, a CSMA/CA mechanism at the MAC, radio power
control at the physical layer, and sleeping disciplines. This
paper considers duty cycle, routing, MAC, and physical layers
all together to maximise the network lifetime by taking
into account the trade-off between energy consumption and
application requirements for control applications. CyYMAC
adopts a receiver-initiated beacon-based strategy. Each node
periodically wakes up and sends out a short beacon to
explicitly notify its neighbours that it is ready to receive data
(Peng et al., 2011). This asynchronised protocol provides
the desired relative delay bound guarantee for data delivery
services via planning the rendezvous schedules carefully,
and adjusts the sensor nodes’ duty cycles dynamically to
the varying traffic condition. Another async protocol Diff-
MAC integrates different methods to meet the requirements
of QoS provisioning to deliver heterogeneous traffic (Yigitel
et al., 2011). Diff-MAC coordinates the medium access of
each traffic class by using effective service differentiation
mechanisms. Fragmentation and message passing feature
of Diff-MAC reduces the retransmission cost and CW
size adaptation mechanism tries to balance both energy
consumption and delay.

Time-based MAC has potential advantages over FDMA
and CDMA approaches in terms of hardware simplicity,
energy efficiency, and low delay time (Ye etal., 2002; Yackoski
and Shen, 2008). A number of centralised TDMA-based
research were proposed with many applications (Ramanathan,
1997; Hossain and Bhargava, 2001). However, a centralised
control mechanism requires at least a powerful node which
recognises the behaviours and mobilities of nodes and it
is costly to reach the requirements in empirical scenarios.
Besides, centralised systems fail easily if some nodes
break down during operation and lead to lower reliability.
Nevertheless, concerned with energy issue in wireless
networks, the amortised cost of collecting messages from
nodes in a distributed manner is greatly reduced, compared
with centralised protocols. Hence, several distributed version
of TDMA-based MAC protocols are proposed (Rhee et al.,
2009; Ammar and Stevens, 1991). Muniret al. (2010) calculate
an upper bound on the latency of all the streams so that
all the packets of all the streams reach their destinations
within their respective latency bounds. A novel framework
from pTunes provides runtime parameter adaptation for low-
power MAC protocols, automatically translating application-
level requirements into MAC parameters that meet these
requirements (Zimmerling et al., 2012). These works claim
to effectively reduce the number of collisions and increase
the network throughput. However, to both achieve robust and
collision-free communication, TDMA broadcast scheduling
and link scheduling problems (Arikan, 1984; Evenetal., 1984)
are proved to be NP-complete problems in wireless ad hoc
networks (Ephremides and Truong, 1990).

To help appropriately reschedule and allocate time slots
with fairness, it is essential to have a sufficient long enough
period or length in any TDMA-based scheduling algorithms.
This paper finds a least upper bound after node insertions
and thus gives an insight for designer to devise a much more
efficient rescheduling algorithm.

The proof of the added node’s maximum degree includes
the results of the kissing number problem in three-dimensional
space, also known as the 13 spheres problem (Anstreicher,
2004; Hales, 2002; Conway and Sloane, 1999). Various proofs
of the 13 spheres problem populated the literature (Schiitte
and van der Waerden, 1953; Leech, 1956).

3 Preliminaries

3.1 Definition

This paper considers the network G = (V, E), where V is
the set of nodes positioned in the k-dimensional Euclidean
space R*, and F is a subset of bi-directional links defined
by {(u,v) | (u,v) € V?} (The notations V and V(G) are
interchangeable). A link connects two nodes v and u if and
only if the distance d(v, u) is shorter than or equal to one. Two
nodes are said to be adjacent node if they share at least one
link. Two links are said to be adjacent link if they share the
same endpoint of the links. The degree of a node is the number
of its adjacent nodes. Let A be the maximum degree among
all nodes in a network.

198 C-H. Yang et al.

In link scheduling, define T¢; as the set of shared time
slots between node a and node b. The Distance of two non-
adjacent links are defined as size of the smallest set of edges
e C E that connects two links. Dist; =5 is the number of hop

count from link ab to link cd. The link scheduling criteria is
stated as follows:

Definition 1: Vi,j k,l €V and ij,kl € E, the link
scheduling is interference-free if TE N T = ¢, where
ij, ki are arbitrary two links with Dist;z 57 < 2,14 * 5,k #1,
and ij # kl.

In broadcast scheduling, let 7, be the set of time slots of
Node v. The hop count of two nodes are defined as size
of the smallest set of edges e C E that connect two nodes.
Hop(,,p) is the hop count from Node a to Node b. The broadcast
scheduling criteria is defined as:

Definition 2: Vi,5 € V, the broadcast scheduling is
interference-free if 7; N T = ¢, where Hop; jy <2, # j.

3.2 Relationship between A" and A

Intuitively, the probability of rescheduling successfully has
negative correlation to node density. In other words, higher
degree of the new adding node leads to more interferences and
hence fails to find proper solutions. As derived in Appendix,
the following theorems are the findings about theoretical upper
bound of maximum degree after the new node insertion.

Theorem 1: In any two-dimensional disk graph, after one
vertex insertion, the degree of the new vertex is at most equal

to 5(A +1).

Theorem 2: [n any three-dimensional disk graph, after one
vertex insertion, the degree of the new vertex is at most equal

10 12(A + 1).

Theorems 1 and 2 give an upper bound of maximum degree
after node insertion, which is denoted as A’, in 2D and 3D
networks. In a 2D real world with random node deployment, as
shown in Figure 2, the increases of A after vertex insertion are
not as many as the upper-bound case. The parameter NV is the
number of nodes in the network. The results suggest that A’
tends to be much less than 5(A + 1)(theoretic upper bound)
in reality. To be much more representative, for each setting of
the number of node N = 10, 25, 50, and 100, this simulation
constructs 100,000 distinct topologies with 100 times vertex
insertions in each topology. Distinct As are collected and the
distribution are depicted in Figure 2. It can be seen that the
increase of maximum degree is more obvious when A is rather
smaller. Topologies with higher A only have less than 30%
of chance that A’ > A. In addition, the maximum degree of
smaller number of nodes changes much more than that of
higher density networks; in other words, large number of nodes
does not change much in degree variance.

Moreover, the A’ of the connected networks has been
proved and can been summarised as in Theorem 3:

Theorem 3: Inatwo-dimensional, connected disk graph, the
degree of the new vertex after insertion is at most equal to 5/;
the degree is at most equal to 12A in a three-dimensional,
connected disk graph.

3.3 Simple rescheduling algorithm

It is assumed that the original network had been scheduled
by a protocol that exploiting the hidden square phenomenon
(e.g., DCLS (Wang and Ssu, 2010)). Thus, some links/nodes
may have multiple time slots. The proposed novel local
rescheduling schemes are based on transferring time slots to
a new link/node. The performance of simple and intuitive
solutions to local rescheduling is investigated, including 1000
topologies and 100 node injections. The network size is set
to 1000 x 1000 and the cycle length is 100 slots. Without
invoking any interferences during network constructions, each
node strives to fulfil its own slot requests one by one, which is
denoted as occupied slot throughout the thesis. Occupied slots
of nodes are ranged from 2 to 15, 6 to 30, in link scheduling
and broadcast scheduling, respectively.

Simple link rescheduling (SLR) and simple broadcast
rescheduling (SBR) algorithms are proposed for evaluating
the efficiency of existing rescheduling solutions. The main
idea of both algorithms is to simply avoid interferences from
neighbours after node addition. The remaining interference-
free slots are chosen to be part of proper solutions. There are
intrinsic differences between link scheduling and broadcast
scheduling. Link scheduling allows two nodes communicate
to each other, while broadcast scheduling is one direction to the
other. Nevertheless, the nature of broadcast-based scheduling
has the ability to send data from one node to all neighbours.

Figure 3 shows the relationship between successful
rescheduling ratio with average neighbouring slots. The
average neighbouring slots is the total number of time
slots from the new coming node’s one-hop neighbour. To
avoid causing interferences, as revealed in Figure 3, average
number of neighbouring slots approach to a certain limit. This
phenomenon illustrates the bound of traffic loads which relates
to the network’s capacity. Note that larger number of nodes
does not provide more neighbouring slots. In other words,
to promote the performance of the slot usage, an appropriate
design of system parameters, such as network average degree,
occupied slot requirements, is needed.

Broadcast rescheduling has similar trends to link
rescheduling. As shown in Figure 4, broadcast-based
scheduling features more occupied slots of neighbours as
number of nodes is small, which implies faster traffic flow in
wireless networks. In the opposite, as node density is larger,
fewer slots can be utilised in broadcast-scheduled networks.
In both type of scheduling, higher node densities add more
difficulties to satisfy its slot requirements and lead to break
down of the scheduling.

4 Proposed local rescheduling algorithms

By exploiting the fact that each node may have claimed
multiple time slots, the rescheduling is conducted by locally

Effects of vertex insertion on local rescheduling in wireless sensor networks

199

Figure 2 Distribution of A’ with random deployment and arbitrary insertion of new node: (a) N = 10; N = 25 and (c) N = 50 and

(d) N =100

N =10

100%

90%

80%

70%

60%

50%

40%

30%

20%

10%

0%

0 1 2 3 4 5 3 7 8

N

9 10 1 17 13 14

17 18 19 w0 n 2
transferring time slots to the new node. In order to guarantee
an interference-free schedule, nodes that are within two-hops
from the new node must release the conflicted time slots after
rescheduling, as stated in Definition 2; in link scheduling, links
that are within ‘two-hops’ from the newly connected links
must release the conflicted time slots after rescheduling, as
stated in Definition 1.

o

Ea+s

=1

a masa
5 0
£ o fa+3
2 0 Das2
z 0 mad
o
ma

o o

a

(a)

=0
15 16

(c)

§

g FHEEERENGE

&

Figure 3 Failed reschedule rate of link scheduling (see online
version for colours)

Simple Link Algorithm
1
e
g 09 Ll o .
2 os N &
e o n u .~
s 07 ™ []
3 ® an AN=10
£ 06 ¢] EN=20
g 05 . - +N=30
g o . .= =
= . =
£ 03
= o []
0.2 .
L]
0.1 % - A
0 = .
0 2 4 6 8 10 12 14 16
Average Neighbouring Slots

4.1 Local link scheduling

Figure 5(a) illustrates the procedure of link rescheduling. The
black vertices represent the scheduled nodes in the network;
the grey vertex is the node new to the network. The solid lines

Distribution of &'

N=25
100%
0% £17
= 20% [T
s T0% Ha+s
£ eox [T
2 50% (Rl]
‘E % Clav2
e ma
20% ma
10%
0%
3 4 5 6 7 8 9 10 11 12 13 14
a
(b)
N=100
WX = m
0%
A+
B0% A48
70% kb
a6
0% M ass
0% masa
Dae3
Ao Dasz
30% Hasl
ma
0%
10%
o%

18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 18 10
a

(d)

show the links in the network, and the dotted lines indicate the
links that connect the new node with its adjacent nodes. The
goal of rescheduling is to assign time slots to all of the dotted
lines.

Figure 4 Failed reschedule rate of broadcast scheduling
(see online version for colours)

Simple Broadcast Algorithm
1
3
£ oo - ~
G 08 s " .
3 07 [] n ot 4 N=10
o EN=20
5 06 * " H.,N=30
g =
g 05 = R . mN=40
T 04 = W N=50
E 03] . "
0.2 - = A .
0.1 * A A
0 A& Ao A B A L\
0 2 4 6 8 10 12 14 16
Average Neighbouring Slots

The new node first obtains the time slot information from its
two-hop neighbours. The information includes the maximum
slot number (i.e., the schedule length) and the time slots at
each link. Based on the information, the new node counts the
appearing times of each slot (denoted by t;). For each slot,
the node calculates the minimum number of other slots which
share same link (denoted by m;). The node then sorts ¢;, and
for the slots with identical appearing times, the node reversely
sorts m;. Table 1 shows the result. The time slots withm; = 0

200 C-H. Yang et al.

are neglected. The node then sequentially selects four time
slots listed in the table one after one.

Figure 5 (a) link rescheduling and (b) broadcast rescheduling
(see online version for colours)

2,7 : 56 o 3 1I7,8 4,6
X jol
2,3 4 1 3,9 & 27 1,6 |5 2,3
5.6 2,7,8 A a9
z,xl e ° 3 I7,s 46
5 |
Q. 01
/9/ :7 \\8\ L AN
2,3 4 1 3, 4 2 6 |5 2,3
Re 2 %% 4 4,9
(a) (b)
Table 1 Local link rescheduling
Slot no. 8 9 3 5 6 7 2
t; 1 1 2 2 2 2 3

m; 2 1 1 1 1 1 1

The node will update the corresponding entry of m; after each
of the selections. This procedure helps to maintain the network
connectivity, for it prevents a link from releasing all its slots.
In the example, the node first picks time slots #8 and #9. In
the third selection the node will choose slot #5 instead of
slot #3, and in the fourth selection the node will pick slot #7
instead of slot #6. Finally, the node randomly assigns the four
slots to each of the dotted links and requests the previous slot
holders to release the slots. The procedure is summarised in
Algorithm 1. The first sort in LLR affects the least number of
links, and the second sort looks forward to a balanced time
slot distribution.

An alternative of local link rescheduling could reduce
the required number of slot transfers, thus causing less slot
conflicts. Consider the set which contains all links one-hop
from a new node. The set can be partitioned in a way that
any two of the partitions are either disconnected, or connected
by links outside the set. Any node of a partition cannot
deliver to nodes in other partitions. In other words, the nodes
from different partitions are not connected. For example, the
network in Figure 5(a) includes two partitions, including the
upper partition and the lower partition. Before the new grey
node inserts, nodes in upper partition cannot communicate
with nodes in lower partition by any means. The alternative
solution to link rescheduling is to share only one single slot
for connecting each partition. The local rescheduling will
only need to transfer slots #8 and #9, connecting each of
the partitions to the new node, respectively. The procedure is
summarised in Algorithm 2.

Algorithm 1 Local Link Rescheduling Algorithm
(LLR)

. get slot info. of each link within two hops;
assign slots from the outcome of SLR;
if no proper solution is found then
sort slot no. based on t;;
for slots having identical ¢; do
reversely sort slot no. based on m;;
end for
while number of assigned slots < A’ do
if m; > 0 then
10: pick a slot greedily;
11: end if
12: end while
13: end if
14: broadcast the result;

Algorithm 2 LLR Enhancement (LLRE)

1: get slot info. of each link within two hops;

2: assign slots from the outcome of SLR,;

3: if no proper solution is found then

4: sort slot no. based on t;;

5. for slots having identical ¢; do

6 reversely sort slot no. based on m;

7. end for

8: while number of assigned slots < number of
partitions do

9: if m; > 0 then

10: pick a slot greedily;
11: end if

12: end while

13: end if

14: broadcast the result;

In this way, although the new node may not be able to directly
communicate with some of its adjacent nodes, the node could
ask those nodes of the same partition to relay the message and
the corresponding delay would be small: any pair of nodes in
a partition must be within two hops from each other. A simple
mathematical proof is given as follows. From the viewpoint
of the new node, any two of the partitions will be separated by
at least ¥ degree. Suppose there are more than two partitions.
Then each partition will dwell in a region limited by a central
angle smaller than 27 — 2 - § = %w, and the diameter of the

12 412 —2005%772
1.732. Therefore, any pair of nodes in a partition must be

within two hops from each other.

area must be shorter than or equal to \/

4.2 Local broadcast scheduling

Compared with link rescheduling, broadcast rescheduling has
an additional constraint. Suppose the new node is adjacent
to several nodes which all had one identical time slot. In
this case, all but one of the nodes must release the slot;
otherwise, a primary interference will occur at the new node.
The interference occurs because all nodes within the radio
coverage of the broadcasting node are likely to be receivers.

Effects of vertex insertion on local rescheduling in wireless sensor networks 201

The algorithm of local broadcast rescheduling is shown in
Algorithm 3. Figure 5(b) provides an example. The new grey
node first obtains the time slot information regarding the nodes
within its two hops. The information includes the schedule
length of each node and the slots assigned to each node. In
this way, the new node will be able to identify the nodes which
may cause primary interferences. For example, slots #1 and #7
may cause primary interferences at the new node, since they
were assigned to multiple nodes which are all adjacent to the
new vertex.

Algorithm 3 Local Broadcast Rescheduling Algorithm
(LBR)

get slot info. of each link within two hops;
resolve primary interference(s);
assign slots from the outcome of SBR;
if no proper solution is found then
sort slot no. based on t;;
for slots having identical ¢; do
reversely sort slot no. based on m;;
end for
while number of assigned slots < number of slot
request do
10: if m; > 0 then
11: pick a slot greedily;
12: end if
13: end while
14: end if
15: broadcast the result;

The new node resolves the interferences by determining which
node(s) must release the slot(s). In the example, the new node
will issue two requests:

e the node in the middle of the upper subnetwork must
release slot #1

e the second node from the left in the lower subnetwork
must release slot #7.

The slot assignment ends when the slot request from the
inserted node is satisfied. The remaining steps of rescheduling
are similar to Algorithm 1. Table 2 lists the result of the second
sort. Finally, the new node sequentially selects slot #1, the slot
in the leftmost column, and then broadcast the result of new
schedule.

Table 2 Local broadcast rescheduling

Slot no. 1 7 8 9 5 6 2 3 4
t; 1 1 1 1
m; 1 1 1 1 0 1 0 0 0

._.
[\S}
[\S}
&)
~

5 Discussion

5.1 Local rescheduling superiority

In this section, assume plenty of time slots are available
and are prepared right after the network initialisation. To

indicate the improvement from the idea of local rescheduling,
a problem is raised: how many time slots should be prepared
to guarantee a 100% collision-free scheduling after node
insertion with/without local rescheduling ?

Without local rescheduling, Appendix of this thesis proves
that 5(A + 1) is the tight upper bound of the degree of the
new node, and five is the tight upper bound of the number of
partitions in 2D networks; 12(A + 1) is the tight upper bound
of the degree of the new node, and 12 is the tight upper bound
of the number of partitions in 3D networks.

According to the given time schedule, local rescheduling
can be divided into three cases. In first case, there are some
time slots which were not taken by any node within two hops of
the new node, and the new node can be scheduled solely based
on these time slots. In this case, no node has to release any
slots. SLR and SBR found these slots as solutions to a make a
new schedule, while LLR, LLRE, and LBR no doubt produce
proper solutions. In the second case of local rescheduling, a
proper solution requires at least one slot to be transferred to
the new node. All of the examples in the previous sections
belong to this case. SLR and SBR fail to find available slots
for new vertex without doing slot transfer. LLR, LLRE, and
LBR discover these slots by transferring them to the new node
without breaking the network’s connectivity.

In the worst case of local rescheduling, no algorithms could
achieve a proper solution without breaking network linkage.
Consider Figure 5(a), for example. Suppose the schedule
length is eight slots (thus the rightmost link in the subnetwork
does not hold slot #9). Then any local rescheduling method
will inevitably break some network links if the goal is to
schedule all of the four dotted links. The worst case of local
rescheduling occurs if and only if some nodes have to release
all of their time slots in order to resolve slot conflicts. In other
words, a proper solution of local rescheduling exists if and
only if the total number of time slots at each node is more than
the number of slots that a node might have to release.

With local link rescheduling, since each slot transfer only
conflicts those slots of the same type, the maximum number
of slots that a node might have to release is equal to the total
number of slots transferred to a new node. In LLR, the number
of slot transfers is equal to the degree of the new node; in
LLRE, the number of transfers is reduced to the number of
partitions, which is at most five partitions in 2D networks, as
illustrated in Appendix. The argument can be summarised as
follows:

Lemma 4: In 2D (3D) networks, a proper solution of local
link rescheduling can be obtained if each link had claimed
more than five (twelve) time slots, respectively.

In other words, in link scheduling, only (five, twelve) slots
are needed using local rescheduling method compared with
(5(A + 1), 12(A + 1)) slots in traditional scheduling method
in 2D (3D) networks, respectively.

With local broadcast rescheduling, as long as a single time
slot transferred to the new node, some other slots may need to
be released in order to resolve primary interferences. By the
definition of primary interference, only those nodes adjacent to
the new node will possibly cause interferences at it. According

202 C-H. Yang et al.

to the broadcast scheduling criteria in Definition 2, once a
node obtained a time slot, all of its one-hop and two-hop
neighbouring nodes may not have the same slot. Therefore, the
maximum number of nodes producing a primary interference
at the new node will be five, which is equal to the size of a
maximum independent node set within the transmission radius
of the new node. If every node in the network has more than
five slots, it will be feasible to resolve any number of primary
interference occurring at the new node. A solution can be
obtained by requesting each of the five nodes to retain a distinct
slot and to release all the other slots.

Lemma 5: In 2D (3D) networks, a proper solution of local
broadcast rescheduling can be obtained if each node had
claimed more than five (twelve) time slots, respectively.

According to the discussions from Lemma 4 and Lemma 5,
the induction can be concluded as:

Theorem 6: A proper solution of local rescheduling can be
obtained if each node/link had claimed more than five slots in
two-dimension networks and twelve slots in three-dimension
networks.

To sum up, in both link and broadcast scheduling, only (five,
twelve) slots are needed using local rescheduling method,
where (5(A + 1), 12(A + 1)) slots are used in traditional
scheduling method in 2D (3D) environments.

5.2 Local rescheduling overhead

One way to look at the overhead of rescheduling is to count
the total number of time slots that have to be released from
the network. Since each time slot may be assigned to multiple
nodes and each node may possess several time slots; and each
slot transfer is likely to have conflicts at multiple nodes and
each node possibly suffers from interferences of several slots.
All of the above collisions contribute to the same kind of
overhead. In LLR, each time slot of the new coming node
results in at most 5 slot transfers after insertion. Consider the
interference from 1-hop and 2-hop neighbours, a loose bound
of maximum number of conflicts of LLR is 5 - 5A - 5(A —
1) ~ 125A2. Similarly, LLRE generates at most 5 - 5 - 5(A —
1) ~ 125A conflicts.

For the case of broadcast rescheduling, Figure 6 points out
that each one of the slot transfers might lead to more than
five conflicts, which is quite different from link scheduling
environments. The circles indicate the transmission radius of
each node. The node W1 represents the newly added node.
Node B1 is two-hops away from node B2 (connected via
nodes G1 and G2), and each of them is two-hops away
from the other black nodes. In this case, all of the six black
nodes might have slots identical to what was transferred
to W1.

5.3 Alternative solution

In 2D environments, a simple way to satisfy the condition
is to rerun a scheduling algorithm five times before the
network starts. In other words, the new cycle length is five
times longer and the generated schedules are combined and
concatenated. In this way, each node/link is guaranteed to
possess more than five slots. As to the case of 3D networks,
12 repetitions of rerunning scheduling algorithm will be
sufficient. The repetitions will produce enough time slots for
rescheduling algorithms LLRE and LBR to produce proper
solutions.

Figure 6 Black nodes might have identical slots in broadcast
rescheduling (see online version for colours)

The idea of repeating a schedule does not cause noticeable
performance penalties. The repetitions prolong the length of
schedule cycle, not necessarily the delay of transmission.
Figure 7 is a schedule of a new node. Nodes A, B, C, and
D are the neighbours of the new vertex. The labels above are
the assigned time slot which indicates the corresponding node.
The label below is the slot number of the arranged schedule.
The lower line shows the other schedule obtained by running
a scheduling algorithm twice. After combining two different
schedules, the average waiting time for adjacent nodes B and
A grows longer, whilst the average waiting time for Nodes C
and D are shorter.

Figure 7 Example of two transmission schedules of the new node
(see online version for colours)

A AAR O GAN A AAR AR ARA AL

1234567'

DCD B AD

AW AWAAE B

V:B\‘ CAB ’_D\/EVE\‘ {BAD VE\/E\/A

2 3 4 5 6 7 8 91011121314|

The repetition of initial scheduling might require a new node
have a longer delay in transmission. For example, in the upper
schedule, suppose the time slot #7 in Figure 7 was deleted

Effects of vertex insertion on local rescheduling in wireless sensor networks 203

and transferred to the new node. The new node has to wait
13 time slots before it can transmit another message to node
D. In most cases, to find a proper solution, it is adequate to
repeat the scheduling scheme less than two times. In each of
the repetitions the link/node may claim multiple time slots,
thus reducing the required number of repetitions.

6 Simulations

6.1 Simulation setup

Experiments have been evaluated with varying numbers of
slot requests from the new node, cycle length, and the
number of occupied slot in original schedule accordingly. All
experiments are tested and evaluated by simulator C. Nodes
are randomly deployed in a two-dimensional plane and the
total number is ranged from 10 to 50. Each setting is tested
with 1000 random network topologies. For each topology,
1000 times of random-insertions are performed, and the results
are obtained in average. The sizes of the maps are fixed
to 1000x1000 and communication range is set to 250. Due
to space limitation, only the representative two-dimensional
cases are shown in the literature.

6.2 Simulation results

6.2.1 Occupied slots

The number of occupied slots is the bound that one node can
possess. Nodes may have maximum number of slots or fewer
slots consider the capacity and traffic loads of the networks.
During network constructions, each node maximises its own
slots without causing interferences. After the process of
network building, a new node will be inserted and failed
reschedule ratio is evaluated with different occupied slots
limitation.

The slot requests from the new node are set to be the same
as the number of occupied slots during the tests. In Figure 8§,
as the number of node increase, the existing rescheduling
algorithm is getting harder finishing rescheduling. Meanwhile,
SLR is difficult to find proper solutions when occupied slots
are massive, which means the traffic load is heavier. The
evaluation of SBR, which is similar to SLR, is not listed
here due to limited space. Figure 9 shows the comparison
between LLR and SLR. LLR outperforms SLR in spite of
the number occupied slots (denoted as OS) equals 1. LLR
utilises slot transfer as a method to improve the possibility
of successful rescheduling. LLR algorithm reduces to SLR as
OS =1, for LLR cannot do any slot transfer if a link has only
one available slot. Any transfer results in link fracture and
no proper solutions can be found. Different with SLR, LLR
reduces its failed rate as the traffic is more congest, which is
benefit from the slot transfer scheme that balanced the traffic
load.

Figure 10 plots the comparison between LBR and SBR.
In broadcast scheduling, LBR is nearly 100% ‘reschedulable’
when OS > 2. It implies an empirical observation that if a

pre-scheduled network with random deployment of node and
each node has at least two available slots, it can be fairly
expected to find a proper solution without restarting schedule
process globally.

To be representative and to distinguish the performance of
the proposed algorithms from SLR and SBR, the slot requests
and the occupied slots are set to be 2 without especially
mentioned in the following tests.

Figure 8 Failed rescheduling ratio with distinct occupied slots
(see online version for colours)

Simple Link Algorithm

-<N=10
- N=20
-+ N =30
- N =40
- N=50

Failed Reschedule Rate

o P |
2 3 4 5 6 7 8 9 10 11 12 13 14 15

Number of Occupied Slot

Figure 9 LLR and SLR with distinct occupied slots (see online
version for colours)

SLR,0S=1
——SLR,0S=2
-=-SLR,0S=3
——SLR,0S=4
- SLR,0S=5
~o- LR, 05 =1
——LIR, 05 =2
- LLR, 05 =3
——LLR,05=4
- LLR, 0S=5

Failed Reschedule Rate

10 15 20 25 30 35 40 45 50

Number of Nodes

6.2.2 Cycle Length

Figure 11 examines the failed reschedule rate of SLR after
node insertion. Failed reschedule rate decreases as the cycle
length increases, since longer cycles provide rooms for more
slot transfers. A higher number of deployed node yields more
interferences and lead to high level of failed rate. Figures 12
and 13 plot the influences of variance of cycle lengths between
LLR and SLR. SLR fails to reschedule for no vacancy of time
slots as the cycle length is short. LLR mitigates the effects of
having shorter cycle in existing scheduling. Figures 14 and 15
give an observation to the broadcast scheduling. It can be seen
that LBR has above 99% of chances finding proper solutions,
while SBR fails to reschedule much more often as network
density is congest.

204 C-H. Yang et al.

Figure 10 LBR and SBR with distinct occupied slots (see online
version for colours)

1
0.9
0.8
0.7
0.6

—o—SBR,0S=1

0.5 ——SBR, 0S =2
0.4 -0-LBR,0S=1
0.3 ——LBR, 0S =2

Failed Reschedule Rate

0.2
0.1
0

e

10 15 20 25 30 35 40 45 50

Number of Nodes

Figure 11 Failed rate w.r.t. cycle lengths (see online version
for colours)

Simple Link Algorithm

2
©
(-4
[
3
-8 =<=N=10
5 =N =20
g -+ N =30
3 - N =40
E - N =50
£

10 15 20 25 30 35 40 45 50 55

Cycle Length

Figure 12 SLR with distinct cycle lengths (see online version
for colours)

Simple Link Algorithm

= Length =10
- Length =11
&= Length =12
—<Length=13
=% Length =14
- Length =15
—+— Length = 16
— Length =17
== Length =18
=+ Length =19
- Length = 20

Failed Reschedule Rate

10 15 20 25 30 35 40 45 50

Number of Nodes

6.2.3 Slot request

To study the effect of slot request from new node, experiments
were tested with distinct number of slot requests from new
vertex. Figure 16 depicts that the failed reschedule rate

has positive proportion to the increasing number of slot
requests. Besides, the more occupied slots of each node
possess, the higher rate of reschedule fails. Larger number
of nodes in the networks stands for more neighbours and
hence more collisions that may potentially happen, as shown
in Figure 17. Apparently, along with network density, the
number of slot requests has deep impact on the performance
of SLR. Nevertheless, LLR overcomes the difficulties and
offers outstanding improvements over SLR. By transferring
the slots and avoiding interferences, as illustrated in Figure 18,
the successfully reschedule rate is up to 95% in link
scheduling.

Figure 13 LLR with distinct cycle lengths (see online version
for colours)

LLR

- Length =10
- Length=11
=& Length =12
—< Length=13
=¥ Length =14
o Length=15
—+— Length =16
— Length =17
-=-Length=18
——Length=19
-~ Length =20

Failed Reschedule Rate

10 15 20 25 30 35 40 45 50

Number of Nodes

Figure 14 SBR with distinct cycle lengths (see online version
for colours)

Simple Broadcast Algorithm

1
g 09 [

©

€ 08

£ o7 L

ElRe - Length=5
% 0.6 - Length=6
$ 05 —&= Length =7
: 0.4 —< Length=8
2 = Length=9
T 0.3 -

w -@- Length = 10

0.2
0.1

10 15 20 25 30 35 40 45 50

Number of Nodes

In broadcast scheduling, the growing number of slot requests
from new vertex degrades the performance of SBR sharply as
in link scheduling. Figures 19 and 20 represent the comparison
between LBR and SBR. LBR has better reschedule rate
compared with SBR. LBR shows superior performance when
number of slot request is low. Even with more demands, the
proposed scheme decreases the failed rate effectively.

Effects of vertex insertion on local rescheduling in wireless sensor networks 205

Figure 15 LBR with distinct cycle lengths (see online version
for colours)

LBR

= Length=5

0.03 - - Length=6

—— Length=7
. —< Length=8
0.02 =¥ Length=9

-®- Length =10

Failed Rescheduling Rate
=)
o
N
v
T

10 15 20 25 30 35 40 45 50

Number of Nodes

Figure 16 Failed rescheduling ratio with distinct slot requests
(see online version for colours)

Simple Link Algorithm

—-<=0S =1
-=-0S =2
—-+-0S =3
& 0S =4
—+—0S =5

Failed Rescheduling Rate

i 2 3 4 5 6 7 8 9 10 11 12 13 14 15

New Node Slot Request

Figure 17 SLR with distinct slot requests and number of nodes
(see online version for colours)

Simple Link Algorithm

=<N=10
—= N =20
=+ N =30
& N=40
- N =50

Failed Rescheduling Rate

1 2 3 4 5

6 7 8 9 10

New Node Slot Request

6.3 Link rescheduling algorithm enhancement

Algorithm 2 is the enhancement of the link rescheduling
algorithm LLR. In order to further decrease the number of
interference from neighbours, slot transfers are done only
in different partitions. It is proved in this thesis that only
5 partitions among neighbours for a single node. In other
words, at most 5 slots are needed to be transferred if collisions

happen to the new vertex. Figure 21 shows the improvement
from LLRE. With the current setting, LLRE has almost 100%
reschedule rate as OS > 2. LLRE reduces the number of
slot transfer and hence diminishes the impact of interference.
Figures 22 and 23 tell the refinement from LLRE in distinct
cycle lengths. In addition, due to fewer collisions, LLRE
has better reschedule rate compared with LLR, as shown in
Figures 24 and 25.

Figure 18 LLR with distinct slot requests and number of nodes
(see online version for colours)

LLR

05
° 045 - =><N=10
g 04 =-N=20
w035 [-+ N=30
5 03t - N=40
©
% 025 -~ N=50
2 02 ,_/‘\h‘/—oh.__—oﬂ
o
s 0.15
°
® 01 [
g

o.osF = bl = "

—— * * . > r——y

o
) w
N

3 4 5 6 7 8 9 10

New Node Slot Request

Figure 19 SBR with distinct slot requests (see online version
for colours)

Simple Broadcast Algorithm

-<=N=10
= N=20
-+ N=30
=N =40
——N=50

oo o0
o N bR

Failed Reschedule Rate

po 9000
BN WG

o

1 2 3 4 5 6 7

New Node Slot Request

Figure 20 LBR with distinct slot requests (see online version
for colours)

LBR

1-

0.9
Q
5 o8 >N=10
@ 07 = N=20
§ 0.6 -+ N=30
£ 05 W N=40
& o4 <+ N=50
3 03
T 0.2
2

0.1

oBN

1 2 3 4 5 6 7

New Node Slot Request

206 C-H. Yang et al.

Figure 21 LLR and LLRE with distinct occupied slots (see online
version for colours)

-0~ LLR,0S =1
——LIR, 05 =2
—- LLRE,0S=1
—— LLRE, 0S=2

Failed Reschedule Rate

1 2 3 4 5 6 7 8 9
Number of Nodes

Figure 22 LLR with distinct cycle lengths (see online version
for colours)

= Length=10
& Length=11
—&— Length = 12
—< Length=13
=% Length =14
- Length=15
—+— Length =16
— Length=17
=~ Length =18
——Length=19
- Length =20

Failed Reschedule Rate

10 15 20 25 30 35 40 45 50

Number of Nodes

Figure 23 LLRE with distinct cycle lengths (see online version
for colours)

LLRE

- Length =10
B Length =11
=& Length =12
—<Length=13
= Length =14
- Length=15
—— Length =16
— Length=17
=~ Length =18
——Length=19
-~ Length = 20

Failed Reschedule Rate

10 15 20 25 30 35 40 a5 50

Number of Nodes

Figure 24 LLR with distinct slot requests (see online version
for colours)

LLR

><=N=10
==N=20
+N=30
+N=40
- N=50

Failed Reschedule Rate

1 2 3 4 5 6 7 8 9 10

New Node Slot Request

Figure 25 LLRE with distinct slot requests (see online version
for colours)

LLRE

1
09 [
g 08 -
%0.7 F -=N=10
306 = N=20
£o0s5 | -+ N=30
§0.4 —_— W, —" |®N:=a
203t ~~N=50
S —g—F—p—————— ———a
0'(1) A:—-—i——:—t""—‘:_—‘\‘———k—“
1 2 3 4 5 6 7 8 9 1

New Node Slot Request

7 Conclusion

The collisions of packet transmissions in mobile sensor
networks have been one of the main topics in MAC/Protocol
layers. To diminish the degradation of packet transmission
successful rate, the problems of local rescheduling in
link rescheduling and broadcast scheduling in WSNs are
investigated in this paper. The rescheduling is conducted
by locally transferring time slots to the new node. Several
efficient schemes have been proposed, LLR and LLRE are link
rescheduling solutions where LBR is the solution to broadcast
rescheduling. These proposed schemes manage to overcome
the shortcomings of existing simple rescheduling algorithms,
SLR and SBR. A theoretical bound of maximum network
degree after node insertion is given.

Effects of vertex insertion on local rescheduling in wireless sensor networks 207

This paper examines the bound of maximum degree under
node introduction. The bound is given as the function of the
current maximum node degree. Given the condition that each
node have the identical radius, the results are conducted in both
two-dimensional and three-dimensional spaces. On the other
hand, the maximum degree is inherently bounded by the total
number of nodes. Analysis shows that its tightness depends
on both the number of nodes and the ratio of the radius of
node and space. Simulations validate the bounds in random
network topologies.

The theoretical bound happens rarely after numerous
simulations. Hence, the real-world experiments with random
injection of nodes are surveyed to study the effects on
local rescheduling. Both LLR and LBR outperform existing
schemes SLR and SBR with respect to varied numbers of
nodes, occupied slots, cycle lengths and slot requests. LLR
and LBR achieve higher successful rate of finding proper
solutions, despite its simplicity. With small overhead, LLRE
further enhances the performance of LLR by transferring slots
to partitions among neighbours of the new node.

References

Ahn, G.S., Hong, S.G., Miluzzo, E., Campbell, A.T. and Cuomo, F.
(2006) ‘Funneling-MAC: a localized, sink-oriented MAC for
boosting fidelity in sensor networks’, International Conference
on Embedded Networked Sensor Systems, Boulder, Colorado,
USA, pp.293-306.

Ammar, M.H. and Stevens, D.S. (1991) ‘A distributed TDMA
rescheduling procedure for mobile packet radio networks’,
IEEE International Conference on Communications, Vol. 3,
pp-1609-1613.

Anstreicher, K.M. (2004) ‘The thirteen spheres: a new proof’,
Discrete and Computational Geometry, Vol. 31, pp.613-625.

Arikan, E. (1984) ‘Some complexity results about packet radio
networks’, IEEE Transactions on Information Theory, Vol. 30,
pp.681-685.

Chen, A., Kumar, S. and Lai, T.H. (2007) ‘Designing localized
algorithms for barrier coverage’, ACM International Conference
on Mobile Computing and Networking, Montreal, QC, Canada,
pp.63-74.

Chen, Y.S., Lin, YW. and Lee, S.L. (2011) ‘A mobicast routing
protocol in underwater sensor networks’, IEEE Wireless
Communications and Networking Conference, Cancun,
Quintana Roo, Mexico, pp.510-515.

Conway, J.H. and Sloane, N. J.A. (1999) Sphere Packings, Lattices
and Groups, 3rd ed., Springer.

Dhurandher, S.K., Obaidat, M.S. and Gupta, M. (2010) ‘A novel
geocast technique with hole detection in underwater sensor
networks’, IEEE/ACS International Conference on Computer
Systems and Applications, Hammamet, Tunisia, pp.1-8.

Doudou, M., Alaei, M., Djenouri, D., Barcelo-Ordinas, J. and
Badache, N. (2013a) Duo-MAC: Energy and Time Constrained
Data Delivery MAC protocol in Wireless Sensor Networks,
pp-424-430.

Doudou, M., Djenouri, D. and Badache, N. (2013b) ‘Survey on
latency issues of asynchronous MAC protocols in delay-

sensitive wireless sensor networks’, Communications Surveys
Tutorials, IEEE, Vol. 15, No. 2, pp.528-550.

Ephremides, A. and Truong, T.V. (1990) ‘Scheduling broadcasts
in multihop radio networks’, I[EEE Transactions on
Communications, Vol. 38, No. 4, pp.456—460.

Even, S., Goldreich, O., Moran, S. and Tong, P. (1984) ‘On the NP-
completeness of certain network testing problems’, Networks,
Vol. 14, No. 1, pp.1-24.

Hales, T.C. (2002) ‘An overview of the Kepler conjecture’, IEEE
Communications Magazine, Vol. 44, pp.115-121.

Hossain, E. and Bhargava, V.K. (2001) ‘A centralized TDMA-based
scheme for fair bandwidth allocation in wireless IP networks’,
IEEE Journal on Selected Areas in Communications, Vol. 19,
No. 11, pp.2201-2214.

Leech, J. (1956) ‘The problem of thirteen spheres’, The Mathematical
Gazette, Vol. 40, No. 331, pp.22-23.

Munir, S., Lin, S., Hoque, E., Nirjon, S.M.S., Stankovic, J.A.
and Whitehouse, K. (2010) Addressing Burstiness for Reliable
Communication and Latency Bound Generation in Wireless
Sensor Networks, pp.303-314.

Ou, C.H. and Ssu, K.F. (2008) ‘Sensor position determination with
flying anchors in three-dimensional wireless sensor networks’,
IEEE Transactions on Mobile Computing, Vol. 7, No. 9,
pp-1084-1097.

Pantelidou, A. and Ephremides, A. (2011) ‘Scheduling in wireless
networks’, Foundations and Trends in Networking, Vol. 4, No. 4,
pp-421-511.

Park, P., Fischione, C., Bonivento, A., Johansson, K. and
Sangiovanni-Vincent, A. (2011) ‘Breath: an adaptive protocol
for industrial control applications using wireless sensor
networks’, IEEE Transactions on Mobile Computing, Vol. 10,
No. 6, pp.821-838.

Peng, Y., Li, Z., Qiao, D. and Zhang, W. (2011) Delay-Bounded
MAC with Minimal lIdle Listening for Sensor Networks,
pp-1314-1322.

Ramanathan, S. (1997) ‘A unified framework and algorithm for
(T/F/C)DMA channel assignment in wireless networks’, Joint
Conference of the IEEE Computer and Communications
Societies, Kobe, Japan, Vol. 2, pp.900-907.

Ramanathan, S. and Lloyd, E.L. (1993) ‘Scheduling algorithms for
multihop radio networks’, Transactions on Networking, Vol. 1,
No. 2, pp.166-177.

Ravindran, S. and Narayanasamy, P. (2011) ‘Energy-aware
face geocast for wireless adhoc and sensor networks’,
International Conference on Electronics Computer Technology,
Kanyakumari, India, Vol. 1, pp.6-10.

Rhee, 1., Warrier, A., Min, J. and Xu, L. (2009) ‘DRAND: distributed
randomized TDMA scheduling for wireless ad hoc networks’,
IEEE Transactions on Mobile Computing, Vol. 8, No. 10,
October, pp.1384—-1396.

Schiitte, K. and van der Waerden, B.L. (1953) ‘Das Problem
der dreizehn Kugeln’, Mathematische Annalen, Vol. 125,
pp.325-334.

Wang, C. and Ssu, K.E. (2010) ‘A distributed collision-free low-
latency link scheduling scheme in wireless sensor networks’,
Wireless Communications and Networking Conference, Sydney,
Australia, pp.1-6.

Wang, W.Z., Wang, Y., Li, X.Y.,, Song, W.Z. and Frieder, O.
(2006) ‘Efficient interference-aware TDMA link scheduling
for static wireless networks’, International Conference on
Mobile Computing and Networking, Los Angles, CA, USA,
pp.262-273.

208 C-H. Yang et al.

Yackoski, J. and Shen, C.C. (2008) ‘UW-FLASHR: achieving
high channel utilization in a time-based acoustic MAC
protocol’, International Workshop on Underwater Networks,
San Francisco, CA, USA, pp.59-66.

Yang, C.H. and Ssu, K.F. (2008) ‘ An energy-efficient routing protocol
in underwater sensor networks’, International Conference on
Sensing Technology, Tainan, Taiwan, pp.114-118.

Ye, W., Heidemann, J. and Estrin, D. (2002) ‘An energy-efficient
MAC protocol for wireless sensor networks’, International
Conference on Computer Communications, New York City, NY,
USA, pp.1567-1576.

Yigitel, M.A., Incel, O.D. and Ersoy, C. (2011) ‘Design and
implementation of a QoS-aware {MAC} protocol for wireless
multimedia sensor networks’, Computer Communications,
Vol. 34, No. 16, pp.1991-2001.

Yu, Q., Tan, C. and Zhou, H. (2007) A Low-Latency MAC Protocol
for Wireless Sensor Networks, pp.2816-2820.

Zimmerling, M., Ferrari, F., Mottola, L., Voigt, T. and Thiele, L.
(2012) pTunes: Runtime Parameter Adaptation for Low-power
MAC Protocols, pp.173-184.

Appendix

This section proves the maximum degree of the new node.
Some definitions are given as follows. The r-neighbourhood
of pistheset N.(p) = {= € R¥|0 < d(p,) < r}, whereris
called the radius of N/ (p).In R?, neighbourhoods are interiors
of circles; in R3, neighbourhoods are interiors of spheres. The
set of points z satisfying d(p, x) = r is called the boundary of
the r-neighbourhood of p, or the r-boundary of p. The closure
of A C R is the smallest subset of R* which contains A. The
closure of N/ (p), denoted by N,(p), is the union of the r-
neighbourhood of p and its 7-boundary. Consequently, in the
disk graph, the degree of the vertex v at p can be denoted by
| N1(p)|, which is the number of vertices in the closure Ni (p).
For simplicity, N1 (p) is denoted by N(p) in the following
text. Let A be the maximum degree in the graph before vertex
insertion.

In the following text, two graphs are said to be reducible to
each other if and only if both of them have the same A and |V/].
To prove the maximum of |N(p)|, it is sufficient to consider
the graph which is reducible to all other graphs of N(p). The
two lemmas below suggest the existence of such graphs.

Lemma Al: Letpbeapointin R¥. Anydisk graph G in N (p)
is reducible to the graph G’ such that V (G') = {v | d((v,u) <
~yforallu € N(v), and 0 < v < 1}.

Proof: The proof is given by construction. Let Q =
{q1,92, ..., Gm } be the independent dominating set of G in
N (p), and choose g1 so that [N (¢q1)| = A.Set0 < v < 1. For
k =1,...,m, we sequentially move each vertex in N (gy) into
N, /2(qx); denote the induced graph by G’. This procedure
both preserves the maximum degree of G and maintains the
number of vertices. Hence, G is reducible to G'. [l

Lemma A2: Let p be a point in R*. Let G be any collection
of independent vertices in N(p). Let G’ be an disk graph in

which all vertices are on the 1-boundary of N (p). Then G is
reducible to G'.

Proof: From G, we construct G’ by pushing each v € V
toward the direction p? till it reaches the 1-boundary of N (p).
Clearly, each pair of vertices are connected in G’ only if they
were connected in G. Therefore, V (G”) is also an independent
set, and the proof follows. O

Lemma 7 implies that every disk graph is reducible to a
collection of independent, complete subgraphs. For example,
let @ be the independent dominating set of any graph G in
N(p).Suppose d(q1,q2) > o > 1forany g1, g2 € Q.Lety =
r(a) < (. —1)/2. Due to that r() < a — 1, G is reducible
to a graph where each vertex is belonged to exactly one of
N(q) for g € Q; due to that r(«) < 1, each subgraph is a
complete graph. Finally, since v = r(a) < (o — 1)/2, any
two subgraphs are independent.

Proposition Al: Every disk graph is reducible to a
collection of independent, complete subgraphs.

Therefore,
max | N (p)| = M(A +1), (A1)

where M is the maximum number of independent, complete
subgraphs in N(p). Let K be the maximum number of
independent vertices in N (p). It is easy to see that M < K.
And M = K due to Proposition 9. According to Lemma 8,
K can be determined by the case that all vertices are on the
1-boundary of p. In this case, K = 5in R?, clearly; the kissing
number problem implies that X < 12 in R3. As aresult,

max |N(p)| = 5(A + 1) in R?, (A2)
and
max |N(p)| < 12(A + 1) in R>. (A3)

Thus the following theorems.

Theorem Al: In any two-dimensional disk graph, after one
vertex insertion, the degree of the new vertex is at most equal
to 5(A +1).

Theorem A2: Inany three-dimensional disk graph, after one
vertex insertion, the degree of the new vertex is at most equal

t0 12(A + 1).

Proof: In the kissing number problem, at most 12 balls can
simultaneously touch a sphere of the same radius. Suppose
the 12 balls touch the sphere in a way that the contact
points together form a regular icosahedron circumscribing the
sphere. The edge length of the icosahedron, denoted by [,
will be I, = 4(v/10 + 2¢/5) 7! &2 1.0514 > 1. That is, the 12
contact points form an independent set. Thus, the equality of
equation (A3) holds. O

As a result, in two-dimensional space, the inserted vertex
has at most 5(A + 1) adjacent vertices. Let C be a vertex

Effects of vertex insertion on local rescheduling in wireless sensor networks 209

configuration where all the adjacent vertices are divided into
five independent groups, and the size of each group is A +
1. We prove that C is not reducible to any other vertex
configuration: On one hand, each complete subgraph can have
at most A + 1 vertices, and therefore C cannot be reduced
to five or less independent groups. On the other hand, it is
impossible to create six or more independent groups in N (p).
Therefore, C' is the only possible vertex configuration with
5(A + 1) vertices.

The similar reasoning concludes that, in three-dimensional
space, if there are 12(A + 1) vertices adjacent to the inserted
vertex, what follows is the only possible vertex configuration:
all the adjacent vertices are divided into 12 independent
groups, and the size of each group is A + 1.

Theorem A3: In a two-dimensional, connected disk graph,
the degree of the new vertex after insertion is at most equal to
5A; the degree is at most equal to 12 in a three-dimensional,
connected disk graph.

Proof: Starting from the maximum vertex configuration in
N(p), we prove the theorem by connecting each of the
independent, complete subgraph in a way that removes
the least number of vertices from N(p). There are three
approaches to connect the subgraphs: 1. Connect the
subgraphs to a connected subgraph external to N(p); 2.
Connect the subgraphs by placing vertices in N (p); 3. Connect
some of the subgraphs by the second approach, and then
connect the rest by the first approach.

In the first approach, it is convenient to assume a connected
subgraph, named E, which surrounds N (p) but does not have
connection to any of the vertices in N (p). We can connect F to
a subgraph S in N (p) by placing a set of vertices vy, va, ..., v;
between N (p) and E such thatd(S,v;) < landd(v;, E) < 1.
Recall that S is complete and has A + 1 vertices; therefore,
after connecting to F, the subgraph .S must remove at least
one vertex to make the degrees of vertices in S not exceed A.
As aresult, each connection causes | N (p)| to decrease by one.

In the second approach, first we show that placing vertex
v anywhere in N (p) will make N (v) include all vertices of at

least one complete subgraph. Let v; be a vertex in subgraph
S1 and vy be a vertex in subgraph Ss, respectively, such
that d(vq,ve) > d(v],vh) for any v € Sy and v, € Sy. By
definition, d(v1, v2) > 1and Zvypve > /3. Due to that there
are five independent subgraphs, we can choose .S; and Sz such
that Zvypvy < 2w — 4(n/3) = 2m/3. Therefore, d(vy, v2) <
2. Since the diameter of N (v) is two, N (v) will completely
include either Sy or Ss.

Let S; be the subgraph which is completely included in
N (v), and let Sy be an arbitrary subgraph which is partially
included in N (v). Let Sza be the subgraph of .Sy inside N (v)
and S,b be the subgraph of Ss outside N (v). Suppose |Saa| =
m. Then N (v) includes at least (A + 1) + m vertices.

For the case of m = 1, we have to remove at least two
vertices in N (p) in order not to make the degree of v exceed
A. The two removals must come from 5. To keep the degrees
of vertices in S5 not exceed A, we have to remove at least one
vertex from Syb. As a result, placing one vertex in N(p) to
connect two subgraphs causes at least three vertex removals,
and |N(p)| decreases by at least two. For the case of m >
2, we have to remove at least m + 1 vertices in N(p), and
thus | N (p)| decreases by at least m. Compared with the first
connecting approach, the second approach does not give a
larger | N (p)|.

Note the degree of vertices in Syb, after connection, must
be smaller than A. Therefore, we can connect S2b to a path
external to N (p), and the procedure does not cause any vertex
removal in N (p).

Suppose that placing a vertex in N(p) connects three
subgraphs. The third subgraph has to remove at least one
vertex. Therefore, in the sense of the total number of vertex
removals in N(p), the above situation is equivalent to the
following method: Connect two subgraphs by placing a vertex
in N(p), and then connect the result to the third subgraph
with a path external to N(p). In general, to connect each
additional subgraph, at least one vertex must be removed from
the additional subgraph. By induction, the second approach
does not give a larger | N (p)|. O

