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Abstract—Edge computing systems for Industrial Internet of
Things (IIoT) applications require reliable and timely message
delivery. Both latency discrepancies within edge clouds, and
heterogeneous loss-tolerance and latency requirements pose new
challenges for proper quality of service differentiation. Efficient
differentiated edge computing architectures are also needed, espe-
cially when common fault-tolerant mechanisms tend to introduce
additional latency, and when cloud traffic may impede local, time-
sensitive message delivery. In this paper, we introduce FRAME, a
fault-tolerant real-time messaging architecture. We first develop
timing bounds that capture the relation between traffic/service
parameters and loss-tolerance/latency requirements, and then
illustrate how such bounds can support proper differentiation
in a representative IIoT scenario. Specifically, FRAME leverages
those timing bounds to schedule message delivery and replication
actions to meet needed levels of assurance. FRAME is imple-
mented on top of the TAO real-time event service, and we present
empirical evaluations in a local edge computing test-bed and an
Amazon Virtual Private Cloud. The results of those evaluations
show that FRAME can efficiently meet different levels of message
loss-tolerance requirements, mitigate latency penalties caused by
fault recovery, and meet end-to-end soft deadlines during normal,
fault-free operation.

I. INTRODUCTION

The edge computing paradigm assigns specific roles to
local and remote computational resources. Typical examples
are seen in Industrial Internet-of-Things (IIoT) systems [1]–
[4], where latency-sensitive applications run locally in edge
servers, while computation-intensive and shareable tasks run
in a private cloud that supports multiple edges (Fig. 1).
Both an appropriate configuration and an efficient run-time
implementation are essential in such environments.

IIoT applications have requirements for message latency and
reliable delivery, and the needed levels of assurance are often
combined in heterogeneous ways. For example, emergency-
response applications may require both zero message loss and
tens of milliseconds end-to-end latency, monitoring applica-
tions may tolerate a small number of consecutive message
losses (e.g., by computing estimates using previous or subse-
quent messages) and require hundreds of milliseconds bounds
on latency, and logging applications may require zero message
loss but may only require sub-second latency.

Such systems must differentiate levels of latency and
loss-tolerance requirements. Without latency differentiation,
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Fig. 1. An Illustration of IIoT Edge Computing.

latency-sensitive messages may arrive too late; without loss-
tolerance differentiation, the system may demand excessive
resources since it must treat every message with the highest
requirement level. An edge computing system further needs to
consider both the discrepancy between traffic periods within
an edge (e.g., tens of milliseconds) and those to a cloud (e.g.,
at least sub-second), and the discrepancy between network
latency within an edge (e.g., sub-millisecond) and that to a
cloud (e.g., up to sub-second). Premature scheduling of cloud-
bound traffic may delay edge-bound, latency-sensitive traffic.

It is challenging to differentiate such heterogeneous require-
ments for both latency and loss tolerance efficiently. Differen-
tiating latency requirements alone at millisecond time scales
is nontrivial; enabling message loss-tolerance differentiation
adds further complexity, since fault-tolerant approaches in
general tend to slow down a system. In particular, systems
often adopt service replication to tolerate crash failures [5], [6].
Replication requires time-consuming mechanisms to maintain
message backups, and significant latency penalties may be
incurred due to system rollback upon fault recovery. Alter-
native replication methods may reduce latency at the expense
of greater resource consumption [7], [8]. To date, enabling and
efficiently managing such latency/loss-tolerance differentiation
remains a realistic and important open challenge.

In this paper, we propose the following problem formulation
to address those nuances of fault-tolerant real-time messaging
for edge computing: each message topic is associated with
a loss-tolerance level, in terms of the acceptable number of
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consecutive message losses, and an end-to-end latency dead-
line, and the system will process messages while (1) meeting
designated loss-tolerance levels at all times, (2) mitigating
latency penalties at fault recovery, and (3) meeting end-to-end
latency deadlines during fault-free operation. In this paper, we
focus on the scope of one edge and one cloud.

This paper makes three contributions to the state of the art
in fault-tolerant real-time middleware:
• A new fault-tolerant real-time messaging model. We

describe timing semantics for message delivery, identify
under what conditions a message may be lost, prove
timing bounds for real-time fault-tolerant actions in terms
of traffic/service parameters, and demonstrate how the
timing bounds can support efficient and appropriate mes-
sage differentiation to meet each requirement.

• FRAME: A differentiated Fault-tolerant ReAl-time
MEssaging architecture. We propose an edge computing
architecture that can perform appropriate differentiation
according to the model above. The FRAME architecture
also mitigates latency penalties caused by fault recovery,
via an online algorithm that prunes the set of messages
to be recovered.

• An efficient implementation and empirical evaluation. We
describe our implementation of FRAME within the TAO
real-time event service [9], a mature and widely-used
middleware. Empirical evaluation shows that FRAME can
efficiently meet both types of requirements and mitigate
the latency penalties caused by fault recovery.

The rest of this paper is organized as follows: In Section II,
we compare and contrast our approach to other related work.
In Section III, we describe FRAME’s fault-tolerant real-time
model, using an illustrative IIoT scenario. The architectural
design of FRAME is presented in Section IV, and its imple-
mentation is described in Section V. In Section VI, we present
an empirical evaluation of FRAME. Section VII summarizes
and presents conclusions.

II. RELATED WORK

Modern latency-sensitive applications have promoted the
need for edge computing, by which applications can respond to
local events in near real-time, while still using a cloud for man-
agement and storage [1], [10]. AWS Greengrass is a typical
edge computing platform1, where a Greengrass Core locally
provides a messaging service that bridges edge devices and the
cloud. Our model aligns with such an architecture. While there
is recent work [11] on a timely and reliable transport service in
the Internet domain using overlay networks, to our knowledge
we are the first to characterize and differentiate timeliness and
fault-tolerance for messaging in the edge computing domain.

Both real-time systems and fault-tolerant systems have been
studied extensively due to their relevance to real-world appli-
cations [5], [12]. For distributed real-time systems, the TAO
real-time event service [9] supports a configurable framework
for event filtering, correlation, and dispatching, along with a

1https://aws.amazon.com/greengrass/

TABLE 1
COMPARISON OF RELATED MIDDLEWARES AND STANDARDS.

Middleware/Standard Message-Loss Tolerance Strategies
Pub. Resend Local Disk Backup Broker

Flink [20] x x
Kafka [21] x x x
Spark Streaming [22] x x
NSQ2 x
DDS (Standard) [23] x
MQTT (Standard) [24] x
FRAME (This work) x x

scheduling service [13]. In this paper, we consider timing
aspects of message-loss tolerance and show that our new
model can be applied to address needs for efficient fault-
tolerant and real-time messaging.

Among fault-tolerance approaches, service replication has
been studied for reliable distributed systems. Delta-4 XPA [6]
coined the names active/passive/semi-active replication. In
active replication, also called the state-machine approach [7],
service requests are delivered to all host replicas, and the
responses from replicas are compared or suppressed and only
one result is returned. In passive replication, also known as the
primary-backup approach [14], only one primary host handles
requests, the other hosts synchronize to it, and one of the
synchronized hosts would replace the primary host should
a fault occur. Semi-active approaches have been applied to
real-time fault-tolerant systems to improve both delay pre-
dictability and latency performance [8]. A discussion regarding
conflicts between real-time and fault-tolerance capabilities is
available [15]. There are also recent studies for virtual ma-
chine fault-tolerance [16], [17] and for the recovery of faulty
replicas [18]. In this paper, we follow directions established
in the primary-backup approach.

A complementary research topic is fault-tolerant real-time
task allocation, where a set of real-time tasks and their
backup replicas are to be allocated to multiple processors, in
order to tolerate processor failures while meeting each task’s
soft real-time requirements. The DeCoRAM middleware [19]
achieved this by considering both primary and backup replicas’
execution times and failover ordering, and thereby reducing the
number of processors needed for replication. In contrast, the
work proposed in this paper considers end-to-end timeliness
of message delivery and tolerance of message loss, and via
timing analysis can reduce the need for replication itself.

Modern messaging solutions offer message-loss tolerance
in three ways: (1) publisher retention/resend: a publisher
keeps messages for re-sending; (2) local disk: message copies
are written to local hard disks; (3) backup brokers: like the
primary-backup approach, message copies are transferred to
other brokers; Table 1 lists the usage of these strategies
in modern solutions. We note that none of these solutions
explicitly addresses the impact of fault tolerance on timeliness.
In this paper, we introduce a timing analysis that gives insight
into how publisher retention and backup brokers relate to

2https://nsq.io
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Fig. 2. Example timelines within the scope of message creation and delivery,
and the relation between events happening in each component.

each other, and we demonstrate a trade-off in applying those
strategies. We chose not to examine the local disk strategy
because it performs relatively slowly.

III. FAULT-TOLERANT REAL-TIME MESSAGING MODEL

In this section, we present the constraints for a messaging
system to meet its fault-tolerant and real-time requirements.
We first give an overview of a messaging model and its
notation, followed by our assumptions and the requirements
for fault-tolerant and real-time messaging. We then describe
temporal semantics for such messaging and prove sufficient
timing bounds to meet the specified requirements. We con-
clude the section with a discussion of how the timing bounds
may be applied to drive system behaviors, using different
system configurations as examples.

A. Overview and Notation

We consider a common publish-subscribe messaging model,
with publishers, subscribers, and brokers. Each publisher
registers for a set of topics, and for each topic it publishes
a message sporadically. A message is delivered via a broker
to each subscriber of the topic. We define two types of
brokers, according to their roles in fault tolerance. The broker
delivering messages to subscribers is called the Primary, while
another broker that backs up messages is called the Backup.
The Backup is promoted to become a new Primary should
the original Primary crash. The Primary and its respective
Backup are assumed to be mapped to separate hosts. Each
publisher has connection to both the Primary and the Backup,
and it always sends messages to the current Primary. Each
subscriber has connection to both, too. We use the term
message interchangeably with topic.

Let I be the set of topics associated with a publisher. For
each topic i ∈ I , messages are created sporadically with
minimum inter-creation time Ti, also called the period of
topic i. For each message, within the time span between its
creation at a publisher and its final delivery at the appropriate
subscriber, there are seven time points of interest (Fig. 2): tc
the message creation time at the publisher, tp the message
arrival time at the Primary, ts the message arrival time at
the subscriber, te the time at which the publisher deleted the
message it had retained, tr the time at which the Primary sent
a replica of the message to the Backup, tb the time the Backup

received the message replica, and td the time the Primary
dispatched the message to the subscriber. Let ∆PB = tp−tc be
the latency from the publisher to its broker, ∆BS = ts−td the
latency from the broker to the subscriber, and ∆BB = tb− tr
the latency from the broker to its Backup.

B. Assumptions and Requirements

This study assumes the following fault model. Each bro-
ker host is subject to processor crash failures with fail-stop
behavior, and a system is designed to tolerate one broker
failure. We choose to focus on tolerating broker failure, since
a broker must accommodate all message streams and is a
performance bottleneck. Common fault-tolerance strategies
such as active replication may be used to ensure the availability
of both publishers and subscribers. The Primary broker host
and the Backup broker host are within close proximity (e.g.,
connected via a switch). The clocks of all hosts are sufficiently
synchronized3, and between the Primary and the Backup there
are reliable inter-connects with bounded latency. Publishers are
proxies for a collection of IIoT devices, such as sensors, and
aggregate messages from them.

For each topic i, its subscriber has a specific loss-tolerance
requirement and latency requirement. A loss-tolerance require-
ment is specified as an integer Li ≥ 0, saying that the sub-
scriber can tolerate at most Li consecutive message losses for
topic i. We note that such loss tolerance is specified because
in common cyber-physical semantics (e.g., monitoring and
tracking), a small number of transient losses may be acceptable
as they can be compensated for, using estimates from previous
or subsequent messages. A latency requirement is specified
as an integer Di ≥ 0, defining a soft end-to-end latency
constraint [12] of topic i from publisher to subscriber. For
multiple subscribers of the same topic, we choose the highest
requirements among the subscribers. Finally, we assume that
each publisher can retain the Ni ≥ 0 latest messages that it
has sent to the Primary. During fault recovery, a publisher
will send all Ni retained messages to its Backup. Let x be
a publisher’s fail-over time, which is defined as an interval
beginning at a broker failure until the publisher has redirected
its messaging traffic to the Backup.

C. Temporal Semantics and Timing Bounds

As illustrated in Fig. 2, within the interval from tc to ts,
a message may be loss-tolerant because either (1) it has a
copy retained in the publisher (over time interval [tc, te]) or
(2) a replica of the message has been sent to the Backup (over
time interval [tb, ts]). Nevertheless, there could be a time gap
in between those intervals during which the message can be
lost, because the publisher has deleted its copy (e.g., due to a
limited IIoT device capacity) and a replica has not yet been
sent to the Backup (time interval (te, tb)). Let Rr

i = tr −
tp be the response time for a job that replicates message i
to the Backup, and Rd

i = td − tp the response time for a
job that dispatches message i to the subscriber. Depending on

3For example, via PTP [25] and/or NTP [26] protocols; see Section VI-A
for our experimental setup.
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the specifications of Li and Ni, there are constraints on the
response time of message dispatching and message replication.
In the following, we prove an upper bound on the worst-case
response time for replicating and dispatching, respectively.

Lemma 1. Let Dr
i be the relative deadline for a replicating

job for topic i. To ensure that the subscriber will never
experience more than Li consecutive losses of messages in
the topic, it is sufficient that

Rr
i ≤ Dr

i = (Ni + Li)Ti −∆PB −∆BB − x. (1)

Proof. Without loss of generality, we consider a series of
message creation times for topic i, as shown in Fig. 3. Adding
∆PB to each creation time, we have the release time of the
replicating job for each message. Suppose that the Primary
crashed at a certain time within (tk−1, tk]. We have two cases:

Case 1: Crash at a time within (tk−1, tk − x). In this
case, message ik will be sent to the Backup instead, since
the publisher has detected the crash of Primary. By definition,
the publisher would send the latest Ni messages to the Backup
once it detected failure of the Primary. Therefore, messages
ik−1, ik−2, ..., through ik−Ni

would be recovered and are
not considered lost. According to the requirement, topic i can
have no more than Li consecutive losses. Hence, message
ik−Ni−Li−1 had to be replicated to the Backup before the
Primary crashed, which means the response time of replicating
the message must be smaller than ((k− 1)− (k−Ni −Li −
1))Ti−∆PB−∆BB = (Ni+Li)Ti−∆PB−∆BB , supposing
that, in the worst case, the crash happened immediately after
the release of a replicating job for message ik−1.

Case 2: Crash at a time within [tk − x, tk]. In this case,
message ik will be lost and then recovered after the publisher
has detected the crash of the Primary. By definition, besides
ik, Ni−1 earlier messages will also be recovered. The earliest
message recovered by the publisher would be ik−(Ni−1). Sim-
ilar to Case 1, message ik−(Ni−1)−Li−1 had to be replicated
to the Backup before the Primary crashed, meaning that the
response time of replicating the message must be smaller than
(Ti−x)+((k−1)−(k−(Ni−1)−Li−1))Ti−∆PB−∆BB =
(Ni + Li)Ti −∆PB −∆BB − x.

Case 2 dominates, and hence the proof.

Lemma 2. Let Dd
i be the relative deadline for a dispatching

job for topic i. For the topic to meet its end-to-end deadline
Di, it is sufficient that

Rd
i ≤ Dd

i = Di −∆PB −∆BS . (2)

Proof. We prove by contradiction. Let r be the current amount
of time remaining before missing the end-to-end deadline,

TABLE 2
EXAMPLE TOPIC SPECIFICATIONS.

Topic Category Ti Di Li Ni Destination
0 50 50 0 2 Edge
1 50 50 3 0 Edge
2 100 100 0 1 Edge
3 100 100 3 0 Edge
4 100 100 ∞ 0 Edge
5 500 500 0 1 Cloud

and r = Di at message creation. When message i arrives
at the broker (time point tp), we have r = Di −∆PB . Now,
suppose that it would take longer than Di − ∆PB − ∆BS

before the dispatch of message i (time point tb). We will
then have r < (Di − ∆PB) − (Di − ∆PB − ∆BS), i.e.,
r < ∆BS . By definition, the latency [td, ts] is at least ∆BS ,
and therefore by the time the message reached the subscriber
(time point ts), we will have r < 0, i.e., a deadline miss. Thus,
Dd

i = Di−∆PB−∆BS is an upper bound on the worst-case
response time for dispatching message i.

D. Enabling Differentiated Processing and Configuration

In the following, we give five applications of the timing
bounds in Lemmas 1 and 2. We define deadlines for message
dispatching and replication using Equations (1) and (2), and
we schedule both activities using the Earliest Deadline First
(EDF) policy [12]. Further, we propose a heuristic based on the
fact that a dispatched message no longer needs to be replicated,
and we show where the heuristic is useful.

Proposition 1. (Selective Replication) It is sufficient to sup-
press the replication of topic i if a system can meet dead-
line Dd

i and
Dd

i ≤ Dr
i . (3)

Following Proposition 1 we have a condition to judge
whether there is a need for replication: x + ∆BB − ∆BS >
(Ni + Li)Ti −Di.

As an illustration, we consider an IIoT scenario [1], where
publishers are proxies for edge sensors, subscribers are either
within an edge (e.g., in close proximity to publishers and
brokers) or in a cloud (e.g., in AWS Elastic Compute Cloud
(EC2)), and brokers are in closer proximity to publishers than
to subscribers. We consider six categories of topic specifi-
cation, as shown in Table 2. Categories 0 and 1 represent
highly latency-sensitive topics (e.g., for emergency-response
applications), with zero- and three-message-loss tolerance,
respectively. Categories 2, 3, and 4 represent moderately
latency-sensitive topics (e.g., for monitoring applications),
with different levels of loss tolerance. Li = ∞ means that
all subscribers of the topic only ask for best-effort delivery.
Category 5 represents weakly latency-sensitive topics (e.g., for
logging applications), with zero-message-loss tolerance. The
fifth column shows the minimum value of Ni that ensures Dr

i

is non-negative.
1) Admission test: Lemmas 1 and 2 provide a simple

admission test: both Dr
i ≥ 0 and Dd

i ≥ 0 must hold for any
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Fig. 4. The FRAME Architecture.

topic i. For example, if we are to meet a fault-tolerance re-
quirement Li = 0 (i.e., zero message loss), Equation (1) shows
that we must enable publisher message retention. Otherwise,
the message will be lost should the Primary crash immediately
after a message arrival. In general, to satisfy Dr

i ≥ 0, it follows
that (1) if message period Ti is small, it then requires a larger
value of Ni +Li; and (2) a higher loss-tolerance requirement
(i.e., a smaller Li) requires a larger value of Ni.

2) Differentiating topics with heterogeneous latency
(Di) and loss-tolerance (Li) requirements: Applying Equa-
tions (1) and (2), we have the following order over Dr

i and Dd
i ,

assuming ∆BS = 1 for subscribers within an edge and
∆BS = 20 for subscribers in a cloud, ∆BB = 0.05, and
x = 50: {Dd

0 = Dd
1 < Dr

0 = Dr
2 < Dd

2 = Dd
3 = Dd

4 <
Dr

1 < Dr
3 < Dr

5 < Dd
5}, indexed by topic category. There is

no need for topic replication in category 4 since subscribers
only ask for best-effort delivery. Applying Proposition 1, we
can remove the need for replication in categories 0, 1, and 3,
and only need replication for categories 2 and 5. This lowers
system load and can help a system accommodate more topics.
We give empirical validation of this in Section VI.

3) Leveraging publisher message retention: While as-
suming the minimum admissible value of Ni for each category
allows one to study the most challenging case for a messaging
system to process such a topic set, the value of Ni in practice
may be tunable, for example, if a publisher is a proxy host
for a collection of devices. Also, a fault-tolerant system is
typically engineered with redundancies. Now, we increase the
value of Ni by one for categories 2 and 5. We will have
both Dd

2 < Dr
2 and Dd

5 < Dr
5, giving dispatching activities

a higher precedence. Applying Proposition 1, we may further
remove the need for replication in those categories as well.
In Section VI we will show the empirical benefit of such an
increase in publisher message retention.

4) Differentiating topics with latency requirements non-
equal to their periods: There can be messages that either
have Di < Ti or Di > Ti. Case Di < Ti applies to rare
but time-critical messages, such as for emergency notification.
In this case, without loss of generality we assume Ti = ∞
and Li = 0. The admissible value of Ni is greater-than-zero,

and Equation (3) suggests no need for replication as long as
message delivery can be made in time. Case Di > Ti applies
to messages with traveling time longer than their rate, such as
in multimedia streaming. In this case, Equation (3) suggests a
likely need for replication, unless ∆BS is small.

5) Differentiating edge-bound and cloud-bound traffic:
Traffic parameters within an edge and to a cloud are usually
of different orders of magnitude. While edge-bound traffic
periods may be tens of milliseconds, cloud-bound traffic
periods may be a sub-second or longer. For network latency,
we observed 0.5 ms round-trip time between a local broker
and a subscriber connected via a switch, and 44 ms round-trip
time between the broker and a subscriber in AWS EC2 cloud.
Lemmas 1 and 2 capture the relation between these parame-
ters. Cloud latency is less predictable, and we choose to use a
lower-bound of ∆BS , which can be obtained by measurement.
Proposition 1 ensures the same level of loss tolerance even if
at run-time there is an occasional increase in cloud latency.
A loss-tolerance guarantee would break if a system chose to
suppress a replication when it should not, but that will not
happen as we use a lower-bound of ∆BS . Although an under-
estimated cloud latency at run-time might delay the cloud
traffic (due to the use of EDF policy), edge computing clouds
do not have hard latency constraints. An over-estimation of
cloud latency could be undesirable, however, as it could both
preclude the use of selective replication and prematurely delay
other traffic.

IV. THE FRAME ARCHITECTURE

We now describe the FRAME architecture for differentiated
fault-tolerant real-time messaging. The key criteria are (1) to
meet both the fault-tolerant and real-time requirements for
each topic efficiently, and (2) to mitigate both latency penalties
during fault recovery and replication overhead during fault-
free operation. The FRAME architecture, shown in Fig. 4,
achieves both via (1) a configurable scheduling/recovery fa-
cility that differentiates message handling according to each
fault-tolerance and real-time requirement, and (2) a dispatch-
replicate coordination approach that tracks and prunes a valid
set of message copies and cancels unneeded operations.
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A. Configurable Scheduling/Recovery Facility

During initialization, FRAME takes an input configura-
tion and, accordingly, computes pseudo relative deadlines for
replication, Dr

i
′, and for dispatch, Dd

i
′, with Dr

i
′ = (Ni +

Li)Ti − ∆BB − x and Dd
i
′ = Di − ∆BS . The content of

the configuration includes values for Ni, Li, Ti, and Di,
per topic i, and values for x and ∆BS per subscriber. The
computed pseudo relative deadlines Dr

i
′ and Dd

i
′ are stored

in a module called the Message Proxy (see Fig. 4). At run-
time, for each message arrival, the Message Proxy first takes
the arriving message and copies it into a Message Buffer, and
then invokes its Job Generator along with a reference to the
message’s position in the Message Buffer. The Job Generator
then creates job(s) for message dispatching (replicating). The
Job Generator subtracts ∆PB from Dr

i
′ and Dd

i
′, obtaining

the relative deadlines Dr
i and Dd

i as defined in Lemmas 1
and 2, and then sets an absolute deadline for each dispatching
(replicating) job to tp + Dd

i (tp + Dr
i ). A replicating job will

not be created if Dd
i ≤ Dr

i , according to Proposition 1.
Scheduling of message delivery is performed using the EDF

policy. This is achieved by pushing jobs into a queue called
the EDF Job Queue, within which jobs are sorted according to
their deadlines. A Message Delivery module fetches a job from
the EDF Job Queue and delivers the message that the job refers
to, accordingly. A job for dispatching (replicating) is executed
by a Dispatcher (Replicator) in the module. A Dispatcher
pushes the message to a subscriber, and a Replicator pushes
a copy of the message to the Backup, where the message
copy will be stored in a Backup Buffer. For a topic subscribed
by multiple Subscribers, the Job Generator would create only
one dispatching (replicating) job for each message arrival. A
Dispatcher taking the job would push the message to each of
its subscribers.

Fault recovery is achieved as follows. The Backup tracks
the status of its Primary via periodic polling, and would
become a new Primary once it detected that its Primary had
crashed. Upon becoming the new Primary, the broker would
first dispatch a selected set of message copies in its Backup
Buffer. The dispatch procedure is the same as handling a new
message arrival, except that jobs now refer to the broker’s
Backup Buffer, not its Message Buffer, and ∆PB is increased
according to the arrival time of the message copy. Only those
message copies whose original copy have not been dispatched
will be selected for dispatch.

B. Dispatch-Replicate Coordination

During fault recovery, it would add both overhead to a
system and latency penalties to messages if we did not
differentiate message copies in the Backup Buffer. In FRAME,
differentiation is achieved by maintaining a dynamic set of
message copies in the Backup Buffer, and by skipping other
copies during fault recovery. To be specific, during fault-free
operation, once the Primary has dispatched a message, it will
(1) direct its Backup to prune the Backup Buffer for the topic,
and (2) cancel the pending job for the corresponding replica-
tion, if any. The coordination algorithm is given in Table 3.

TABLE 3
ALGORITHM FOR DISPATCH-REPLICATE COORDINATION.

Type of Operation Procedure
Dispatch 1. dispatch the message to the subscriber

2. set Dispatched to True
3. if Replicated is True, request the Backup to

set Discard to True
Replicate 1. if Dispatched is True, abort

2. replicate the message to the Backup
3. set Replicated to True

Recovery 1. if Discard is True, skip the message
(in the Backup) 2. create a dispatching job for the message

3. push the job into the EDF Job Queue
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Flags (Dispatched, Replicated, Discard) are associated with
each entry in the Message Buffer/Backup Buffer that keeps
a message copy; for each new message copy, all flags are
initialized to False. If a topic has multiple subscribers, the
Primary would set the Dispatched flag to true only after the
message has been dispatched to all the subscribers.

V. FRAME IMPLEMENTATION

We implemented the FRAME architecture within the TAO
real-time event service [9], where messages were encapsulated
in events, publishers and subscribers were implemented as
event suppliers and consumers, and each broker was im-
plemented within an event channel. Prior to our work, the
TAO real-time event service only supported simple event
correlations (logical conjunction and disjunction). In contrast,
FRAME enables differentiated processing according to the
specified latency and loss-tolerance requirements. An event
channel in the original TAO middleware contains five modules,
as shown in Fig. 5(a). Fig. 5(b) illustrates our implemen-
tation: we preserved the original interfaces of the Supplier
Proxies and the Consumer Proxies, and replaced the Subscrip-
tion & Filtering, Event Correlation, and Dispatch modules with
FRAME’s Message Proxy and Message Delivery modules.

We connected the Supplier Proxies to the Message Proxy
module by a hook method within the push method of the
Supplier Proxies module. The Message Delivery module deliv-
ers messages by invoking the push method of the Consumer
Proxies module. We implemented Dispatchers and Replica-
tors using a pool of generic threads, with the total number
of threads equal to three times the number of CPU cores.
We implemented FRAME’s EDF Job Queue using C++11’s
standard priority-queue, and used C++11’s standard chrono
time library to timestamp and compare deadlines to determine
message priority. The Message Buffer, Backup Buffer, and
Retention Buffer are all implemented as ring buffers.
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VI. EXPERIMENTAL RESULTS

We evaluate FRAME’s performance across three aspects:
(1) message loss-tolerance enforcement, (2) latency penalties
caused by fault recovery, and (3) end-to-end latency perfor-
mance. We adopted the specification shown in Table 2, with
ten topics each in categories 0 and 1, and five topics in
category 5. The timing values are in milliseconds. We evaluate
different levels of workload by increasing the number of topics
in categories 2–4. We chose to increase the workloads this way,
as in IIoT scenarios sensors often contribute to the majority of
the traffic load, and some losses are tolerable since lost data
may be estimated from previous or subsequent updates. The
payload size is 16 bytes per message of a topic. Publishers for
categories 0 and 1 were proxies of ten topics, publishers for
categories 2–4 were proxies of 50 topics, and each publisher
for category 5 published one topic. Each proxy sent messages
in a batch, one message per topic. The set of workloads we
have evaluated includes a total of 1525, 4525, 7525, 10525,
and 13525 topics, to cover a range of CPU utilization.

A. Experiment Setup

Our test-bed consists of seven hosts, as shown in Fig. 6:
One publisher host has an Intel Pentium Dual-Core 3.2 GHz
processor, running Ubuntu Linux with kernel v.3.19.0, and
another has an Intel Core i7-8700 4.6 GHz processor, running
Ubuntu Linux with kernel v.4.13.0; both broker hosts have
Intel i5-4590 3.3 GHz processors, running Ubuntu Linux
kernel v.4.15.0; one edge subscriber host has an Intel Pentium
Dual-Core 3.2 GHz processor, running Ubuntu Linux with
kernel v.3.13.0, and another has an Intel Core i7-8700 4.6 GHz
processor, running Ubuntu Linux with kernel v.4.13.0; the
cloud subscriber is a virtual machine instance in AWS EC2,
running Ubuntu Linux with kernel v.4.4.0. We connected all
local hosts via a Gigabit switch in a closed LAN. Both broker
hosts had two network interface controllers, and we used one
for local traffic and another for cloud traffic. In each broker
host, two CPU cores were dedicated for Message Delivery,
and one CPU core was dedicated for the Message Proxy.

We assigned real-time priority level 99 to all middleware
threads, and we disabled irqbalance [27]. We synchro-
nized our local hosts via PTPd4, an open source implemen-
tation of the PTP protocol [25]. The publisher hosts’ clock,
the edge subscriber hosts’ clock, and the Backup host’s clock
were synchronized to the clock of the Primary host, with
synchronization error within 0.05 milliseconds. The cloud
subscriber’s clock was synchronized to the Primary’s clock

4https://github.com/ptpd/ptpd

TABLE 4
SUCCESS RATE FOR LOSS-TOLERANCE REQUIREMENT (%).

Di Li FRAME+ FRAME FCFS FCFS-
Workload = 7525 Topics

50 0 100.0 100.0 0.0 100.0
50 3 100.0 100.0 0.0 100.0
100 0 100.0 100.0 0.0 100.0
100 3 100.0 100.0 0.0 100.0
100 ∞ 100.0 100.0 100.0 100.0
500 0 100.0 100.0 0.0 100.0

Workload = 10525 Topics
50 0 100.0 100.0 0.0 100.0
50 3 100.0 100.0 0.0 100.0
100 0 100.0 100.0 0.0 100.0
100 3 100.0 100.0 0.0 100.0
100 ∞ 100.0 100.0 100.0 100.0
500 0 100.0 100.0 0.0 100.0

Workload = 13525 Topics
50 0 100.0 80.0 ± 30.1 0.0 100.0
50 3 100.0 80.0 ± 30.1 0.0 100.0
100 0 100.0 73.2 ± 30.7 0.0 78.4 ± 13.3
100 3 100.0 79.3 ± 29.9 0.0 99.3 ± 0.5
100 ∞ 100.0 100.0 100.0 100.0
500 0 100.0 80.0 ± 30.1 0.0 100.0

using chrony5 that utilizes NTP [26], with synchronization
error in milliseconds. The latency measurement for ∆BS is
dominated by the communication latency to AWS EC2, which
was at least 20 milliseconds.

We compared four configurations: (1) FRAME;
(2) FRAME+, where we set Ni = 2 for categories 2
and 5, to evaluate publisher message retention; (3) FCFS
(First-Come-First-Serve), a baseline against FRAME, where
no differentiation is made and messages are handled in
their arrival orders; (4) FCFS-, which is FCFS without
dispatch-replicate coordination. In both FCFS and FCFS-, the
Primary first performed replication and then dispatch.

For each configuration we ran each test case ten times and
calculated the 95% confidence interval for each measurement.
We allowed 35 seconds for system initialization and warm-up.
The measuring phase spanned 60 seconds. We injected a crash
failure by sending signal SIGKILL to the Primary broker at
the 30th second, and studied the performance of failover to
the Backup. We also ran each test case without fault injection,
to obtain both end-to-end latency performance at fault-free
operation, and CPU usage in terms of utilization percentage,
for each module of the FRAME architecture.

B. Message Loss-Tolerance Enforcement

Table 4 shows the success rate of meeting loss-tolerance re-
quirements under increasing workload. All four configurations
had 100% success rate for 1525 and 4525 topics. FRAME
outperformed FCFS after the workload reached 7525 topics
and more, thanks to the selective replication of Proposition 1.
FRAME only performed the needed replications (topic cate-
gories 2 and 5) and suppressed the others (topic categories 0,
1, and 3), saving more than 50% in CPU utilization for the
Message Delivery module, compared with the result of FCFS

5https://help.ubuntu.com/lts/serverguide/NTP.html
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Fig. 7. CPU Utilization for Each Configuration.

for the case with 7525 topics (Fig. 7(a)). With FCFS, the
Primary was overloaded: the threads of the Message Delivery
module competed for the EDF Job Queue, and the thread of the
Message Proxy module was kept blocked (implied in Fig. 7(b))
each time it created jobs from arrivals of message batches.

To evaluate publisher message retention, we compared
FRAME with FRAME+. Leveraging Proposition 1, with
FRAME+ the Primary did not perform any replication to its
Backup, and loss tolerance was solely performed by publisher
re-sending the retained messages. As shown in Table 4,
FRAME+ met all loss-tolerance requirements in every case.
Further, the replication removal saved CPU usage in the
Primary broker host (Fig. 7(a)). The replication removal also
saved CPU usage in the Backup broker host (Fig. 7(c)),
because the Primary would send less traffic to it.

To evaluate the impact of dispatch-replicate coordination,
we compared FCFS with FCFS-. FCFS- outperformed FCFS
in loss-tolerance performance (Table 4), because with FCFS-
the Primary may replicate and deliver messages sooner since it
did not coordinate with the Backup. But that way the Primary
would miss opportunities to preclude latency penalties caused
by fault recovery. We evaluate this in the next subsection.

We further conducted a micro-benchmark to show that
FRAME can keep the same level of loss tolerance despite
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Fig. 8. Value of ∆BS for a topic in category 5 through a 24-hour duration.

cloud latency variation. We ran the workload of 7525 topics
non-stop for 24 hours, using the FRAME configuration, and
we measured the run-time value of ∆BS for a topic in category
5 (Fig. 8)6. The setup value of ∆BS for Dd

5 was 20.7 ms,
which was the minimum value from an one-hour test run. As
a result, we observed no message loss throughout the 24 hours,
despite changes in the value of ∆BS .

C. Latency Penalties Caused by Fault Recovery

We evaluate the latency penalties in terms of the peak
message latency following a crash failure. We set the size of
the Backup Buffer to ten for each topic. Under the workload
of 1525 topics, all four configurations performed well, and at
higher workloads both FRAME and FRAME+ outperformed
FCFS and FCFS-. In the following, we evaluate a series of
end-to-end latency results under the workload of 7525 topics.
We only show results of distinct messages, differentiated by
their sequence numbers. Duplicated messages were discarded.
The result is shown in Fig. 9 with each column presenting
four configurations for a topic category.

In general, without dispatch-replicate coordination (demon-
strated by FCFS-), the number of messages affected by fault
recovery is lower-bounded by the size of the Backup Buffer,
since at run-time steady state the Backup Buffer is full,
and during fault recovery new message arrivals may need
to wait. With the proposed dispatch-replicate coordination
(demonstrated by FRAME+, FRAME, and FCFS), the amount
of work is decoupled from the buffer size and is instead equal
to the number of messages whose original copy has not yet
been dispatched.

Both FRAME and FRAME+ met the loss-tolerance require-
ments (zero message loss); for FRAME, although the Primary
did replication, the Backup Buffer was empty at the time
of fault recovery (all pruned), suggesting the effectiveness of
dispatch-replicate coordination; for FRAME+, the Primary did
no replication according to Proposition 1. FRAME+ success-
fully recovered one message for each of categories 0 and 2
by publishers re-sending their retained message copies. The
latency of FRAME+ during fault recovery was higher than
that of FRAME, because with FRAME+ the Backup would

6The +104 ms latency spike occurred at around 8am on Thursday.
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Fig. 9. End-to-end latency of a topic before, upon, and after fault recovery.

process one additional message copy per topic in categories 2
and 5, and that caused delay.

For FCFS, the system was overloaded, messages were
delayed (latency > 10 seconds) and many of them were lost:
206 losses for a topic in category 0, 103 losses for a topic
in category 2, and 20 losses for a topic in category 5. We
observed that dispatch-replication coordination was in effect,
as the Backup Buffer for those topics was empty at the time of
fault recovery. After switching to the Backup, message latency
sharply dropped. For example, for topic category 2 (Fig. 9(b)),
the Backup began processing at the 240th message.

For FCFS-, we observed that the Backup Buffer was full
at the time of fault recovery, because there was no dispatch-
replicate coordination. Therefore, there were large latency
penalties since the Backup needed to process all message
copies in the Backup Buffer. For example, shown in Fig. 9(b),
FCFS- had a peak latency above 500 ms, which was about
400 ms longer than the deadline. In contrast, FRAME had a
peak latency below 50 ms. The latency prior to the Primary
crash was low, because FCFS-, like FRAME and unlike
FCFS, did not overload the system (Fig. 7(a)). Finally, we
note that while FCFS- processed messages in the Backup
Buffer and caused great latency penalties, those messages were
all out-dated and unnecessary, and all the needed messages
were actually recovered by publishers re-sending their retained
copies; for the topic in category 5, there was no message loss

using FCFS- and the publisher re-sending was unnecessary,
and the two latency spikes were due to overhead in processing
unneeded copies (Fig. 9(c)).

D. Latency Performance During Fault-Free Operation
In addition to fault tolerance, it is critical that a system

performs well during fault-free operation. Good fault-free per-
formance implies an efficient fault-tolerance approach. Table 5
shows the success rate for meeting latency requirement Di.
All configurations performed well, except for FCFS at higher
workloads, in which cases the system was overloaded as
discussed in Section VI-B. This suggests that both the archi-
tecture and implementation are efficient, as even the FCFS
configuration performed well as long as the system was not
yet overloaded.
E. Key Lessons Learned

Here we summarize four key observations:
1) Applying replication removal as suggested by Proposi-

tion 1 can help a system accommodate more topics while
reducing CPU utilization (FRAME v.s. FCFS).

2) Pruning backup messages can reduce latency penalties
caused by fault recovery at a cost of nontrivial overhead
during fault-free operation (FCFS v.s. FCFS-).

3) Following the first two lessons, combining replication
removal and pruning can achieve better performance
both at fault recovery and during fault-free operation
(FRAME v.s. FCFS-).
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TABLE 5
SUCCESS RATE FOR LATENCY REQUIREMENT (%).

Di Li FRAME+ FRAME FCFS FCFS- FRAME+ FRAME FCFS FCFS-
Workload = 4525 Topics Workload = 10525 Topics

50 0 100.0 99.9 ± 2.5E-2 99.9 ± 5.0E-2 100.0 100.0 99.9 ± 5.7E-2 0.2 ± 5.3E-2 99.8 ± 8.1E-2
50 3 100.0 99.9 ± 3.0E-2 99.9 ± 4.1E-2 100.0 100.0 99.9 ± 5.6E-2 0.2 ± 5.5E-2 99.8 ± 6.8E-2
100 0 100.0 100.0 100.0 100.0 99.9 ± 5.4E-2 99.9 ± 4.0E-2 7.2E-2 ± 0.1 99.9 ± 3.1E-2
100 3 100.0 100.0 99.9 ± 1.1E-3 100.0 99.9 ± 5.2E-2 99.9 ± 3.9E-2 7.2E-2 ± 0.1 99.9 ± 2.9E-2
100 ∞ 100.0 100.0 99.9 ± 1.9E-3 100.0 99.9 ± 5.0E-2 99.9 ± 4.3E-2 6.9E-2 ± 0.1 99.9 ± 3.1E-2
500 0 100.0 100.0 100.0 100.0 100.0 100.0 0.0 100.0

Workload = 7525 Topics Workload = 13525 Topics
50 0 100.0 99.9 ± 4.4E-2 0.2 ± 0.1 99.9 ± 4.2E-2 98.4 ± 2.9 85.4 ± 21.7 0.1 ± 0.1 99.4 ± 3.6E-1
50 3 100.0 99.9 ± 3.9E-2 0.2 ± 0.1 99.9 ± 6.3E-2 98.4 ± 2.9 85.3 ± 21.7 0.2 ± 0.2 99.5 ± 2.3E-1
100 0 100.0 99.9 ± 8.8E-3 0.0 99.9 ± 1.4E-2 97.6 ± 4.4 83.7 ± 21.9 2.6E-4 ± 6.0E-4 98.3 ± 1.0
100 3 100.0 99.9 ± 5.6E-3 0.0 99.9 ± 1.3E-2 97.6 ± 4.4 83.8 ± 21.9 9.9E-4 ± 2.2E-3 98.3 ± 1.1
100 ∞ 100.0 99.9 ± 9.2E-3 0.0 99.9 ± 1.5E-2 97.6 ± 4.4 83.8 ± 21.9 6.6E-4 ± 1.5E-3 98.3 ± 1.1
500 0 100.0 100.0 0.0 100.0 98.6 ± 2.8 86.1 ± 21.8 0.0 100.0
Note: 100% success rate for all with 1525 topics.

4) Allowing a small increase in the level of publisher
message retention can enable large replication removal
and greatly improve efficiency (FRAME v.s. FRAME+).

VII. CONCLUSIONS

We introduced a new fault-tolerant real-time edge comput-
ing model and illustrated that the proved timing bounds can aid
in requirement differentiation. We then introduced the FRAME
architecture and its implementation. Empirical results suggest
that FRAME is performant both in fault-tolerant and fault-free
operation. Finally, we demonstrated in an IIoT scenario that
FRAME can keep the same level of message-loss tolerance
despite varied cloud latency, and we show that a small increase
in publisher message retention can both improve loss-tolerance
performance and reduce CPU usage.
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