Data Science and Communication in Smart Cities Day 1: Smart Cities & Data Communication

Chao Wang

Networked Cyber-Physical Systems Laboratory Department of Computer Science and Information Engineering National Taiwan Normal University

July 23, 2024

NATIONAL TAIWAN NORMAL UNIVERSITY

Outline

Introduction to data communication

• Quick exercise

2 Smart cities and data communication

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

э

Basic concepts of data communication

- Purpose: bring information from one location to another
- Why?
 - Sensing: collect needed information both from environment and from machines/users therein
 - Actuating: send control command to machines and/or users
 - Logging: exchange operation information between machines
 - Notification: let people know that something has happened or is going to happen (e.g., incoming seismic wave)
- Data communication is an inherent part of the technologies that enable smart city applications. Software-hardware design and implementation for data communication is part of the critical infrastructure of any smart city.

Data communication models

• A model is a description of

- some specific properties of the subject we have interest in, and
- a how those properties drive the behavior of the subject.
- Modeling the semantics of data communication applications
 - One-to-one (unicast)
 - One-to-all (broadcast); all-to-one
 - One-to-some (multicast); some-to-one
- Modeling the service for data communication pairs
 - Direct communication
 - Broker-based communication

Quick exercise

Match the following application scenarios and models:

- Application scenarios
 - City residents want to receive air-quality reports in their living area
 - 2 City governer want to dim street light when there is no pedestrian
 - Oity visitors want to find parking spots during their travel
- Models
 - one-to-all data communication (broadcast)
 - 2 one-to-some data communication (multicast)
 - In the service of the service of
 - Inter-based service

< □ > < 同 > < 回 > < 回 > < 回 >

Data communication requirements

- Functionalities
- Performance
 - dependability
 - scalability
 - sustainability
 - cybersecurity
 - quality-of-service (QoS)
 - timeliness
 - fault tolerance
 - user privacy
 - interoberability

Data communication challenges

- One challenge: how to meet the requirements?
- Some examples
 - Scalability: how would a data communication infrastructure support city-scale volume of data transport?
 - Sustainability: how would we make the insrastructure energy-efficient and easy-to-maintain?
 - Timeliness: how would the infrastructure ensure that data items are delivered before some specified deadline?
 - User privacy and cybersecurity: how would the infrastructure protect sensitive data from leaking or tampering?
 - Interoperability: how would different machines, devices, and people exchange information over different networks (Wi-Fi, 5G, Bluetooth, Zigbee, LoRa, etc.)?

✓ □ ▶ < 個 ▶ < ≣ ▶ < ≣ ▶
July 23, 2024

A survey for smart city applications

- Wolniak, Radosław, and Kinga Stecuła. "Artificial Intelligence in Smart Cities—Applications, Barriers, and Future Directions: A Review." Smart Cities 7.3 (2024): 1346-1389. (link to the paper)
 - A survey paper based on 157 articles published in 2021-2024.
- Six aspects:
 - Smart governance
 - Smart economy
 - Smart mobility ← our focus for now
 - Smart environment
 - Smart living
 - Smart people

Example: smart mobility in modern cities

- Objective: provide safe and convenient means to move about in a city
- Inter-related applications
 - Personalized route recommendation
 - Ride/bike-sharing
 - Smart parking solutions
 - Traffic orchestration
 - Public transportation infrastructure maintenance
 - Internet of Vehicles
- Roles of data communication
 - Large-scale data collection (context)
 - Cloud-edge data transport (integration)
 - On-demand event notification (usability)
 - Emergency response (safety)
 - Data communication for human and Al (co-pilot)

Smart mobility potentials illustration

10 / 10