topological surface🚧
manifold(topological surface)
「流形」。伸縮自在的表面。
set peoperty 1. closed/closure: only 1 connect component (and contain limit point) 2. bounded/boundary: cannot reach infinite 3. compact: closed + bounded orientation: 1. mobius band 2. klein bottle https://en.wikipedia.org/wiki/File:Flatsurfaces.svg genus: 1. shpere = 0 2. torus = 1 embedding: drawing
gauss map / turning number / total curvature 法向量畫到圓上,看看繞幾圈 封閉曲線的繞行角度一定是2π的整數倍 gauss-bonnet theorem 1. closed curve ∫Ω κ ds = 2π k 2. closed surface ∫ᴍ K dA = 2π χ(M) where χ(M) = 2 - 2g 表面的高斯曲率總和
fundamental group
1. fundamental group: basis of all cycles through a point 2. homotopy group: fundamental group generalization 3. homology group: non-degenerated cycles under homotopy??? 4. #(fundamental group) = 2g
tree-cotree decomposition [Eppstein 03] spanning tree on planar graph / fundamental cycle basis 1. spanning tree T in primal graph 2. spanning cotree T* in dual graph (not cross edges of T) 3. for any edge not contained in T and not crossed by T*, follow both of its vertices to the root T, a fundaemental cycle. Euler characteristic χ = V - E + F = 2 - 2g spanning tree T: V-1 edges spanning cotree T*: F-1 edges remaining edges: E - (V-1) - (F-1) = -(2 - 2g) + 2 = 2g
orbifold
orbifold / orientation http://geometry.cs.cmu.edu/ddgshortcourse/AMSShortCourseDDG2018_DiscreteMappings.pdf
surface transformation🚧
function
函數是「對應」與「變換」兩種概念的結合。
對應。mapping。
數量:one-to-one, many-to-one, one-to-many 其中one-to-one又叫做injective 範圍:into, onto 其中onto又叫做surjective 方向:invertible = one-to-one + onto 其中invertible又叫做bijective = injective + surjective
變換。transformation。
鄰居:continuous 柔順:differentiable 量級:analytic
輸入輸出。
相同相異:self-mapping, non-self-mapping 其中self-mapping又叫做autojective 宏觀微觀:global, local 其中global經常省略不寫
function of manifold
可以想成是引入了子空間。函數的輸出輸入是子空間。
流形的函數。由於流形本身是函數,所以這其實是泛函數。
對應。mapping。
態射morphism = continuous 同胚homeomophism = bijective and continuous = bicontinuous 微分同胚diffeomorphism = bijective and differentiable and continuous https://math.stackexchange.com/questions/1672786/
變換。transformation。
同倫homotopy = continuous 同痕isotopy = bijective and continuous (volumn preserving) 可微同痕differentiable isotopy = bijective and differentiable and continuous https://math.stackexchange.com/questions/296170/
local
locally continuous injective is locally continuous bijective? locally homeomoprhism is locally continuous and locally bijective. locally bijective homeomorphism is globally bijective homeomorphism.
differentiable manifold
流形本身是函數,可以微分得到切面。
derivative = Jacobian immersion = 輸出入先做derivative, the new mapping everywhere is injective submersion = 輸出入先做derivative, the new mapping everywhere is surjective
harmonic manifold
local bijection iff det(jacobian) > 0 everywhere global bijection & convex iff coordinate is non-negative everywhere (diffeomorphism: X->Y is harmonic and Y is convex)
surface transformation🚧
deformation(topology-preserving transformation)
改變物體形狀,符合真實情況。
目前沒有定論!大致能想到的有:
不斷裂:continuous 可逆不斷裂:bicontinuous 不重疊:injective 可逆不重疊:可逆不斷裂即滿足可逆不重疊 不打結:regular homotopy 可逆不打結:regular isotopy 不鏡射:right-handed? 可逆不鏡射:可逆不打結即滿足可逆不鏡射?
這些主題,目前依然存在許多謎題。靠你了。
不斷裂不重疊(continuous injective)
一維:嚴格單調。高維:性質尚待解明。
一、連續函數的情況下: 一維:單射=嚴格單調 高維:單射=高維嚴格單調=任意截面都是嚴格單調? 二、連續自射函數的情況下: 一維:單射=雙射=嚴格單調 高維:單射=雙射=高維嚴格單調=任意截面都是嚴格單調?
continuous injective = continuous strictly monotone https://math.stackexchange.com/questions/279672/ https://math.stackexchange.com/questions/170147/ continuous injective self-mapping = continuous bijective https://mathoverflow.net/questions/273632/ https://math.stackexchange.com/questions/541082/
可微的情況下,可以引入斜率、梯度。
三、連續可微函數的情況下: 一維:單射=嚴格單調=處處斜率為正數、或者處處斜率為負數 高維:單射=高維嚴格單調=無奇點的和諧函數? 四、連續可微自射函數的情況下: 一維:單射=雙射=嚴格單調=斜率處處正數或者處處負數 高維:單射=雙射=高維嚴格單調=無奇點的和諧函數?
continuous differentiable bijective = harmonic without singular point (?) https://math.stackexchange.com/questions/61099/
不斷裂不重疊不鏡射(continuous injective nonreflective)
一維:嚴格遞增。高維:不知為何?
必須定義方位,才能定義鏡射。要求不斷裂不重疊,就能定義方位,就能定義鏡射?
局部不斷裂(locally continuous)
只看局部,又是另一套數學系統。
locally continuous:拓樸 locally differentiable:反函數定理
局部不斷裂,有可能局部重疊,例如扭捏重疊。
局部不斷裂不重疊(locally continuous injective)
局部不斷裂不重疊,但是全域可能重疊,例如螺旋重疊。
延伸閱讀:local everywhere vs. global
「局部處處」與「全域」之間,已經發現許多關聯,也依然存在許多謎題。數學家目前只知道單向結論:
四、連續可微自射函數的情況下: 高維:處處梯度可逆、且函數邊界數值趨近無限,導致全域雙射。 高維:處處梯度正定∇F≻0,導致全域單射。 高維:處處梯度對稱正定∇F=∇Fᵀ≻0,導致全域雙射。 高維:處處梯度行列式恆正det(∇F)>0,導致全域雙射?
∇F is locally bijective everywhere and boundary(F) approaches ±∞ ⇒ globally bijective https://math.stackexchange.com/questions/41551/ ∇F is locally positive-definite everywhere ⇒ globally injective https://math.stackexchange.com/questions/1820156/ https://math.stackexchange.com/questions/1372692/ ∇F is locally symmetric positive-definite everywhere ⇒ globally bijective https://math.stackexchange.com/questions/2874445/
knot🚧
knot
repulsive curves https://www.cs.cmu.edu/~kmcrane/
UVa 1624