多項式的四則運算,基本上就是將同類項合併
假設f(x) = an x^n + ... + a1x +a0
g(x) = bm x^m + ... + b1x +b0 ,n > m or n = m
則:
(1) f(x) + g(x) = ( an + bn ) x^n + ... + ( a1 + b1 ) x +( a0 + b0 )
(2) f(x) + g(x) = ( an - bn ) x^n + ... + ( a1 - b1 ) x +( a0 - b0 )
例:
(1) ( 3x + 8 ) + ( 7x - 5 ) = 10x + 3
(2) ( 3x + 2y - 4 ) + ( x - 5y + 2 ) = 4x - 3y - 2
(3) ( 3x + 8 ) - ( 7x - 5 ) = -4x + 13
(4) ( 3x + 2y - 4 ) - ( x - 5y + 2 ) = 2x - 8y - 6
假設f(x) = an x^n + ... + a1x +a0
g(x) = bm x^m + ... + b1x +b0 ,n > m or n = m
則:
(1) f(x) x g(x) = ( an bm ) x^(n+m) + ... + ( a1 b0 + a0 b1 ) x +( a0 b0 )
例:
(1) ( 3x + 8 )( 7x - 5 ) = 21x^2 + 41x - 40
(2) ( 3x + 2y - 4 )( x - 5y + 2 ) = 3x^2 -13xy -10y^2 +2x +24y -8
假設f(x) = an x^n + ... + a1x +a0
g(x) = bm x^m + ... + b1x +b0 ,n > m or n = m
則:
(1) f(x) / g(x) = ( an / bm ) x^(n-m) + ...
例:
(1) ( 2x^3 - 3x^2 + 7x +5 ) / ( x^2 - x - 1 ) = 2x -1 ... ... 8x + 4
其中,2x -1 為商式,8x + 4 為餘式
(2) ( 7x^2 + 8x -11 ) / ( x - 1 ) = 7x + 15 ... ... 4
其中,7x + 15 為商式,4 為餘式
假設f(x) = an x^n + ... + a1x +a0
f( 1 ) = an + ... + a1+ a0
f( 0 ) = a0
( f( 1 ) +f( -1 ) ) / 2 = a0 + a2 + a4 + ...
( f( 1 ) -f( -1 ) ) / 2 = a1 + a3 + a5 + ...