三角函數的圖形
在這一節裡,我們將引進角的另一種度量單位,以便把三角函數看作實數間的對應關係,並在座標平面上描繪其圖型,研究這些函數的特性。
弧度
讓我們先來回顧一下,我們是怎麼量出∠ABC是多少度的?
                                                                                                                                                

由於角的大小完全由其兩邊張開的程度來決定,與其兩邊的長度是無關的。
以任意長γ為半徑畫一圓O,將其圓周等分為360格,那麼每一格的弧所對的圓心角就是1°,一個圓周角就是360°。
如果我們將∠ABC的頂點B放在圓心O上,並設其兩邊 與
與 (或其延長線)分別與圓O交於P與Q點,那麼∠ABC的度數及等於∠POQ的度數,
(或其延長線)分別與圓O交於P與Q點,那麼∠ABC的度數及等於∠POQ的度數,
且 ,因此∠ABC=∠POQ=
,因此∠ABC=∠POQ=
(1)由於圓O的周長為 ,故∠ABC=∠POQ=
,故∠ABC=∠POQ=
 。在上式中,
。在上式中, 為一常數,我們規定此常數
為一常數,我們規定此常數 為一弧度。亦即360°=
為一弧度。亦即360°=
 弧度。
弧度。
因此,1°=
 弧度,故有
弧度,故有
|            
		( 
 | 
由(1)式可得
         (2)   
∠POQ=
 弧度
弧度
根據(2)式可得
| ∠POQ=1弧度的意思即PQ的弧長=圓O的半徑 
 | 
扇形的弧長與面積
由以上討論,我們知道:若圓O的半徑為r,P與Q為圓周上兩點,則∠POQ=
 弧度。
弧度。
由此可知:
| 若圓心角∠POQ=θ弧度,則PQ的弧長=rθ 
 | 
設∠POQ=θ弧度,則PQ的弧長為rθ,因此PQ的弧長為圓O周長之比 ,
,
故扇形POQ面積=
 ×圓O的面積=
×圓O的面積=
 π
π =
=

因此我們有
| 若∠POQ=θ弧度,則扇形POQ面積= 
 | 
要特別注意:當我們用弧度為單位表示依角的大小時,習慣上常把〝弧度〞兩字省略不寫。
要注意:sinπ°不可簡記為sinπ,因為根據習慣表示法,sinπ的意思是sin(π弧度),亦即為sin180°,而非sinπ°。
三角函數的圖形及其特性
正弦函數的圖形及其特性
描繪函數圖形最直接的方法就是描點法:先求出某些特殊的 值,並列表如下:
值,並列表如下:
| 
		
		 | … | 
		- | 
		- | 0 | 
		
		 | 
		
		 | 
		
		 | 
		
		 | … 
 
 | 
| 
		
		 | … | 
		- | 
		- | 0 | 
		
		 | 
		
		 | 
		
		 | 
		
		 | … 
 
 | 
在依此標出其上的一些點,然後依次用平滑曲線將這些點連起來。

函數的週期
一個函數 的圖形若每隔一固定單位長都一樣,亦即可找到固定的正數a,
的圖形若每隔一固定單位長都一樣,亦即可找到固定的正數a,
使得對於其定義域中每一元素 ,恆有
,恆有 ,
,
我們就稱這個函數為一週期函數。如果又可找到滿足上述性質的最小正數 ,我們就說這個週期函數的週期為
,我們就說這個週期函數的週期為 。
。
由於對於任意實數 ,我們恆有
,我們恆有 ,而且
,而且 又滿足這個性質的最小正數,所以正弦函數
又滿足這個性質的最小正數,所以正弦函數 是一週期函數,他的週期為
是一週期函數,他的週期為 。
。
正弦函數的特性
(1)正弦函數 的定義域為
的定義域為
(2)正弦函數 的值域為
的值域為
 |-1
|-1
(3)正弦函數的週期為
餘弦函數的圖形及其特性
我們同樣可以用描點法描繪 的圖形,因為對於任意實數
的圖形,因為對於任意實數 ,恆有
,恆有 ,
,
所以將正弦函數 的圖形向右平移
的圖形向右平移 單位,即可畫出
單位,即可畫出 的圖形。
的圖形。
                       

餘弦函數的特性
(1)餘弦函數 的定義域為
的定義域為
(2)餘弦函數 的值域為
的值域為
 |-1
|-1
(3)餘弦函數的週期為
正切函數的圖形與特性
使用描點法描繪正切函數 的圖形時,因為對於任意實數x,恆有
的圖形時,因為對於任意實數x,恆有 ,
,
所以我們只要描繪區間 <x<
<x< 上正切函數
上正切函數 的圖形,然後逐次向右或向左平移π單位,即可得出
的圖形,然後逐次向右或向左平移π單位,即可得出 的全部圖形。
的全部圖形。
(注意: 時,
時, 是無意義的)
是無意義的)

正切函數的特性
(1)只有當 …時,
…時, 無意義;對於其他的實數x,
無意義;對於其他的實數x, 的值都可確定,因此正切函數
的值都可確定,因此正切函數 的定義域為
的定義域為 x∣
x∣ ≠
≠ ,
,
 。
。
(2) 
正切函數 的值域為R
的值域為R
(3)正切函數的週期為
餘切函數的圖形與特性
因為對於任意實數 ≠
≠ ,恆有
,恆有 ,
,
所以我們只要將正切函數 的圖形向左平移
的圖形向左平移 單位,再將所得的圖形對
單位,再將所得的圖形對 軸鏡射,
軸鏡射,
即得餘切函數 的全部圖形:
的全部圖形:
                       
餘切函數的特性
(1)只有當 ,
, …時,
…時, 無意義,因此餘切函數
無意義,因此餘切函數 的定義域為
的定義域為 x∣
x∣ ≠
≠ ,
,
 。
。
(2) 
餘切函數 的值域為R
的值域為R
(3)餘切函數的週期為
正割函數的圖形與特性
由倒數關係知道:當 ≠0時,
≠0時, 。
。
因此由餘弦函數的圖形,約略可得到正割函數的圖形。
            

正割函數的特性
(1)正割函數 的定義域為
的定義域為 x∣
x∣ ≠
≠ ,
,
 。
。
(2) 
正割函數的週期為
(3)正割函數的值域為 ∣
∣
餘割函數的圖形與特性
因為對於任意實數 ,
, ≠
≠ ,
, ,恆有
,恆有 ,
,
所以只要將正割函數的圖形向右平移 單位,即得餘割函數的全部圖形。
單位,即得餘割函數的全部圖形。

餘割函數的特性
(1)餘割函數 的定義域為
的定義域為 x∣
x∣ ≠
≠ ,
,
 。
。
(2)餘割函數 的週期為
的週期為
(3)餘割函數的值域為 ∣
∣ 或
或
