Introduction to Evolutionary Multiobjective Optimization (EMO)

Tsung-Che Chiang
Department of Computer Science and Information Engineering
National Taiwan Normal University

2009.11.18

Outline

- Multiobjective optimization (MO)
- Evolutionary algorithms (EA)
- Three styles of MOEAs
- Research directions
- Summary
Multiobjective Optimization

- **Significance**
 - One of the four fastest growing areas in the field of Computational Intelligence in WCCI06
 - MOEA-dedicated conferences and special sessions
 - International Conference on Evolutionary Multi-criterion Optimization (EMO)
 - Special sessions in CEC & GECCO
 - Special issues for EMO in flagship journals

Multiobjective Optimization

- Multiobjective optimization problem (MOOP)

\[
\begin{align*}
\text{Minimize/Maximize } & f_m(x), & m = 1, 2, \ldots, M; \\
\text{subject to } & g_j(x) \geq 0, & j = 1, 2, \ldots, J; \\
& h_k(x) = 0, & k = 1, 2, \ldots, K; \\
& x_i^{(L)} \leq x_i \leq x_i^{(U)}, & i = 1, 2, \ldots, n.
\end{align*}
\]
Multiobjective Optimization

- An example:
 Finding a way to move from Taipei to Kaohsiung

```
又要馬兒跑，又要馬兒不吃草
魚與熊掌難以兼得
```

Multiobjective Optimization

- The difficulty of MO: the concerned objectives are usually conflicting.

```
又要馬兒跑，又要馬兒不吃草
魚與熊掌難以兼得
```
Multiobjective Optimization

- **Methods** to solve MOOP
 - A priori
 - A posteriori
 - Interactive

Multiobjective Optimization

- A priori methods vs. a posteriori methods

[Diagram showing a priori and a posteriori methods with aggregation function, optimization order, single solution, and Pareto optimal set.]
Multiobjective Optimization

- A priori method - Aggregation

\[
\text{minimize } \sum_{i=1}^{k} w_i f_i(x)
\]

\[w = (0, 1)\]

\[w = (1, 0)\]

Multiobjective Optimization

- A priori method - Lexicographical ordering

\[f_2 \rightarrow f_1\]

\[f_1 \rightarrow f_2\]

\[f_2 \rightarrow f_1\]
Multiobjective Optimization

- A posteriori method

\[x_i \text{ dominates } x_j \iff \]

1. \(x_i \) is not worse than \(x_j \) for all objectives, and
2. \(x_i \) is better than \(x_j \) for at least one objective.

![Graph showing Pareto front and dominance]

Assume minimization of both objectives

Multiobjective Optimization

- Disadvantages of a priori methods
 - It is difficult to give the preference information in advance.
 - The decision maker needs to adjust the preference to obtain alternative solutions. It is hard and laboring.
 - The condition becomes harder when there are multiple decision makers.
Multiobjective Optimization

- Goal of a posteriori methods

- Proximity

- Distribution

Performance metrics (single focus)

- Number of fronts
- Generational distance (GD)
- Spacing (SP)

\[GD(P^*, P) = \sum_{x \in F} d(x, P^*) \]

\[SP = \sqrt{\frac{1}{n-1} \sum_{i=1}^{n} (d - d_i)^2} \]

\[d_i = \min_j \left(\sum_{m=1}^{n} |f_m^i - f_m^j| \right) \]
Multiobjective Optimization

- **Performance metrics** (multi-focus)
 - Inverted Generational Distance (IGD)
 - Hypervolume
 - Epsilon indicator

\[
IGD(P^*, P) = \frac{\sum_{v \in P} d(v, P)}{|P^*|}
\]

\[
I_e(P, P^*) = \max_{u \in P} \min_{v \in P^*} \frac{f(u)}{f(v)}
\]

- **Popular benchmark problems**
 - Continuous functions
 - Knapsack
 - Permutation flow shop scheduling
Evolutionary Algorithms

- EAs are algorithms imitating the natural evolutionary process.

- EAs are
 - iterative (not constructive)
 - approximate (not always optimal)
 - nondeterministic
 - not problem-specific

Flow of EA

```
```

next generation

Stop? Y N

Final Population
Evolutionary Algorithms

- EA for optimization (an clustering example)

1. Initial Population
2. Evaluation
3. Mating selection
4. Reproduction
5. Evaluation
6. Environmental selection

Stop?

next generation

Final Population

"Introduction to EMO," talk@ee.ntu, 2009.11.18
Three Types of MOEAs

In the following, three types of MOEAs will be introduced:
- Pareto dominance-based
- Performance metric-based
- Aggregation-based

Pareto dominance-based MOEAs

NSGA-II (Deb et al., 2002)
- Pareto ranking

Crowding distance
- \(\text{dist}(\star) > \text{dist}(\bullet) \) (\(\bullet \) is better)
Pareto dominance-based MOEAs

- **NSGA-II** (Deb et al., 2002)

 Non-dominated sorting

 \[P_t \]

 \[Q_t \]

 \[R_t \]

 Crowding distance sorting

 \[F_1 \]

 \[F_2 \]

 \[P_{t+1} \]

 Rejected

Pareto dominance-based MOEAs

- **SPEA2** (Zitzler et al., 2001)

 - Raw fitness assignment \(R(i) \)
Pareto dominance-based MOEAs

- **SPEA2** (Zitzler et al., 2001)
 - Density estimation
 \[d(i) = \text{the } k^{\text{th}} \text{ smallest distance from } i \text{ to the others} \]
 \[D(i) = 1/(d(i)+2) \]
 - Fitness
 \[F(i) = R(i) + D(i) \]
 (The smaller the better)

Performance metric-based MOEAs

- **Key Idea**
 - Use the concerned performance metric directly in fitness assignment.
 - The fitness of a solution depends on its contribution to the performance metric.
Performance metric-based MOEAs

- **IBEA** (Zitzler and Kunzli, 2004)
 - Contribution estimation (of B)

 $$I_{HD}(A, B) = \begin{cases} I_H(B) - I_H(A) & \text{if } \forall x^2 \in B \exists x^1 \in A : x^1 > x^2 \\ I_H(A + B) - I_H(A) & \text{else} \end{cases}$$

 ![Diagram](image)

"Introduction to EMO," talk@ee.ntu, 2009.11.18

Performance metric-based MOEAs

- **IBEA** (Zitzler and Kunzli, 2004)
 - Fitness assignment (the larger the better)

 $$F(x^1) = \sum_{x^2 \in P \setminus \{x^1\}} -e^{-I(H(x^2), x^1)^2/c}$$

 ![Diagram](image)

"Introduction to EMO," talk@ee.ntu, 2009.11.18
Performance metric-based MOEAs

- **IBEA** (Zitzler and Kunzli, 2004)
 - After producing offspring by mating selection, crossover, and mutation, environmental selection iterates the following three steps until the population size is reached:
 1. Choose an individual x^* with the smallest fitness.
 2. Remove x^* from the population.
 3. Update the fitness values of the remaining individuals.

- **SMS-EMOA** (Beume et al., 2007)
 - Main algorithm

```
Algorithm 1. SMS-EMOA
1: $P_0 \leftarrow \text{init}()$
2: $t \leftarrow 0$
3: repeat
4: $q_{t+1} \leftarrow \text{generate}(P_t)$
5: $P_{t+1} \leftarrow \text{Reduce}(P_t \cup \{q_{t+1}\})$
6: $t \leftarrow t + 1$
7: until termination condition fulfilled
```
Performance metric-based MOEAs

- **SMS-EMOA** (Beume et al., 2007)
 - Key function

 Algorithm 3. Reduced \(Q \)

 1. \(\{ P_1, \ldots, P_e \} \leftarrow \text{non-dominated-sort}(Q) \)
 2. if \(e > 1 \) then
 3. \(r \leftarrow \arg \max_{r \in P_1} [d(s, Q)] \)
 4. else
 5. \(r \leftarrow \text{argmin}_{r \in P_1} [\delta_{P}(s, P_1)] \)
 6. end if
 7. return \((Q \setminus r) \)

 - Number of dominating solutions
 \[d(s, P(t)) := |\{ y \in P(t) | y < s \}| \]

 - Contribution to the hypervolume
 \[\Delta_{P}(s, P_0) := \mathcal{H}(P_0) - \mathcal{H}(P_0 \setminus \{ s \}). \]

Performance metric-based MOEAs

- **SMS-EMOA** (Beume et al., 2007)
 - Rationale

 y9 is more interesting than y8.

 \[\Delta_{P}(s, P_0) \] prefers y8

 \[d(s, P(t)) \] prefers y9
Performance metric-based MOEAs

- **SMS-EMOA** (Beume et al., 2007)
 - Characteristic

![Graph showing performance metric-based MOEAs](image)

Aggregation-based MOEAs

- **I-MOGLS** (Ishibuchi et al., 1998, 2003)
 - **GLS** = Genetic algorithm + Local Search
 - Fitness assignment: linear weighted sum $\sum w_i f_i(x)$
 - Mating selection
 - random weight vector
 - tournament

![Graph showing aggregation-based MOEAs](image)
Aggregation-based MOEAs

- **I-MOGLS** (Ishibuchi et al., 1998, 2003)
 - Issues brought by LS
 - Who does LS: random weight vector + tournament
 - Which direction: linear weighted sum
 - How to move: first improvement
 - When to stop: no better solutions in the neighborhood
 - Who survives: every terminating solution

- **TPSPGA** (Chang et al., 2005)
 - First phase
Aggregation-based MOEAs

- **TPSPGA** (Chang et al., 2005)
 - Second phase

```
Sub-population
Population
```

- **MOEA/D** (Zhang and Li, 2007, 2009)
 - “D” for problem Decomposition
 - Weight vector-based aggregation function
 - Linear weighted sum
 - Tchebycheff
 - Boundary intersection
 - Every weight vector defines a subproblem, and every subproblem keeps the best solution.
 - a large number of weight vector
 - a very small sub-population (In fact, the size is 1.)
Aggregation-based MOEAs

- MOEA/D (Zhang and Li, 2007, 2009)
 - Neighborhood
 - Mating restriction
 - Diversity control

Research Directions

- Algorithm design for general MOEA components:
 - Fitness assignment mechanism
 - Aggregation? Dominance?
 - Proximity vs. Diversity
 - Selection
 - Mating restriction & subpopulation
 - Archiving
 - Hybridization
 - Parallelization
Research Directions

- Algorithm design for specific problem natures:
 - Constrained
 - Dynamic
 - Uncertain
 - Expensive evaluation
 - Many objectives (say more than 10)

Research Directions

- Generation of benchmark problems
 - ZDT
 - DTLZ
 - Li & Zhang

"Introduction to EMO," talk@ee.ntu, 2009.11.18
Research Directions

- Generation of benchmark problems
 - ZDT
 - DTLZ
 - Li & Zhang

Research Directions

- Development of performance metrics
 - Zitzler et al. (2003)

<table>
<thead>
<tr>
<th>ref</th>
<th>name / reference</th>
<th>(I_x) option / section & B</th>
<th>(I_x) additive option / section & B</th>
<th>(I_x) coverage / [7]</th>
<th>(I_y) hypervolume indicator / [21]</th>
<th>(I_y) utility function indicator / [8]</th>
<th>(I_y) utility function indicator / [18]</th>
<th>(I_y) area of interaction / [16]</th>
</tr>
</thead>
<tbody>
<tr>
<td>(I_x)</td>
<td>(I_x(A, B)) (< 0)</td>
<td>(I_x(A, B)) (\leq 1)</td>
<td>(I_x(A, B)) (> 1)</td>
<td>(I_x(A, B) = 1)</td>
<td>(I_x(A, B) = 0)</td>
<td>(I_x(A, B)) (< 0)</td>
<td>(I_x(A, B)) (\leq 0)</td>
<td>(I_x(A, B)) (> 0)</td>
</tr>
<tr>
<td>(I_x)</td>
<td>(I_x(A, B)) (\leq 0)</td>
<td>(I_x(A, B)) (< 1)</td>
<td>(I_x(A, B)) (\geq 1)</td>
<td>(I_x(A, B)) (= 1)</td>
<td>(I_x(A, B)) (= 0)</td>
<td>(I_x(A, B)) (> 0)</td>
<td>(I_x(A, B)) (\geq 0)</td>
<td>(I_x(A, B)) (< 0)</td>
</tr>
<tr>
<td>(I_y)</td>
<td>(I_y(A, B)) (\leq 1)</td>
<td>(I_y(A, B)) (> 1)</td>
<td>(I_y(A, B)) (= 1)</td>
<td>(I_y(A, B)) (= 0)</td>
<td>(I_y(A, B)) (< 0)</td>
<td>(I_y(A, B)) (\leq 0)</td>
<td>(I_y(A, B)) (> 0)</td>
<td>(I_y(A, B)) (\geq 0)</td>
</tr>
<tr>
<td>(I_y)</td>
<td>(I_y(A, B)) (> 0)</td>
<td>(I_y(A, B)) (\leq 0)</td>
<td>(I_y(A, B)) (< 1)</td>
<td>(I_y(A, B)) (\geq 1)</td>
<td>(I_y(A, B)) (= 0)</td>
<td>(I_y(A, B)) (> 0)</td>
<td>(I_y(A, B)) (\geq 0)</td>
<td>(I_y(A, B)) (< 0)</td>
</tr>
</tbody>
</table>
Research Directions

- Development of performance metrics
 - Zitzler et al. (2003)

<table>
<thead>
<tr>
<th>relation</th>
<th>objective vectors</th>
<th>approximation sets</th>
</tr>
</thead>
<tbody>
<tr>
<td>strictly dominates</td>
<td>$z^1 > z^2$</td>
<td>z^1 is better than z^2 in all objectives</td>
</tr>
<tr>
<td>dominates</td>
<td>$z^1 \geq z^2$</td>
<td>z^1 is not worse than z^2 in all objectives and better in at least one objective</td>
</tr>
<tr>
<td>better</td>
<td>$z^1 \geq z^2$</td>
<td>z^1 is not worse than z^2 in all objectives</td>
</tr>
<tr>
<td>weakly dominates</td>
<td>$z^1 \geq z^2$</td>
<td>z^1 is not worse than z^2 in all objectives</td>
</tr>
<tr>
<td>incomparable</td>
<td>$z^1 \parallel z^2$</td>
<td>neither z^1 weakly dominates z^2 nor z^2 weakly dominates z^1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>$A \parallel B$ every $z^1 \in B$ is weakly dominated by at least one $z^1 \in A$</td>
</tr>
</tbody>
</table>
Research Directions

- **Applications**
 - Multiobjectivization
 - Constrained optimization
 - Rule mining
 - Clustering
 - Innovization
 - Knowledge discovery of the Pareto optimal solutions (what makes a solution optimal?)

- **Decision making**
 - Generic consideration
 - Knee points
 - Pareto-optimal points having multiplicity
 - Pareto-optimal solutions which do not lie close to variable boundaries
 - Subjective consideration
 - Preference information
 - Interaction
 - Visualization
Research Directions

- **Software development**
 - Optimization methods
 - GUI
 - Visualization, post-processing, statistical charts
 - Decision support
 - Meta-modeling and model validation
 - Framework & libraries
 - ParadisEO (http://paradiseo.gforge.inria.fr/)
 - PISA (http://www.tik.ethz.ch/~sop/pisa/)
 - Parallel implementation

```
template<class EOT> 
class eoPop: public std::vector<EOT>, public eoObject, public eoPersistent 
{
  public:
    using std::vector<EOT>::size;
    using std::vector<EOT>::resize;
    using std::vector<EOT>::operator[];
    using std::vector<EOT>::begin;
    using std::vector<EOT>::end;
    
typedef typename EOT::Fitness Fitness;
```

"Introduction to EMO," talk@ee.ntu, 2009.11.18
Research Directions

- Software development
 - PISA library

- Research Directions
 - Software development
 - Parallelization
 - Algorithms
 - Components
 - evaluations
 - local search
 - Evaluation
 - multiple runs
 - objectives
 - solvers

Introduction to EMO, talk@ee.ntu, 2009.11.18
Summary

- In this talk, we
 - introduce the multiobjective optimization problem and the evolutionary algorithm
 - describe three major types of MOEAs
 - indicate the potential research directions
- This field is still growing rapidly, and there are many research opportunities.